Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Data Sources and Instrument Selection
2.2.1. CSF and Brain Proteins
2.2.2. Neuropsychiatric Diagnoses and Risk Factors
2.2.3. Mendelian Randomization: CSF and Brain Protein Levels
2.2.4. Follow-Up Analyses Using Plasma Protein Levels and Brain Gene Expression Data
2.2.5. Colocalisation Analyses
3. Results
3.1. CSF and Brain Genetic Instruments and Two-Sample MR Associations
3.2. Protein-Specific and Outcome-Specific Associations in CSF/Brain Sample
3.3. Plasma and Brain Gene Expression Genetic Instruments and Two-Sample MR Associations
3.4. Evidence of Shared Causal Variants in Concordant Specific-Tissue Protein–Outcome Associations
4. Discussion
4.1. Genetic Exploration of Neuropsychiatric Disorders: Unravelling Causal Tissue-Specific Protein Associations
4.2. Focus on Specific Proteins: Insights into sTie-1, LRP8, ApoE2, and MSP
4.2.1. Soluble Tyrosine-Protein Kinase Receptor Tie-1 (sTie-1)
4.2.2. Apolipoprotein E2 (ApoE2)
4.2.3. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8)
4.2.4. Hepatocyte Growth Factor-like Protein (MSP)
4.3. Strengths and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [CrossRef]
- Lu, T.; Forgetta, V.; Greenwood, C.M.T.; Zhou, S.; Richards, J.B. Circulating Proteins Influencing Psychiatric Disease: A Mendelian Randomization Study. Biol. Psychiatry 2023, 93, 82–91. [Google Scholar] [CrossRef]
- Arango, C.; Dragioti, E.; Solmi, M.; Cortese, S.; Domschke, K.; Murray, R.M.; Jones, P.B.; Uher, R.; Carvalho, A.F.; Reichenberg, A.; et al. Risk and protective factors for mental disorders beyond genetics: An evidence-based atlas. World Psychiatry 2021, 20, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Saxe, G.N.; Bickman, L.; Ma, S.; Aliferis, C. Mental health progress requires causal diagnostic nosology and scalable causal discovery. Front. Psychiatry 2022, 13, 2471. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; McCarthy, M.I.; Schwenk, J.M. Genetics meets proteomics: Perspectives for large population-based studies. Nat. Rev. Genet. 2021, 22, 19–37. [Google Scholar] [CrossRef]
- Porcu, E.; Rüeger, S.; Lepik, K.; eQTLGen Consortium; BIOS Consortium; Santoni, F.A.; Reymond, A.; Kutalik, Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 2019, 10, 3300. [Google Scholar] [CrossRef]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C.; Gordillo-Marañón, M.; Asselbergs, F.W.; Freitag, D.F.; Patel, R.S.; Tyl, B.; Chopade, S.; Faraway, R.; Zwierzyna, M.; et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 2020, 11, 3255. [Google Scholar] [CrossRef]
- Yang, C.; Farias, F.H.G.; Ibanez, L.; Suhy, A.; Sadler, B.; Fernandez, M.V.; Wang, F.; Bradley, J.L.; Eiffert, B.; Bahena, J.A.; et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 2021, 24, 1302–1312. [Google Scholar] [CrossRef]
- Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLoS ONE. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015004 (accessed on 24 July 2023).
- Homo Sapiens Genome Assembly GRCh37. Available online: https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000001405.13/ (accessed on 15 August 2023).
- An Integrated Map of Genetic Variation from 1092 Human Genomes | Nature. Available online: https://www.nature.com/articles/nature11632 (accessed on 24 July 2023).
- Staiger, D.; Stock, J.H. Instrumental Variables Regression with Weak Instruments. Econometrica 1997, 65, 557–586. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology 2017, 28, 30–42. [Google Scholar] [CrossRef]
- de Klein, N.; Tsai, E.A.; Vochteloo, M.; Baird, D.; Huang, Y.; Chen, C.-Y.; van Dam, S.; Oelen, R.; Deelen, P.; Bakker, O.B.; et al. Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases. Nat. Genet. 2023, 55, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Cronjé, H.T.; Karhunen, V.; Hovingh, G.K.; Coppieters, K.; Lagerstedt, J.O.; Nyberg, M.; Gill, D. Genetic evidence implicating natriuretic peptide receptor-3 in cardiovascular disease risk: A Mendelian randomization study. BMC Med. 2023, 21, 158. [Google Scholar] [CrossRef]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef]
- Zuber, V.; Grinberg, N.F.; Gill, D.; Manipur, I.; Slob, E.A.W.; Patel, A.; Wallace, C.; Burgess, S. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. Am. J. Hum. Genet. 2022, 109, 767–782. [Google Scholar] [CrossRef]
- Hansson, O.; Kumar, A.; Janelidze, S.; Stomrud, E.; Insel, P.S.; Blennow, K.; Zetterberg, H.; Fauman, E.; Hedman, Å.K.; Nagle, M.W.; et al. The genetic regulation of protein expression in cerebrospinal fluid. EMBO Mol. Med. 2023, 15, e16359. [Google Scholar] [CrossRef]
- Sasayama, D.; Hattori, K.; Ogawa, S.; Yokota, Y.; Matsumura, R.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Kunugi, H. Genome-wide quantitative trait loci mapping of the human cerebrospinal fluid proteome. Hum. Mol. Genet. 2017, 26, 44–51. [Google Scholar] [CrossRef]
- Gu, X.; Dou, M.; Su, W.; Jiang, Z.; Duan, Q.; Cao, B.; Chen, Y. Identifying novel proteins underlying schizophrenia via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. BMC Med. 2022, 20, 474. [Google Scholar] [CrossRef]
- Liao, C.; Laporte, A.D.; Spiegelman, D.; Akçimen, F.; Joober, R.; Dion, P.A.; Rouleau, G.A. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat. Commun. 2019, 10, 4450. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, Y.; Li, M.; Zhang, Z.; Li, T.; Luo, X.-J. Genome-wide Mendelian randomization identifies actionable novel drug targets for psychiatric disorders. Neuropsychopharmacol 2023, 48, 270–280. [Google Scholar] [CrossRef]
- Rommelse, N.; van der Kruijs, M.; Damhuis, J.; Hoek, I.; Smeets, S.; Antshel, K.M.; Hoogeveen, L.; Faraone, S.V. An evidenced-based perspective on the validity of attention-deficit/hyperactivity disorder in the context of high intelligence. Neurosci. Biobehav. Rev. 2016, 71, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Ohlsson, H.; Sundquist, J.; Sundquist, K. IQ and Schizophrenia in a Swedish National Sample: Their Causal Relationship and the Interaction of IQ with Genetic Risk. Am. J. Psychiatry 2015, 172, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, E.A.; Lampinen, A.; Giri, H.; Anisimov, A.; Kim, M.; Allen, B.; Fang, S.; D’Amico, G.; Sipilä, T.J.; Lohela, M.; et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J. Clin. Investig. 2016, 126, 3495–3510. [Google Scholar] [CrossRef]
- Huang, Y.; Happonen, K.E.; Burrola, P.G.; O’Connor, C.; Hah, N.; Huang, L.; Nimmerjahn, A.; Lemke, G. Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol. 2021, 22, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegen. 2020, 15, 63. [Google Scholar] [CrossRef]
- Zhang, Y.; Choi, K.W.; Delaney, S.W.; Ge, T.; Pingault, J.-B.; Tiemeier, H. Shared Genetic Risk in the Association of Screen Time With Psychiatric Problems in Children. JAMA Netw. Open 2023, 6, e2341502. [Google Scholar] [CrossRef]
- Passarella, D.; Ciampi, S.; Di Liberto, V.; Zuccarini, M.; Ronci, M.; Medoro, A.; Foderà, E.; Frinchi, M.; Mignogna, D.; Russo, C.; et al. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 8921. [Google Scholar] [CrossRef]
- Telese, F.; Ma, Q.; Perez, P.M.; Notani, D.; Oh, S.; Li, W.; Comoletti, D.; Ohgi, K.A.; Taylor, H.; Rosenfeld, M.G. LRP8-Reelin-regulated Neuronal (LRN) Enhancer Signature Underlying Learning and Memory Formation. Neuron 2015, 86, 696–710. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Gotthardt, M.; Hiesberger, T.; Shelton, J.; Stockinger, W.; Nimpf, J.; Hammer, R.E.; Richardson, J.A.; Herz, J. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 1999, 97, 689–701. [Google Scholar] [CrossRef]
- Helbecque, N.; Cottel, D.; Amouyel, P. Low-density lipoprotein receptor-related protein 8 gene polymorphisms and dementia. Neurobiol. Aging 2009, 30, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.L.; Ng, H.K.; Baum, L.; Pang, J.C.S.; Chiu, H.F.K.; Woo, J.; Tang, N.L.S.; Lam, L.C.W. Low-density lipoprotein receptor-related protein 8 (apolipoprotein E receptor 2) gene polymorphisms in Alzheimer’s disease. Neurosci. Lett. 2002, 332, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Folsom, T.D.; Fatemi, S.H. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013, 68, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Sanjeev, D.; Dagamajalu, S.; Shaji, V.; George, M.; Subbannayya, Y.; Prasad, T.S.K.; Raju, R.; Devasahayam Arokia Balaya, R. A network map of macrophage-stimulating protein (MSP) signaling. J. Cell Commun. Signal 2023, 17, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, O.; Dudbridge, F.; Davey Smith, G.; Munafo, M.; Tilling, K. A robust method for collider bias correction in conditional genome-wide association studies. Nat. Commun. 2022, 13, 619. [Google Scholar] [CrossRef]
Protein Full Name (Abbreviation) | Outcome (Unit of Estimate Measure) | CSF (cis-pQTL) | Brain (cis-pQTL) | Plasma (cis-pQTL) | Brain (cis-eQTL) | ||||
---|---|---|---|---|---|---|---|---|---|
Estimate (95% CI) | pFDR | Estimate (95% CI) | pFDR | Estimate (95% CI) | pFDR | Estimate (95% CI) | pFDR | ||
Apolipoprotein E2 (Apo E2) | Screen time (h) | −1.26 (−1.73; −0.79) | 2 × 10−5 | −0.31 (−0.42; −0.20) | 4 × 10−6 | ||||
Insomnia (OR) | 0.41 (0.22; 0.77) | 0.09 | 0.79 (0.68; 0.91) | 0.03 | |||||
Agouti-related protein (ART) | Schizophrenia (OR) | 2.14 (1.4; 3.26) | 0.02 | 1.09 (1.03; 1.16) | 0.02 | ||||
Cathepsin S (CATS) | Schizophrenia (OR) | 1.64 (1.27; 2.13) | 0.008 | 1.14 (1.06; 1.22) | 0.002 | ||||
Sleep duration (h) | 0.11 (0.05; 0.17) | 0.03 | 0.02 (0.01;0.03) | 0.02 | |||||
Cytoskeleton-associated protein 2 (CKAP2) | Screen time (h) | 0.71 (0.46; 0.96) | 5 × 10−6 | SC: 0.01 (0.01; 0.02) | 0.001 | ||||
HC: 0.01 (0.00; 0.02) | 0.01 | ||||||||
Copine 1 (CPNE1) | Intelligence (points) | −0.08 (−0.12; 0.04) | 0.002 | SC: −0.01 (−0.02; −0.01) | 9 × 10−4 | ||||
HC: −0.02 (−0.03; −0.01) | 0.002 | ||||||||
Extracellular matrix protein 1 (ECM1) | Screen time (h) | 0.67 (0.37; 0.97) | 7 × 10−4 | 0.05 (0.03; 0.07) | 4 × 10−4 | ||||
Glutathione S-transferase P (GSTP1) | Insomnia (OR) | 1.18 (1.06; 1.31) | 0.05 | 1.44 (1.14; 1.82) | 0.04 | ||||
Sleep duration (h) | −0.07 (−0.12; −0.03) | 0.04 | −0.16 (−0.27; −0.06) | 0.04 | |||||
Haptoglobin (HPT) | ASD (OR) | 0.92 (0.88; 0.97) | 0.03 | 1.05 (1.01; 1.09) | 0.04 | ||||
Leukocyte immunoglobulin-like receptor subfamily B member 1 (ILT-2) | Bipolar disorder (OR) | 1.33 (1.11; 1.59) | 0.04 | 1.63 (1.19; 2.23) | 0.04 | ||||
Low-density lipoprotein receptor-related protein 8 (LRP8) | Bipolar disorder (OR) | 0.45 (0.31; 0.65) | 0.001 | 0.84 (0.77; 0.93) | 0.004 | 1.19 (1.1; 1.3) | 4 × 10−4 | ||
Schizophrenia (OR) | 0.57 (0.42; 0.76) | 0.008 | 1.11 (1.03; 1.19) | 0.02 | |||||
Physical activity (OR) | 0.81 (0.71; 0.91) | 0.02 | 0.95 (0.91; 0.98) | 0.01 | 1.06 (1.02; 1.1) | 0.01 | |||
Intelligence (points) | −0.21 (−0.32; −0.1) | 0.008 | −0.05 (−0.08; −0.02) | 0.01 | 0.05 (0.02; 0.07) | 2 × 10−4 | |||
Hepatocytes growth factor-like protein (MSP) | Intelligence (points) | −0.11 (−0.13; −0.09) | 9 × 10−18 | −0.21 (−0.25; −0.16) | 4 × 10−19 | −0.02 (−0.03; −0.01) | 6 × 10−5 | 0.04 (0.02; 0.05) | 1 × 10−5 |
Anorexia nervosa (OR) | 1.30 (1.17; 1.45) | 1 × 10−4 | 1.61 (1.32; 1.97) | 0.04 | |||||
Physical activity (OR) | 0.95 (0.92; 0.97) | 8 × 10−4 | 0.90 (0.86; 0.95) | 8 × 10−4 | |||||
Sleep duration (hs) | 0.08 (0.06; 0.11) | 2 × 10−6 | 0.16 (0.11; 0.21) | 1 × 10−7 | |||||
Plasma protease C1 inhibitor (SERPING1) | MDD (OR) | 0.72 (0.6; 0.85) | 0.006 | 0.97 (0.94; 0.99) | 0.02 | ||||
Schizophrenia (OR) | 0.46 (0.34; 0.63) | 1 × 10−4 | 0.93 (0.9; 0.97) | 8 × 10−3 | |||||
Physical activity (OR) | 1.36 (1.2; 1.54) | 1 × 10−4 | 1.03 (1.02; 1.06) | 6 × 10−5 | |||||
Tyrosine-protein kinase receptor Tie-1 (s-Tie1) | ADHD (OR) | 12.1 (4.73; 30.8) | 3 × 10−5 | 1.24 (1.05; 1.45) | 0.04 | 1.15 (1.1; 1.22) | 5 × 10−6 | ||
Schizophrenia (OR) | 2.84 (1.64; 4.93) | 0.009 | 1.11 (1.05; 1.16) | 0.002 | 1.06 (1.02; 1.09) | 0.004 | |||
Intelligence (points) | −0.43 (−0.62; −0.23) | 0.001 | −0.21 (−0.32; −0.1) | 3 × 10−4 | |||||
LMW phosphotyrosine protein phosphatase (PPAC) | Sleep duration (h) | 0.04 (0.01; 0.06) | 0.04 | −0.03 (−0.05; −0.01) | 0.01 | ||||
Tartrate-resistant acid phosphatase type 5 (TrATPase) | Schizophrenia (OR) | 0.55 (0.38; 0.79) | 0.03 | 0.92 (0.88; 0.97) | 0.01 | ||||
Thrombospondin-4 (TSP4) | Screen time (h) | 0.34 (0.17; 0.52) | 0.008 | 0.04 (0.02; 0.07) | 0.007 |
Posterior Probability of Causal Variant Hypotheses (PPH) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Uniprot | Tissue | Exposure | Outcome | SNPs | 0: None | 1: Exposure | 2: Outcome | 3: Distinct | 4: Both |
P02649 | CSF | ApoE2 | Insomnia | 247 | <0.01 | 0.70 | <0.01 | <0.01 | 0.30 |
CSF | ApoE2 | Leisure screen time | 253 | <0.01 | <0.01 | <0.01 | 0.01 | 0.99 | |
Brain | ApoE2 | Leisure screen time | 232 | <0.01 | <0.01 | <0.01 | 0.06 | 0.94 | |
Q14114 | CSF | LRP8 | Bipolar disorder | 356 | <0.01 | 0.05 | <0.01 | 0.04 | 0.91 |
Plasma | LRP8 | Bipolar disorder | 5038 | <0.01 | 0.04 | <0.01 | 0.05 | 0.91 | |
Cortex | LRP8 | Bipolar disorder | 4975 | <0.01 | 0.04 | <0.01 | 0.05 | 0.91 | |
CSF | LRP8 | Fluid intelligence | 376 | <0.01 | 0.27 | <0.01 | 0.04 | 0.70 | |
Plasma | LRP8 | Fluid intelligence | 6868 | <0.01 | 0.36 | <0.01 | 0.10 | 0.54 | |
Cortex | LRP8 | Fluid intelligence | 5656 | <0.01 | 0.33 | <0.01 | 0.07 | 0.59 | |
CSF | LRP8 | Schizophrenia | 356 | <0.01 | 0.50 | <0.01 | 0.02 | 0.48 | |
Cortex | LRP8 | Schizophrenia | 4999 | <0.01 | 0.47 | <0.01 | 0.10 | 0.43 | |
CSF | LRP8 | Physical activity | 393 | <0.01 | 0.47 | <0.01 | 0.03 | 0.51 | |
Plasma | LRP8 | Physical Activity | 8558 | <0.01 | 0.60 | <0.01 | 0.31 | 0.09 | |
Cortex | LRP8 | Physical Activity | 5969 | <0.01 | 0.44 | <0.01 | 0.14 | 0.42 | |
P26927 | CSF | MSP | Anorexia Nervosa | 219 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 |
Brain | MSP | Anorexia Nervosa | 222 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 | |
CSF | MSP | Fluid intelligence | 219 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 | |
Brain | MSP | Fluid intelligence | 222 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 | |
Plasma | MSP | Fluid intelligence | 3558 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 | |
Cortex | MSP | Fluid intelligence | 2792 | <0.01 | <0.01 | <0.01 | >0.99 | <0.01 | |
CSF | MSP | Sleep duration | 219 | <0.01 | 0.97 | <0.01 | 0.02 | <0.01 | |
Brain | MSP | Sleep duration | 222 | <0.01 | 0.97 | <0.01 | 0.02 | 0.01 | |
CSF | MSP | Physical activity | 236 | <0.01 | <0.01 | <0.01 | 0.05 | 0.94 | |
Brain | MSP | Physical activity | 229 | <0.01 | <0.01 | <0.01 | 0.03 | 0.97 | |
P35590 | CSF | sTie-1 | ADHD | 241 | <0.01 | <0.01 | <0.01 | 0.05 | 0.95 |
Plasma | sTie-1 | ADHD | 4474 | <0.01 | <0.01 | <0.01 | 1.00 | <0.01 | |
Cortex | sTie-1 | ADHD | 4219 | <0.01 | <0.01 | <0.01 | 1.00 | <0.01 | |
CSF | sTie-1 | Schizophrenia | 234 | <0.01 | 0.05 | <0.01 | 0.05 | 0.90 | |
Plasma | sTie-1 | Schizophrenia | 4617 | <0.01 | <0.01 | <0.01 | 1.00 | <0.01 | |
Cortex | sTie-1 | Schizophrenia | 4581 | <0.01 | <0.01 | <0.01 | 1.00 | <0.01 | |
CSF | sTie-1 | Fluid intelligence | 234 | <0.01 | <0.01 | <0.01 | 0.05 | 0.95 | |
Cortex | sTie-1 | Fluid intelligence | 4888 | <0.01 | <0.01 | <0.01 | 1.00 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de La Harpe, R.; Zagkos, L.; Gill, D.; Cronjé, H.T.; Karhunen, V. Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization. Biomedicines 2024, 12, 327. https://doi.org/10.3390/biomedicines12020327
de La Harpe R, Zagkos L, Gill D, Cronjé HT, Karhunen V. Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization. Biomedicines. 2024; 12(2):327. https://doi.org/10.3390/biomedicines12020327
Chicago/Turabian Stylede La Harpe, Roxane, Loukas Zagkos, Dipender Gill, Héléne T. Cronjé, and Ville Karhunen. 2024. "Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization" Biomedicines 12, no. 2: 327. https://doi.org/10.3390/biomedicines12020327
APA Stylede La Harpe, R., Zagkos, L., Gill, D., Cronjé, H. T., & Karhunen, V. (2024). Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization. Biomedicines, 12(2), 327. https://doi.org/10.3390/biomedicines12020327