Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Genotyping
2.2. Statistical Analysis
- Co-dominant (general test of association): DD versus Dd versus dd;
- Dominant: (DD + Dd) versus dd;
- Recessive: DD versus (Dd + dd);
- Overdominant (heterozygote superiority) model: Dd versus (DD + dd);
- Heterozygote comparison: Dd vs. DD;
- Homozygote comparison: DD vs. dd;
- Allelic/multiplicative (allelic frequency): D versus d;
3. Results
3.1. Single-Nucleotide Polymorphisms (SNPs) and OC Risk
3.1.1. Postmenopausal Women and SNPs
3.1.2. Association between rs2227543 (+1633 C>T) and EROC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Histology | n | Percent |
---|---|---|
Serous | 149 | 74.5 |
Endometrioid | 23 | 11.5 |
Mucinous | 8 | 4.0 |
Clear Cell | 5 | 2.5 |
Undifferentiated | 7 | 3.5 |
MMMT | 1 | 0.5 |
Missing or Incomplete (e.g., only grading) | 7 | 3.5 |
Total | 200 | 100 |
FIGO Stage | No. of Cases | Percent | Cumulative Percent |
---|---|---|---|
I A | 6 | 3 | 3 |
I B | 1 | 0.5 | 3.5 |
I C | 12 | 6 | 9.5 |
II A | 4 | 2 | 11.5 |
II B | 10 | 5 | 16.5 |
III A | 2 | 1 | 17.5 |
III B | 27 | 13.5 | 31 |
III C | 109 | 54.5 | 85.5 |
IV | 21 | 10.5 | 96 |
N/a | 8 | 4 | 100 |
Total | 200 | 100 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Mazidimoradi, A.; Momenimovahed, Z.; Allahqoli, L.; Tiznobaik, A.; Hajinasab, N.; Salehiniya, H.; Alkatout, I. The Global, Regional and National Epidemiology, Incidence, Mortality, and Burden of Ovarian Cancer. Health Sci. Rep. 2022, 5, e936. [Google Scholar] [CrossRef]
- Watrowski, R.; Obermayr, E.; Wallisch, C.; Aust, S.; Concin, N.; Braicu, E.I.; Van Gorp, T.; Hasenburg, A.; Sehouli, J.; Vergote, I.; et al. Biomarker-Based Models for Preoperative Assessment of Adnexal Mass: A Multicenter Validation Study. Cancers 2022, 14, 1780. [Google Scholar] [CrossRef]
- Quesada, S.; Thomas, Q.D.; Colombo, P.-E.; Fiteni, F. Optimal First-Line Medico-Surgical Strategy in Ovarian Cancers: Are We There Yet? Cancers 2023, 15, 3556. [Google Scholar] [CrossRef]
- Kostov, S.; Kornovski, Y.; Watrowski, R.; Slavchev, S.; Ivanova, Y.; Yordanov, A. Surgical and Anatomical Basics of Pelvic Debulking Surgery for Advanced Ovarian Cancer—The “Hudson Procedure” as a Cornerstone of Complete Cytoreduction. Chirurgia 2023, 118, 187–201. [Google Scholar] [CrossRef]
- Köbel, M.; Kang, E.Y. The Evolution of Ovarian Carcinoma Subclassification. Cancers 2022, 14, 416. [Google Scholar] [CrossRef]
- Kvaskoff, M.; Mahamat-Saleh, Y.; Farland, L.V.; Shigesi, N.; Terry, K.L.; Harris, H.R.; Roman, H.; Becker, C.M.; As-Sanie, S.; Zondervan, K.T.; et al. Endometriosis and Cancer: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2021, 27, 393–420. [Google Scholar] [CrossRef]
- Bergamini, A.; Mangili, G.; Ambrosi, A.; Taccagni, G.; Rabaiotti, E.; Bocciolone, L.; Candotti, G.; Cioffi, R.; Pella, F.; Sabetta, G.; et al. Endometriosis-Related Ovarian Cancers: Evidence for a Dichotomy in the Histogenesis of the Two Associated Histotypes. Diagnostics 2023, 13, 1425. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, C.-Y. Association Between Endometriosis and Prognosis of Ovarian Cancer: An Updated Meta-Analysis. Front. Oncol. 2022, 12, 732322. [Google Scholar] [CrossRef] [PubMed]
- Kostov, S.; Watrowski, R.; Kornovski, Y.; Dzhenkov, D.; Slavchev, S.; Ivanova, Y.; Yordanov, A. Hereditary Gynecologic Cancer Syndromes—A Narrative Review. Onco. Targets Ther. 2022, 15, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G.; Cagnacci, A.; Schilder, R.J.; Cortesi, L. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes. BioMed Res. Int. 2015, 2015, 341723. [Google Scholar] [CrossRef]
- Flaum, N.; Crosbie, E.J.; Edmondson, R.J.; Smith, M.J.; Evans, D.G. Epithelial Ovarian Cancer Risk: A Review of the Current Genetic Landscape. Clin. Genet. 2020, 97, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, Z.; Ye, Z.; Li, J.; Hao, Z.; Wang, Y. The Association between Single Nucleotide Polymorphisms and Ovarian Cancer Risk: A Systematic Review and Network Meta-analysis. Cancer Med. 2023, 12, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-P.; Tai, D.-I.; Lan, K.-H.; Li, A.F.-Y.; Hsu, H.-C.; Lin, E.-J.; Lin, Y.-P.; Sheu, M.-L.; Li, C.-P.; Chang, F.-Y.; et al. The -251T Allele of the Interleukin-8 Promoter Is Associated with Increased Risk of Gastric Carcinoma Featuring Diffuse-Type Histopathology in Chinese Population. Clin. Cancer Res. 2005, 11, 6431–6441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Wang, Z.-H.; Yen, J.-H.; Shen, Y.-C.; Shen, T.-C.; Chang, W.-S.; Su, C.-H.; Chen, K.-Y.; Yen, C.-M.; Lee, H.-T.; et al. The Contribution of Interleukin-8 Rs4073 Genotypes to Triple Negative Breast Cancer Risk in Taiwan. Anticancer Res. 2022, 42, 3799–3806. [Google Scholar] [CrossRef] [PubMed]
- Watrowski, R.; Castillo-Tong, D.C.; Schuster, E.; Fischer, M.B.; Speiser, P.; Zeillinger, R. Association of HER2 Codon 655 Polymorphism with Ovarian Cancer. Tumour Biol. 2016, 37, 7239–7244. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent Advances in Underlying Pathologies Provide Insight into Interleukin-8 Expression-Mediated Inflammation and Angiogenesis. Int. J. Inflamm. 2011, 2011, 908468. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, K.; Ekerydh, A.; Fyhr, I.M.; Janson, P.O.; Brännström, M. Upregulation of Interleukin-8 and Polarized Epithelial Expression of Interleukin-8 Receptor A in Ovarian Carcinomas. Acta Obstet. Gynecol. Scand. 2000, 79, 777–784. [Google Scholar] [PubMed]
- Gaire, B.; Padmanabhan, S.; Zou, Y.; Uddin, M.M.; Reddy, S.U.; Vancurova, I. IFNγ Induces Bcl3 Expression by JAK1/STAT1/P65 Signaling, Resulting in Increased IL-8 Expression in Ovarian Cancer Cells. FEBS Open Bio. 2023, 13, 1495–1506. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Gaire, B.; Zou, Y.; Uddin, M.M.; DeLeon, D.; Vancurova, I. IFNγ Induces JAK1/STAT1/P65 NFκB-Dependent Interleukin-8 Expression in Ovarian Cancer Cells, Resulting in Their Increased Migration. Int. J. Biochem. Cell Biol. 2021, 141, 106093. [Google Scholar] [CrossRef]
- Thongchot, S.; Jamjuntra, P.; Therasakvichya, S.; Warnnissorn, M.; Ferraresi, A.; Thuwajit, P.; Isidoro, C.; Thuwajit, C. Interleukin-8 Released by Cancer-associated Fibroblasts Attenuates the Autophagy and Promotes the Migration of Ovarian Cancer Cells. Int. J. Oncol. 2021, 58, 14. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, G.; Wang, Y.; He, M.; Xu, Q.; Lu, J.; Liu, H.; Xu, C. Tumour-Associated Neutrophils Orchestrate Intratumoural IL-8-Driven Immune Evasion through Jagged2 Activation in Ovarian Cancer. Br. J. Cancer 2020, 123, 1404–1416. [Google Scholar] [CrossRef]
- Seo, J.H.; Jeong, K.J.; Oh, W.J.; Sul, H.J.; Sohn, J.S.; Kim, Y.K.; Cho, D.Y.; Kang, J.K.; Park, C.G.; Lee, H.Y. Lysophosphatidic Acid Induces STAT3 Phosphorylation and Ovarian Cancer Cell Motility: Their Inhibition by Curcumin. Cancer Lett. 2010, 288, 50–56. [Google Scholar] [CrossRef]
- Wang, L.; Tang, C.; Cao, H.; Li, K.; Pang, X.; Zhong, L.; Dang, W.; Tang, H.; Huang, Y.; Wei, L.; et al. Activation of IL-8 via PI3K/Akt-Dependent Pathway Is Involved in Leptin-Mediated Epithelial-Mesenchymal Transition in Human Breast Cancer Cells. Cancer Biol. Ther. 2015, 16, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Tian, W.; Gao, W.; Zang, R.; Wang, H.; Yang, G. Cancer-Associated Fibroblast-Derived Interleukin-8 Promotes Ovarian Cancer Cell Stemness and Malignancy Through the Notch3-Mediated Signaling. Front. Cell Dev. Biol. 2021, 9, 684505. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, G.M.; Abrão, M.S.; Mechsner, S. Can Chemokines Be Used as Biomarkers for Endometriosis? A Systematic Review. Hum. Reprod. 2014, 29, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Smycz-Kubańska, M.; Mamrocha, A.; Wendlocha, D.; Królewska-Daszczyńska, P.; Strzelec, A.; Stępień, S.; Mielczarek-Palacz, A. Analysis of the Concentration of CXCL8 Chemokine and Its CXCR1 and CXCR2 Receptors in Peritoneal Fluid of Women with Endometriosis. Pol. Merkur. Lekarski 2022, 50, 232–236. [Google Scholar] [PubMed]
- Rahmawati, N.Y.; Ahsan, F.; Santoso, B.; Mufid, A.F.; Sa’adi, A.; Dwiningsih, S.R.; Tunjungseto, A.; Widyanugraha, M.Y.A. IL-8 and IL-12p70 Are Associated with Pelvic Pain among Infertile Women with Endometriosis. Pain Med. 2023, 24, pnad080. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto-Kakiuchi, A.; Sato, I.; Nakano, K.; Ohmori, H.; Kayukawa, Y.; Tanimura, H.; Yamamoto, S.; Sakamoto, Y.; Nakamura, G.; Maeda, A.; et al. A Long-Acting Anti-IL-8 Antibody Improves Inflammation and Fibrosis in Endometriosis. Sci. Transl. Med. 2023, 15, eabq5858. [Google Scholar] [CrossRef]
- Cardoso, J.V.; Machado, D.E.; da Silva, M.C.; de Mello, M.P.; Berardo, P.T.; Medeiros, R.; Perini, J.A. Influence of Interleukin-8 Polymorphism on Endometriosis-Related Pelvic Pain. Hum. Immunol. 2023, 84, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Kala, D.; Dhiman, G.; Yadav, V.; Krokhotin, A.; Dokholyan, N.V. Predicting the Functional Consequences of Non-Synonymous Single Nucleotide Polymorphisms in IL8 Gene. Sci. Rep. 2017, 7, 6525. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhou, R.; Wang, C.; Guo, X.; Chen, Z.; Yang, S.; Li, Y. -251 T/A Polymorphism of the Interleukin-8 Gene and Cancer Risk: A HuGE Review and Meta-Analysis Based on 42 Case-Control Studies. Mol. Biol. Rep. 2012, 39, 2831–2841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Y.; Yang, L.; Yin, S.; Zang, R.; Yang, G. The Polymorphism Interleukin-8 -251A/T Is Associated with a Significantly Increased Risk of Cancers from a Meta-Analysis. Tumour Biol. 2014, 35, 7115–7123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fang, T.; Wang, K.; Mei, H.; Lv, Z.; Wang, F.; Cai, Z.; Liang, C. Association of Polymorphisms in Interleukin-8 Gene with Cancer Risk: A Meta-Analysis of 22 Case-Control Studies. Onco. Targets Ther. 2016, 9, 3727–3737. [Google Scholar] [CrossRef]
- Hacking, D.; Knight, J.C.; Rockett, K.; Brown, H.; Frampton, J.; Kwiatkowski, D.P.; Hull, J.; Udalova, I.A. Increased in Vivo Transcription of an IL-8 Haplotype Associated with Respiratory Syncytial Virus Disease-Susceptibility. Genes Immun. 2004, 5, 274–282. [Google Scholar] [CrossRef]
- Charrad, R.; Kaabachi, W.; Rafrafi, A.; Berraies, A.; Hamzaoui, K.; Hamzaoui, A. IL-8 Gene Variants and Expression in Childhood Asthma. Lung 2017, 195, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, B.; Zhang, M.; Han, Y.; Zhao, Y.; Meng, Z.; Li, X.; Kang, J.; Yan, C. Interleukin-8 Gene Polymorphism Is Associated with Acute Coronary Syndrome in the Chinese Han Population. Cytokine 2011, 56, 188–191. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single Nucleotide Polymorphisms and Cancer Susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, C.; Tu, M.; Shi, C.; Yin, L.; Peng, Y.; Li, Q.; Miao, Y. Gene Polymorphisms in the Interleukins Gene and the Risk of Acute Pancreatitis: A Meta-Analysis. Cytokine 2019, 115, 50–59. [Google Scholar] [CrossRef]
- Koper-Lenkiewicz, O.M.; Sutkowska, K.; Wawrusiewicz-Kurylonek, N.; Kowalewska, E.; Matowicka-Karna, J. Proinflammatory Cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis-A Literature Review. Int. J. Mol. Sci. 2022, 23, 2106. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Soraya, G.V. Roles of IL-8 -251A/T and +781C/T Polymorphisms, IL-8 Level, and the Risk of Age-Related Macular Degeneration. Arch. Soc. Esp. Oftalmol. 2021, 96, 476–487. [Google Scholar] [CrossRef]
- Chien, M.-H.; Yeh, C.-B.; Li, Y.-C.; Wei, L.-H.; Chang, J.-H.; Peng, Y.-T.; Yang, S.-F.; Kuo, W.-H. Relationship of Interleukin-8 Gene Polymorphisms with Hepatocellular Carcinoma Susceptibility and Pathological Development. J. Surg. Oncol. 2011, 104, 798–803. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chang, W.-S.; Tsai, C.-W.; Hsia, T.-C.; Shen, T.-C.; Bau, D.-T.; Shui, H.-A. The Contribution of Interleukin-8 Genotypes and Expression to Nasopharyngeal Cancer Susceptibility in Taiwan. Medicine 2018, 97, e12135. [Google Scholar] [CrossRef]
- Liu, H.; Mao, P.; Xie, C.; Xie, W.; Wang, M.; Jiang, H. Association between Interleukin 8-251 T/A and +781 C/T Polymorphisms and Glioma Risk. Diagn. Pathol. 2015, 10, 138. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Liu, S.; Zhu, S.; Jiang, H.; Ding, J. Association between Interleukin 8 -251 A/T and +781 C/T Polymorphisms and Osteosarcoma Risk in Chinese Population: A Case-Control Study. Tumour Biol. 2016, 37, 6191–6196. [Google Scholar] [CrossRef]
- Moghimi, M.; Dastgheib, S.A.; Heiranizadeh, N.; Zare, M.; Sheikhpour, E.; Neamatzadeh, H. Association of IL-8 -251T>A (rs4073) polymorphism with susceptibility to gastric cancer: A systematic review and meta-analysis based on 33 case-control studies. Arq. Gastroenterol. 2020, 57, 91–99. [Google Scholar] [CrossRef]
- Li, C.-H.; Yang, Y.-C.; Hsia, T.-C.; Shen, T.-C.; Shen, Y.-C.; Chang, W.-S.; Wang, Y.-C.; Tsai, C.-W.; Bau, D.-T. Association of Interleukin-8 Promoter Genotypes With Taiwan Lung Cancer Risk. Anticancer Res. 2022, 42, 1229–1236. [Google Scholar] [CrossRef]
- Wang, X.-B.; Li, Y.-S.; Li, J.; Han, Y.; Liu, Z.-D. Interleukin-8 -251A/T Gene Polymorphism and Lung Cancer Susceptibility: A Meta-Analysis. J. Cell Mol. Med. 2015, 19, 1218–1222. [Google Scholar] [CrossRef]
- Chen, C.-H.; Ho, C.-H.; Hu, S.-W.; Tzou, K.-Y.; Wang, Y.-H.; Wu, C.-C. Association between Interleukin-8 Rs4073 Polymorphism and Prostate Cancer: A Meta-Analysis. J. Formos. Med. Assoc. 2020, 119, 1201–1210. [Google Scholar] [CrossRef]
- Snoussi, K.; Mahfoudh, W.; Bouaouina, N.; Fekih, M.; Khairi, H.; Helal, A.N.; Chouchane, L. Combined Effects of IL-8 and CXCR2 Gene Polymorphisms on Breast Cancer Susceptibility and Aggressiveness. BMC Cancer 2010, 10, 283. [Google Scholar] [CrossRef]
- Zhang, J.; Han, X.; Sun, S. IL-8 -251A/T and +781C/T Polymorphisms Were Associated with Risk of Breast Cancer in a Chinese Population. Int. J. Clin. Exp. Pathol. 2017, 10, 7443–7450. [Google Scholar]
- Wang, Z.; Liu, Q.-L.; Sun, W.; Yang, C.-J.; Tang, L.; Zhang, X.; Zhong, X.-M. Genetic Polymorphisms in Inflammatory Response Genes and Their Associations with Breast Cancer Risk. Croat Med. J. 2014, 55, 638–646. [Google Scholar] [CrossRef]
- Koensgen, D.; Bruennert, D.; Ungureanu, S.; Sofroni, D.; Braicu, E.I.; Sehouli, J.; Sümnig, A.; Delogu, S.; Zygmunt, M.; Goyal, P.; et al. Polymorphism of the IL-8 Gene and the Risk of Ovarian Cancer. Cytokine 2015, 71, 334–338. [Google Scholar] [CrossRef]
- WHO Classification of Tumours of Female Reproductive Organs; Organisation Mondiale de la santé, Centre International de Recherche sur le Cancer (Eds.) World Health Organization Classification of Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2014; ISBN 978-92-832-2435-8. [Google Scholar]
- Prat, J. FIGO Committee on Gynecologic Oncology Staging Classification for Cancer of the Ovary, Fallopian Tube, and Peritoneum. Int. J. Gynecol. Obstet. 2014, 124, 1–5. [Google Scholar] [CrossRef]
- Kilaf, E.; Kirchengast, S. Menopause between nature and culture: Menopausal age and climacteric symptoms among Turkish immigrant women in Vienna, Austria. Acta Med. Lituanica 2008, 15, 2–8. [Google Scholar]
- Krause, L.; Dini, L.; Prütz, F. Ambulante Inanspruchnahme und Behandlungsanlässe bei Frauen ab 50 Jahren. J. Health Monit. 2019, 5, 2. [Google Scholar] [CrossRef]
- JASP Team. JASP, Version 0.17.3; JASP Team: Amsterdam, The Netherlands, 2023.
- VassarStats: Website for Statistical Computation. Copyright: Richard Lowry 1998-2023. Available online: http://www.vassarstats.net (accessed on 3 August 2023).
- Lewis, C.M. Genetic Association Studies: Design, Analysis and Interpretation. Brief Bioinform 2002, 3, 146–153. [Google Scholar] [CrossRef]
- Horita, N.; Kaneko, T. Genetic Model Selection for a Case–Control Study and a Meta-Analysis. Meta Gene 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Watrowski, R.; Zeillinger, R. Simple Laboratory Score Improves the Preoperative Diagnosis of Adnexal Mass. Tumour Biol. 2016, 37, 4343–4349. [Google Scholar] [CrossRef]
- Watrowski, R.; Heinze, G.; Jäger, C.; Forster, J.; Zeillinger, R. Usefulness of the Preoperative Platelet Count in the Diagnosis of Adnexal Tumors. Tumour Biol. 2016, 37, 12079–12087. [Google Scholar] [CrossRef]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in Cancer: From Biology to Therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Hefler, L.A.; Grimm, C.; Ackermann, S.; Malur, S.; Radjabi-Rahat, A.R.; Leodolter, S.; Beckmann, M.W.; Zeillinger, R.; Koelbl, H.; Tempfer, C.B. An Interleukin-6 Gene Promoter Polymorphism Influences the Biological Phenotype of Ovarian Cancer. Cancer Res. 2003, 63, 3066–3068. [Google Scholar]
- Bushley, A.W.; Ferrell, R.; McDuffie, K.; Terada, K.Y.; Carney, M.E.; Thompson, P.J.; Wilkens, L.R.; Tung, K.-H.; Ness, R.B.; Goodman, M.T. Polymorphisms of Interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the Risk of Ovarian Cancer. Gynecol. Oncol. 2004, 95, 672–679. [Google Scholar] [CrossRef]
- Samsami Dehaghani, A.; Shahriary, K.; Kashef, M.A.; Naeimi, S.; Fattahi, M.J.; Mojtahedi, Z.; Ghaderi, A. Interleukin-18 Gene Promoter and Serum Level in Women with Ovarian Cancer. Mol. Biol. Rep. 2009, 36, 2393–2397. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, B.; Zhang, J.; Chen, Y.; Lai, T.; Yan, L.; Liang, A.; Li, Y.; Wang, Y.; Chen, Y.; et al. Association of Interleukin-23 Receptor Gene Polymorphisms with Risk of Ovarian Cancer. Cancer Genet. Cytogenet. 2010, 196, 146–152. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Song, H.; Li, Q.; Zhang, Y.; Chen, P.; Song, Y.; Su, M.; Huang, Q.; Wang, M.; et al. Genetic Association of Interleukin-31 Gene Polymorphisms with Epithelial Ovarian Cancer in Chinese Population. Dis. Markers 2018, 2018, 3503858. [Google Scholar] [CrossRef]
- Shin, J.-W.; Lee, E.; Han, S.; Choe, S.-A.; Jeon, O.H. Plasma Proteomic Signature of Cellular Senescence and Markers of Biological Aging Among Postmenopausal Women. Rejuvenation Res. 2022, 25, 141–148. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Hsin, I.-L.; Chen, D.-R.; Chang, C.-C.; Kor, C.-T.; Chen, T.-Y.; Wu, H.-M. Circulating Interleukin-8 and Tumor Necrosis Factor-α Are Associated with Hot Flashes in Healthy Postmenopausal Women. PLoS ONE 2017, 12, e0184011. [Google Scholar] [CrossRef]
- Sturgeon, J.A.; Darnall, B.D.; Zwickey, H.L.; Wood, L.J.; Hanes, D.A.; Zava, D.T.; Mackey, S.C. Proinflammatory Cytokines and DHEA-S in Women with Fibromyalgia: Impact of Psychological Distress and Menopausal Status. J. Pain Res. 2014, 7, 707–716. [Google Scholar] [CrossRef]
- Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Abnormal Peritoneal Regulation of Chemokine Activation-The Role of IL-8 in Pathogenesis of Endometriosis. Am. J. Reprod. Immunol. 2017, 77, e12622. [Google Scholar] [CrossRef]
- Thomsen, L.H.; Schnack, T.H.; Buchardi, K.; Hummelshoj, L.; Missmer, S.A.; Forman, A.; Blaakaer, J. Risk Factors of Epithelial Ovarian Carcinomas among Women with Endometriosis: A Systematic Review. Acta Obstet. Gynecol. Scand. 2017, 96, 761–778. [Google Scholar] [CrossRef]
SNP | Symbol | Location | Primer Sequence | Annealing Temperature | Digestion (Enzyme, Temperature, Duration) | Fragment Size (bp) |
---|---|---|---|---|---|---|
−251 (T/A) | rs4073 | Promoter | Forward: 5′-TCATCCATGATCTTGTTCTAA-3′ Reverse: 5′-GGAAAACGCTGTAGGTCAGA-3′ | 55 °C | Mfe I, 37 °C, 25 min | T/T: 524 A/A: 449,75 |
+781 (C/T) | rs2227306 | Intron 1 | Forward: 5′-CTCTAACTCTTTATATAAGGAATT-3′ Reverse: 5′-GATTGATTTTATCAACAGGCA-3′ | 50 °C | EcoR I, 37 °C, 25 min | T/T: 203 C/C: 184,19 |
+1633 (C/T) | rs2227543 | Intron 3 | Forward: 5′-CTGATGGAAGAGAGCTCTGT-3′ Reverse: 5′-TGTTAGAAATGCTCTATATTCTC-3′ | 55 °C | NIa III, 55 °C, 35 min | T/T: 397 C/C: 234,163 |
+2767 (A/T) | rs1126647 | 3′UTR | Forward: 5′-CCAGTTAAATTTTCATTTCAGGTA-3′ Reverse: 5′-CAACCAGCAAGAAATTACTAA-3′ | 50 °C | BstZ17I, 37 °C, 25 min | A/A: 222 T/T: 198,24 |
Parameter | Cases | Controls | p | |
---|---|---|---|---|
Number of individuals | 200 | 213 | ||
Mean age at diagnosis (years) | 55.85 (SD 12.3, IQR 47–65) | 51.44 (SD 13.3, IQR 45–58) | <0.001 | |
Menopausal status | Postmenopausal | 124 (62%) | 116 (54.5%) | 0.12 |
(age < 51 vs. ≥51 years) | Premenopausal | 76 (38%) | 97 (45.5%) | |
High-grade serous OC | HGSOC | 147 (73.5%) | ||
Non-HGSOC | 46 (23%) | |||
N/a | 7 (3.5%) | |||
EROC | EROC | 28 (14%) | ||
Non-EROC | 165 (82.5%) | |||
N/a | 7 (3.5%) | |||
Stage | Early | 23 (11.5%) | ||
Advanced | 169 (84.5%) | |||
N/a | 8 (4%) | |||
SNP | Model | Genotype | Controls | Cases | OR (95% CI) | P Fi | χ2 | P Chi |
---|---|---|---|---|---|---|---|---|
rs4073 | Co-dominant | AA | 45 (21.1%) | 53 (26.5%) | 2.6 | 0.272 | ||
(−251 A>T) | AT | 109 (51.2%) | 103 (51.5%) | |||||
TT | 59 (27.7%) | 44 (22%) | ||||||
pHWE = 0.78 | ||||||||
Dominant | AA + AT | 154 (72.3%) | 156 (78%) | 1.36 (0.87–2.13) | 0.21 | 1.79 | 0.181 | |
TT | 59 (27.7%) | 44 (22%) | ||||||
Recessive | AA | 45 (21.1%) | 53 (26.5%) | 1.35 (0.85–2.12) | 0.21 | 1.65 | 0.200 | |
AT + TT | 168 (78.9%) | 147 (73.5%) | ||||||
Overdominant | AT | 109 (51.2%) | 103 (51.5%) | 1.01 (0.69–1.49) | 1 | 0.004 | 0.95 | |
AA + TT | 104 (48.8%) | 97 (48.5%) | ||||||
Homozygote | AA | 45 (43.3%) | 53 (54.6%) | 1.58 (0.90–2.76) | 0.12 | 2.6 | 0.107 | |
(AA vs. TT) | TT | 59 (56.7%) | 44 (45.4%) | |||||
Heterozygote | AT | 109 (70.8%) | 103 (66%) | 0.80 (0.5–1.3) | 0.394 | 0.81 | 0.368 | |
(AT vs. AA) | AA | 45 (29.2%) | 53 (34%) | |||||
MAF = 0.47 | Allele frequency | A | 199 (46.7%) | 209 (52.3%) | 1.25 (0.95–1.64) | 0.125 | 2.53 | 0.111 |
(A vs. T) | T | 227 (53.3%) | 191 (47.7%) | 0.8 (0.61–1.05) | 0.13 | 2.31 | ||
rs2227306 | Co-dominant | CC | 64 (30%) | 53 (26.5%) | 1.61 | 0.447 | ||
(+781 C>T) | CT | 112 (52.6%) | 103 (51.5%) | |||||
TT | 37 (17.4%) | 44 (22%) | ||||||
pHWE = 0.4 | ||||||||
Dominant | TT + CT | 149 (70%) | 147 (73.5%) | 1.19 (0.78–1.83) | 0.45 | 0.64 | 0.424 | |
CC | 64 (30%) | 53 (26.5%) | ||||||
Recessive | TT | 37 (17.4%) | 44 (22%) | 1.34 (0.82–2.18) | 0.265 | 1.4 | 0.236 | |
CT + CC | 176 (82.6%) | 156 (78%) | ||||||
Overdominant | CT | 112 (52.6%) | 103 (51.5%) | 0.96 (0.65–1.41) | 0.844 | 0.05 | 0.823 | |
TT + CC | 101 (47.4%) | 97 (48.5%) | ||||||
Homozygote | TT | 37 (36.6%) | 44 (45.4%) | 1.44 (0.81–2.54) | 0.248 | 1.56 | 0.212 | |
CC | 64 (63.4%) | 53 (54.6%) | ||||||
Heterozygote | CT | 112 (75.2%) | 103 (70.1%) | 0.773 (0.463–1.291) | 0.362 | 0.97 | 0.325 | |
(CT vs. TT) | TT | 37 (24.8%) | 44 (29.9%) | |||||
Allele frequency | C | 240 (56.3%) | 209 (52.3%) | 1.32 (0.96–1.82) | 0.102 | 2.85 | 0.091 | |
MAF = 0.44 | T vs. C | T | 186 (43.7%) | 191 (47.7%) | ||||
rs2227543 | Co-dominant | CC | 70 (32.9%) | 56 (28%) | 1.39 | 0.500 | ||
(+1633 C>T) | CT | 104 (48.8%) | 101 (50.5%) | |||||
TT | 39 (18.3%) | 43 (21.5%) | ||||||
pHWE = 1 | ||||||||
Dominant | TT + CT | 144 (67.6%) | 144 (72.0%) | 1.23 (0.81–1.88) | 0.34 | 0.94 | 0.331 | |
CC | 69 (32.4%) | 56 (28.0%) | ||||||
Recessive | TT | 39 (18.3%) | 43 (21.5%) | 1.22 (0.75–1.98) | 0.460 | 0.66 | 0.417 | |
CT + CC | 174 (81.7%) | 157 (78.5%) | ||||||
Overdominant | CT | 104 (48.8%) | 101 (50.5%) | 1.07 (0.73–1.57) | 0.768 | 0.12 | 0.729 | |
TT + CC | 109 (51.2%) | 99 (49.5%) | ||||||
Homozygote | TT | 39 (35.8%) | 43 (44.4%) | 1.38 (0.79–2.41) | 0.32 | 1.27 | 0.259 | |
CC | 70 (64.2%) | 56 (56.6%) | ||||||
Heterozygote | CT | 104 (72.7%) | 101 (70.1%) | 0.88 (0.53–1.47) | 0.695 | 0.24 | 0.624 | |
TT | 39 (27.3%) | 43 (29.9%) | ||||||
Allele frequency | C | 244 (57.3%) | 213 (53.3%) | 1.18 (0.89–1.55) | 0.263 | 1.35 | 0.245 | |
MAF = 0.43 | T vs. C | T | 182 (42.7%) | 187 (46.8%) | ||||
rs1126647 | Co-dominant | AA | 73 (34.3%) | 56 (28%) | 2.51 | 0.285 | ||
(+2767 A>T) | AT | 105 (49.3%) | 102 (51%) | |||||
TT | 35 (16.4%) | 42 (21%) | ||||||
pHWE = 0.89 | ||||||||
Dominant | TT + AT | 140 (65.7%) | 144 (72%) | 1.34 (0.88–2.04) | 0.20 | 1.89 | 0.169 | |
AA | 73 (34.3%) | 56 (28%) | ||||||
Recessive | TT | 35 (16.4%) | 42 (21%) | 1.35 (0.82–2.22) | 0.256 | 1.42 | 0.234 | |
AT + AA | 178 (83.6%) | 158 (79%) | ||||||
Overdominant | AT | 105 (49.3%) | 102 (51%) | 1.07 (0.73–1.57) | 0.767 | 0.12 | 0.729 | |
TT + AA | 108 (50.7%) | 98 (49%) | ||||||
Homozygote | TT | 35 (32.4%) | 42 (42.9%) | 1.56 (0.89–2.76) | 0.149 | 2.4 | 0.121 | |
TT vs. AA | AA | 73 (67.6%) | 56 (57.1%) | |||||
Heterozygote | AT | 105 (75%) | 102 (70.8%) | 0.81 (0.48–1.37) | 0.5046 | 0.62 | 0.431 | |
TT | 35 (25%) | 42 (29.2%) | ||||||
Allele frequency | A | 251 (58.9%) | 214 (53.5%) | 1.25 (0.95–1.64) | 0.123 | 2.46 | 0.116 | |
MAF= 0.41 | T vs. A | T | 175 (41.1%) | 186 (46.5%) |
SNP | Model | Genotype | Controls | Cases | OR (95% CI) | P Fi | χ2 | P Chi |
---|---|---|---|---|---|---|---|---|
rs4073 | Co-dominant | AA | 25 (21.5%) | 34 (27.4%) | 5.49 | 0.06 | ||
(−251 A>T) | AT | 50 (43.1%) | 63 (50.8%) | |||||
TT | 41 (35.3%) | 27 (21.8%) | ||||||
Dominant | AA + AT | 75 (64.7%) | 97 (78.2%) | 1.96 (1.11–3.48) | 0.02 | 5.44 | 0.02 | |
TT | 41 (35.3%) | 27 (21.8%) | ||||||
Recessive | AA | 25 (21.5%) | 34 (27.4%) | 1.38 (0.76–2.49) | 0.3 | 1.11 | 0.29 | |
AT + TT | 91 (78.5%) | 90 (72.6%) | ||||||
Overdominant | AT | 50 (43.1%) | 63 (50.8%) | 1.36 (0.82–2.27) | 0.25 | 1.43 | 0.23 | |
AA + TT | 66 (56.9%) | 61 (49.2%) | ||||||
Homozygote | AA | 25 (37.9%) | 34 (55.7%) | 2.07 (1.02–4.2) | 0.051 | 4.06 | 0.04 | |
TT | 41 (62.1%) | 27 (44.3%) | ||||||
Heterozygote | AT | 50 (66.7%) | 63 (64.9%) | 0.93(0.49–1.75) | 0.872 | 0.06 | 0.806 | |
AA | 25 (33.3%) | 34 (35.1%) | ||||||
MAF = 0.43 | Allele frequency | A | 100 (43.1%) | 131 (52.8%) | 1.48 (1.03–2.12) | 0.036 | 4.54 | 0.033 |
(A vs. T) | T | 132 (56.9%) | 117 (47.2%) | |||||
rs2227306 | Co-dominant | CC | 44 (37.9%) | 32 (25.8%) | 4.58 | 0.10 | ||
(+781 C>T) | CT | 53 (45.7%) | 63 (50.8%) | |||||
TT | 19 (16.4%) | 29 (23.4%) | ||||||
Dominant | TT + CT | 72 (62.1%) | 92 (74.2%) | 1.76 (1.01–3.05) | 0.052 | 4.07 | 0.044 | |
(DD, Dd) vs. dd | CC | 44 (37.9%) | 32 (25.8%) | |||||
Recessive | TT | 19 (16.4%) | 29 (23.4%) | 1.56 (0.82–2.97) | 0.198 | 1.84 | 0.174 | |
DD vs. (Dd, dd) | CT + CC | 97 (83.6%) | 95 (76.6%) | |||||
Overdominant | CT | 53 (45.7%) | 63 (50.8%) | 1.23 (0.74–2.04) | 0.44 | 0.63 | 0.427 | |
TT + CC | 63 (54.3%) | 61 (49.2%) | ||||||
Homozygote | TT | 19 (30.2%) | 29 (47.5%) | 2.1 (1.01–4.38) | 0.065 | 3.95 | 0.047 | |
CC | 44 (69.8%) | 32 (52.5%) | ||||||
Heterozygote | CT | 53 (73.6%) | 63 (68.5%) | 0.78 (0.39- 1.54) | 0.4945 | 0.51 | 0.475 | |
TT | 19 (26.4%) | 29 (31.5%) | ||||||
Allele frequency | C | 141 (60.8%) | 127 (51.2%) | 1.48 (1.03–2.12) | 0.0429 | 4.45 | 0.035 | |
MAF = 0.39 | T vs. C | T | 91 (39.2%) | 121 (48.8%) | ||||
rs2227543 | Co-dominant | CC | 49 (42.2%) | 33 (26.6%) | 6.51 | 0.039 | ||
(+1633 C>T) | CT | 45 (38.8%) | 61 (49.2%) | |||||
TT | 22 (19%) | 30 (24.2%) | ||||||
Dominant | TT + CT | 68 (58.6%) | 91 (73.4%) | 1.95 (1.13–3.35) | 0.02 | 5.85 | 0.016 | |
(DD, Dd) vs. dd | CC | 48 (41.4%) | 33 (26.6%) | |||||
Recessive | TT | 22 (19%) | 30 (24.2%) | 1.36 (0.73–2.54) | 0.350 | 0.97 | 0.326 | |
DD vs. (Dd, dd) | CT + CC | 94 (81%) | 94 (75.8%) | |||||
Overdominant | CT | 45 (38.8%) | 61 (49.2%) | 1.53 (0.91–2.55) | 0.119 | 2.63 | 0.105 | |
TT + CC | 71 (61.2%) | 63 (50.8%) | ||||||
Homozygote | TT | 22 (31%) | 30 (47.6%) | 2.025 (1.00–4.1) | 0.053 | 3.89 | 0.049 | |
CC | 49 (69%) | 33 (52.4%) | ||||||
Heterozygote | CT | 45 (67.2%) | 61 (67%) | 0.99 (0.51–1.95) | 1 | 0 | 1 | |
TT | 22 (32.8%) | 30 (33%) | ||||||
Allele frequency | C | 143 (61.6%) | 127 (51.2%) | 0.65 (0.45–0.94) | 0.027 | 5.3 | 0.021 | |
MAF = 0.38 | T vs. C | T | 89 (38.4%) | 121 (48.8%) | ||||
rs1126647 | Co-dominant | AA | 48 (41.4%) | 37 (29.8%) | 3.59 | 0.166 | ||
(+2767 A>T) | AT | 50 (43.1%) | 62 (50%) | |||||
TT | 18 (15.5%) | 25 (20.2%) | ||||||
Dominant | TT + AT | 68 (58.6%) | 87 (70.2%) | 1.66 (0.97–2.83) | 0.079 | 3.49 | 0.062 | |
(DD, Dd) vs. dd | AA | 48 (41.4%) | 37 (29.8%) | |||||
Recessive | TT | 18 (15.5%) | 25 (20.2%) | 1.37 (0.71–2.68) | 0.401 | 0.88 | 0.348 | |
DD vs. (Dd, dd) | AT + AA | 98 (84.5%) | 99 (79.8%) | |||||
Overdominant | AT | 50 (43.1%) | 62 (50%) | 1.32 (0.79–2.2) | 0.303 | 1.15 | 0.283 | |
TT + AA | 66 (56.9%) | 62 (50%) | ||||||
Homozygote | TT | 18 (27.3%) | 25 (40.3%) | 1.802 (0.86–3.79) | 0.137 | 2.44 | 0.118 | |
AA | 48 (72.7%) | 37 (59.7%) | ||||||
Heterozygote | AT | 50 (73.5%) | 62 (71.3%) | 0.89 (0.44–1.82) | 0.857 | 0.1 | 0.752 | |
TT | 18 (26.5%) | 25 (28.7%) | ||||||
Allele frequency | A | 146 (62.9%) | 136 (54.8%) | 0.72 (0.5–1.03) | 0.078 | 3.24 | 0.072 | |
MAF= 0.37 | T vs. A | T | 86 (37.1%) | 112 (45.2%) |
SNP | Model | Genotype | Non-EROC | EROC | OR (95% CI) | P Fi | χ2 | P Chi |
---|---|---|---|---|---|---|---|---|
rs4073 | Co-dominant | AA | 43 (26.1%) | 10 (35.7%) | 1.71 | 0.426 | ||
(−251 A>T) | AT | 86 (52.1%) | 11 (39.3%) | |||||
TT | 36 (21.8%) | 7 (25%) | ||||||
Dominant | TT + AT | 122 (73.9%) | 18 (64.3%) | 0.63 (0.27–1.48) | 0.359 | 1.12 | 0.289 | |
AA | 43 (26.1%) | 10 (35.7%) | ||||||
Recessive | TT | 36 (21.8%) | 7 (25%) | 1.19 (0.47–3.03) | 0.8060 | 0.14 | 0.708 | |
AA + AT | 129 (78.2%) | 21 (75%) | ||||||
Overdominant | AT | 86 (52.1%) | 11 (39.3%) | 0.59 (0.26–1.35) | 0.226 | 1.58 | 0.208 | |
AA + TT | 79 (47.9%) | 17 (60.7%) | ||||||
Homozygote | AA | 43 (54.4%) | 10 (58.8%) | 1.2 (0.41–3.46) | 0.793 | 0.11 | 0.740 | |
(TT vs. AA) | TT | 36 (45.6%) | 7 (41.2%) | |||||
Heterozygote | AT | 86 (70.5%) | 11 (61.1%) | 0.66 (0.24–1.83) | 0.585 | 0.65 | 0.420 | |
(AT vs. TT) | TT | 36 (29.5%) | 7 (38.9%) | |||||
Allele frequency | A | 172 (52.1%) | 31 (55.4%) | 0.88 (0.5–1.55) | 0.667 | 0.2 | 0.655 | |
MAF 0.48 | (T vs. A) | T | 158 (47.9%) | 25 (44.6%) | ||||
rs2227306 | Co-dominant | CC | 43 (26.1%) | 8 (28.6%) | 2.16 | 0.339 | ||
(+781 C>T) | CT | 87 (52.7%) | 11 (39.3%) | |||||
TT | 35 (21.2%) | 9 (32.1%) | ||||||
Dominant | TT + CT | 122 (73.9%) | 20 (71.4%) | 0.88 (0.36–2.15) | 0.818 | 0.08 | 0.777 | |
CC | 43 (26.1%) | 8 (28.6%) | ||||||
Recessive | TT | 35 (21.2%) | 9 (32.1%) | 1.76 (0.73–4.23) | 0.225 | 1.63 | 0.201 | |
CT + CC | 130 (78.8%) | 19 (67.9%) | ||||||
Overdominant | CT | 87 (52.7%) | 11 (39.3%) | 0.58 (0.26–1.31) | 0.223 | 1.73 | 0.188 | |
TT + CC | 78 (47.3%) | 17 (60.7%) | ||||||
Homozygote | TT | 35 (44.9%) | 9 (52.9%) | 1.38 (0.48–3.96) | 0.599 | 0.37 | 0.543 | |
CC | 43 (55.1%) | 8 (47.1%) | ||||||
Heterozygote | CT | 87 (71.3%) | 11 (55%) | 0.49 (0.19–1.29) | 0.191 | 2.14 | 0.143 | |
(CT vs. TT) | TT | 35 (28.7%) | 9 (45%) | |||||
Allele frequency | C | 173 (52.4%) | 27 (48.2%) | 1.18 (0.67–2.09) | 0.566 | 0.34 | 0.559 | |
MAF = 0.48 | T vs. C | T | 157 (47.6%) | 29 (51.8%) | ||||
rs2227543 | Co-dominant | CC | 47 (28.5%) | 8 (28.6%) | 0.85 | 0.653 | ||
(+1633 C>T) | CT | 83 (50.3%) | 12 (42.9%) | |||||
TT | 35 (21.2%) | 8 (28.6%) | ||||||
Dominant | TT + CT | 118 (71.5%) | 20 (71.4%) | 1 (0.41–2.42) | 1 | 0 | 1 | |
CC | 47 (28.5%) | 8 (28.6%) | ||||||
Recessive | TT | 35 (21.2%) | 8 (28.6%) | 1.49 (0.60–3.66) | 0.461 | 0.75 | 0.386 | |
CT + CC | 130 (78.8%) | 20 (71.4%) | ||||||
Overdominant | CT | 83 (50.3%) | 12 (42.9%) | 0.74 (0.33–1.66) | 0.542 | 0.53 | 0.467 | |
TT + CC | 82 (49.7%) | 16 (57.1%) | ||||||
Homozygote | TT | 35 (42.7%) | 8 (50% | 1.34 (0.46–3.93) | 0.784 | 0.29 | 0.590 | |
CC | 47 (57.3%) | 8 (50%) | ||||||
Heterozygote | CT | 83 (70.3%) | 12 (60%) | 0.63 (0.24–1.68) | 0.434 | 0.85 | 0.357 | |
TT | 35 (29.7%) | 8 (40%) | ||||||
Allele frequency | C | 177 (53.6%) | 28 (50%) | 0.86 (0.49–1.52) | 0.665 | 0.25 | 0.617 | |
MAF = 0.46 | T vs. C | T | 153 (46.4%) | 28 (50%) | ||||
rs1126647 | Co-dominant | AA | 50 (30.3%) | 5 (17.9%) | 6.24 | 0.044 | ||
(+2767 A>T) | AT | 84 (50.9%) | 12 (42.9%) | |||||
TT | 31 (18.8%) | 11 (39.3%) | ||||||
Dominant | TT + AT | 115 (69.7%) | 23 (82.1%) | 2 (0.72–5.56) | 0.257 | 1.82 | 0.177 | |
AA | 50 (30.3%) | 5 (17.9%) | ||||||
Recessive | TT | 31 (18.8%) | 11 (39.3%) | 2.8 (1.19–6.56) | 0.024 | 5.91 | 0.015 | |
AT + AA | 134 (81.2%) | 17 (60.7%) | ||||||
Overdominant | AT | 84 (50.9%) | 12 (42.9%) | 0.72 (0.32–1.62) | 0.541 | 0.62 | 0.431 | |
TT + AA | 81 (49.1%) | 16 (57.1%) | ||||||
Homozygote | TT | 31 (38.3%) | 11 (68.8%) | 3.55 (1.13–11.18) | 0.03 | 5.06 | 0.024 | |
AA | 50 (61.7%) | 5 (31.2%) | ||||||
Heterozygote | AT | 84 (73%) | 12 (52.3%) | 0.40 (0.16–1.01) | 0.0797 | 3.94 | 0.047 | |
TT | 31 (27%) | 11 (47.8%) | ||||||
Allele frequency | A | 184 (55.8%) | 22 (39.3%) | 1.95 (1.09–3.47) | 0.029 | 5.22 | 0.022 | |
MAF= 0.44 | T vs. A | T | 146 (44.2%) | 34 (60.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watrowski, R.; Schuster, E.; Hofstetter, G.; Fischer, M.B.; Mahner, S.; Van Gorp, T.; Polterauer, S.; Zeillinger, R.; Obermayr, E. Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines 2024, 12, 321. https://doi.org/10.3390/biomedicines12020321
Watrowski R, Schuster E, Hofstetter G, Fischer MB, Mahner S, Van Gorp T, Polterauer S, Zeillinger R, Obermayr E. Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines. 2024; 12(2):321. https://doi.org/10.3390/biomedicines12020321
Chicago/Turabian StyleWatrowski, Rafał, Eva Schuster, Gerda Hofstetter, Michael B. Fischer, Sven Mahner, Toon Van Gorp, Stefan Polterauer, Robert Zeillinger, and Eva Obermayr. 2024. "Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes" Biomedicines 12, no. 2: 321. https://doi.org/10.3390/biomedicines12020321
APA StyleWatrowski, R., Schuster, E., Hofstetter, G., Fischer, M. B., Mahner, S., Van Gorp, T., Polterauer, S., Zeillinger, R., & Obermayr, E. (2024). Association of Four Interleukin-8 Polymorphisms (−251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines, 12(2), 321. https://doi.org/10.3390/biomedicines12020321