A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Cell Culture
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Detection of Persister Cells
2.5. Development of Persister-Derived Biofilm of C. albicans
2.6. Eradication of the Persister-Derived Biofilm with the Tetrazole VT-1161
2.7. Displacement Assay
2.8. Galleria mellonella Survival Assay
2.9. Statistical Analyses
3. Results
3.1. Determination of Minimum Inhibitory Concentration (MIC)
3.2. Detection of Persister Cells in C. albicans Biofilms
3.3. Development of a New Biofilm from Persisters (B2) and Antifungal Activity of VT-1161 on B2
3.4. Adhesion of Candida albicans Planktonic Cells and B2-Derived Cells to HaCaT Cells and Anti-Adhesion Effect of VT-1161
3.5. In Vivo Activity of VT-1161
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faria-Gonçalves, P.; Rolo, J.; Gaspar, C.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Virulence Factors as Promoters of Chronic Vulvovaginal Candidosis: A Review. Mycopathologia 2021, 186, 755–773. [Google Scholar] [CrossRef]
- Grigoriou, O.; Baka, S.; Makrakis, E.; Hassiakos, D.; Kapparos, G.; Kouskouni, E. Prevalence of clinical vaginal candidiasis in a university hospital and possible risk factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 126, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Sobel, J.D.; Nyirjesy, P.; Sobel, R.; Williams, V.L.; Yu, Q.; Noverr, M.C.; Fidel, P.L. Current patient perspectives of vulvovaginal candidiasis: Incidence, symptoms, management and post-treatment outcomes. BMC. Women’s Health 2019, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 2016, 214, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef]
- Lírio, J.; Giraldo, P.; Amaral, R.; Sarmento, A.; Ferreira Costa, A.; da Silveira Gonçalves de Oliveira, A. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: A systematic review protocol. BMJ Open. 2019, 9, e027489. [Google Scholar] [CrossRef]
- Muzny, C.A.; Schwebke, J.R. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. Clin. Infect. Dis. 2015, 61, 601–606. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, Y.; Chen, L.; Cheng, Y.; Jin, P.; Zhang, W.; Zheng, L.; Liu, J.; Zhou, T.; Xu, Z.; et al. Candida causes recurrent vulvovaginal candidiasis by forming morphologically disparate biofilms on the human vaginal epithelium. Biofilm 2023, 6, 100162. [Google Scholar] [CrossRef]
- Gargani, G.; Zecchi Orlandi, S.; Campisi, E.; Pini, G.; Orlandini, G.E. Scanning electron microscopic pattern of recurrent vaginitis by Candida albicans in the mouse. Mycoses 1989, 32, 644–651. [Google Scholar] [CrossRef]
- Tulasidas, S.; Rao, P.; Bhat, S.; Manipura, R. A study on biofilm production and antifungal drug resistance among Candida species from vulvovaginal and bloodstream infections. Infect. Drug Resist. 2018, 11, 2443–2448. [Google Scholar] [CrossRef]
- Ramage, G.; Rajendran, R.; Sherry, L.; Williams, C. Fungal biofilm resistance. Int. J. Microbiol. 2012, 2012, 528521. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Xu, X.; Shen, L.; Xu, B.; Qu, W.; Zhuang, W.; Locock, K.; Deighton, M.; Qu, Y. RAFT-Derived Polymethacrylates as a Superior Treatment for Recurrent Vulvovaginal Candidiasis by Targeting Biotic Biofilms and Persister Cells. Front. Microbiol. 2019, 10, 2592. [Google Scholar] [CrossRef]
- Wuyts, J.; Van Dijck, P.; Holtappels, M. Fungal persister cells: The basis for recalcitrant infections? PLoS. Pathog. 2018, 14, e1007301. [Google Scholar] [CrossRef] [PubMed]
- Khot, P.; Suci, P.; Miller, R.; Nelson, R.; Tyler, B. A Small Subpopulation of Blastospores in Candida albicans Biofilms Exhibit Resistance to Amphotericin B Associated with Differential Regulation of Ergosterol and -1,6-Glucan Pathway Genes. Antimicrob. Agents Chemother. 2006, 50, 3708–3716. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, M.D.; Kumamoto, C.A.; Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents. Chemother. 2006, 50, 3839–3846. [Google Scholar] [CrossRef]
- De Brucker, K.; De Cremer, K.; Cammue, B.P.A.; Thevissen, K. Protocol for Determination of the Persister Subpopulation in Candida albicans Biofilms. In Bacterial Persistence: Methods and Protocols; Michiels, J., Fauvart, M., Eds.; Springer: New York, NY, USA, 2016; pp. 67–72. [Google Scholar]
- Galdiero, E.; de Alteriis, E.; De Natale, A.; D’Alterio, A.; Siciliano, A.; Guida, M.; Lombardi, L.; Falanga, A.; Galdiero, S. Eradication of Candida albicans persister cell biofilm by the membranotropic peptide gH625. Sci. Rep. 2020, 10, 5780. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Multidrug Tolerance of Biofilms and Persister Cells. In Bacterial Biofilms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 107–131. [Google Scholar] [CrossRef]
- Sun, J.; Li, Z.; Chu, H.; Guo, J.; Jiang, G.; Qi, Q. Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion. Mycopathologia 2016, 181, 41–49. [Google Scholar] [CrossRef]
- de Alteriis, E.; Maione, A.; Falanga, A.; Bellavita, R.; Galdiero, S.; Albarano, L.; Salvatore, M.M.; Galdiero, E.; Guida, M. Activity of Free and Liposome-Encapsulated Essential Oil from Lavandula angustifolia against Persister-Derived Biofilm of Candida auris. Antibiotics 2021, 11, 26. [Google Scholar] [CrossRef]
- Hoekstra, W.J.; Garvey, E.P.; Moore, W.R.; Rafferty, S.W.; Yates, C.M.; Schotzinger, R.J. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3455–3458. [Google Scholar] [CrossRef]
- Warrilow, A.G.; Hull, C.M.; Parker, J.E.; Garvey, E.P.; Hoekstra, W.J.; Moore, W.R.; Schotzinger, R.J.; Kelly, D.E.; Kelly, S.L. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob. Agents Chemother. 2014, 58, 7121–7127. [Google Scholar] [CrossRef]
- Hoy, S.M. Oteseconazole: First Approval. Drugs. 2022, 82, 1017–1023. [Google Scholar] [CrossRef]
- Maione, A.; Mileo, A.; Pugliese, S.; Siciliano, A.; Cirillo, L.; Carraturo, F.; de Alteriis, E.; De Falco, M.; Guida, M.; Galdiero, E. VT-1161-A Tetrazole for Management of Mono- and Dual-Species Biofilms. Microorganisms 2023, 11, 237. [Google Scholar] [CrossRef]
- Maione, A.; Imparato, M.; Buonanno, A.; Carraturo, F.; Schettino, A.; Schettino, M.T.; Galdiero, M.; de Alteriis, E.; Guida, M.; Galdiero, E. Anti-Biofilm Activity of Phenyllactic Acid against Clinical Isolates of Fluconazole-Resistant Candida albicans. J. Fungi 2023, 9, 355. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical and Laboratory Standards Institute. In Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Bink, A.; Vandenbosch, D.; Coenye, T.; Nelis, H.; Cammue, B.P.A.; Thevissen, K. Superoxide Dismutases Are Involved in Candida albicans Biofilm Persistence against Miconazole. Antimicrob. Agents Chemother. 2011, 55, 4033–4037. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, M.D.; Qi, Q.; Lewis, K. Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans. Antimicrob. Agents Chemother. 2010, 54, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef]
- Van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef] [PubMed]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- De, S.K. Oteseconazole: First Approved Orally Bioavailable and Selective CYP51 Inhibitor for the Treatment of Patients with Recurrent Vulvovaginal Candidiasis. Curr. Med. Chem. 2023, 30, 4170–4175. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.A.; Baronetti, J.L.; Páez, P.L.; Paraje, M.G. Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation With Persister Cells. Front. Microbiol. 2020, 11, 598834. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Li, H.; Shen, L.; Dong, C.; Sun, Y.; Chen, H.; Xu, B.; Zhuang, W.; Deighton, M.; et al. Biofilm Formation of Candida albicans Facilitates Fungal Infiltration and Persister Cell Formation in Vaginal Candidiasis. Front. Microbiol. 2020, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
MIC (μg mL−1) | ||
---|---|---|
C. albicans clinical isolate | Amph B | VT-1161 |
2.0 ± 0.3 | 2.0 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinoca, M.; Maione, A.; Gambino, E.; Imparato, M.; Galdiero, M.; de Alteriis, E.; Galdiero, E.; Guida, M. A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis. Biomedicines 2024, 12, 389. https://doi.org/10.3390/biomedicines12020389
Sinoca M, Maione A, Gambino E, Imparato M, Galdiero M, de Alteriis E, Galdiero E, Guida M. A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis. Biomedicines. 2024; 12(2):389. https://doi.org/10.3390/biomedicines12020389
Chicago/Turabian StyleSinoca, Marica, Angela Maione, Edvige Gambino, Marianna Imparato, Marilena Galdiero, Elisabetta de Alteriis, Emilia Galdiero, and Marco Guida. 2024. "A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis" Biomedicines 12, no. 2: 389. https://doi.org/10.3390/biomedicines12020389
APA StyleSinoca, M., Maione, A., Gambino, E., Imparato, M., Galdiero, M., de Alteriis, E., Galdiero, E., & Guida, M. (2024). A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis. Biomedicines, 12(2), 389. https://doi.org/10.3390/biomedicines12020389