The Use of Nigella sativa in Cardiometabolic Diseases
Abstract
:1. Introduction
2. Uses of Nigella sativa
2.1. Medicinal Uses
2.2. Culinary and Other Uses
2.3. Use of Nigella Sativa in Modern Medicine
3. Phytochemical Constituents
3.1. Terpenes and Terpenoids
3.2. Phytosterols
3.3. Alkaloids
3.4. Fatty Acids
3.5. Tocols
3.6. Polyphenols
3.7. Miscellaneous Components
4. Pharmacological Activities of Nigella sativa
- Anti-oxidant activity is thought to be responsible for the reduction in blood pressure in hypertensive patients: Thymoquinone, due to its structure, exhibits potent anti-radical scavenging activity, reducing ROS levels. Nigella sativa seed extracts have been shown to increase superoxide dismutase, catalase, and glutathione reductase activities. Collectively, these mechanisms result in a significant decrease in malondialdehyde (MDA), an indicator of lipid peroxidation [1,2,4,8,23]. The reduction in ROS levels is linked to the increased bioavailability of NO levels, which can lead to a reduction in blood pressure.
- Anti-inflammatory activity: Inflammation may play a role in cardiometabolic disease, so reducing inflammation can have a positive impact. Nigella sativa inhibits the inducible nitric oxide synthase and reduces the levels of TNF-α, IL-6, IL-1β, and other pro-inflammatory cytokines through the inhibition of the NF-κB signaling pathway. Additionally, Nigella sativa extracts have demonstrated the inhibition of cyclooxygenase 2 [8].
- Anti-dyslipidemic activities: Nigella sativa seed extracts inhibit the expression of HMG-CoA reductase while increasing the expression of LDL receptors [8]. These two activities result in a decrease in cholesterol levels.
- Anti-diabetic activity: Thymoquinone has been demonstrated to act as a PPAR-γ agonist, capable of improving insulin resistance. It can also inhibit intestinal α-glucosidase, reducing glucose absorption, and activate AMPK, increasing GLUT4 receptor availability while inhibiting hepatic gluconeogenesis. Thymoquinone, thanks to its anti-oxidant properties, can improve the integrity and proliferation of β pancreatic cells, enhancing insulin secretion.
4.1. Cardio-Protective and Anti-Hypertensive Activities
4.2. Anti-Diabetic Activity
4.3. Anti-Obesity and Anti-Dyslipidemic Activities
4.4. Anti-Oxidant and Anti-Inflammatory Activities
Experimental Model | Treatment and Period | Results | Reference |
---|---|---|---|
Anti-diabetic activity | |||
T2DM patients (n = 41) | 5 g/day Nigella sativa seeds 6 months | FPG, PPG, and HbA1c decrease | (El-Shamy 2011) [35] |
T2DM patients (n = 60) |
| FPG, PPG, and HbA1c decrease more than metformin monotherapy | (Ali 2021) [36] |
T2DM patients (n = 43) | 1 g/day Nigella sativa oil 8 weeks | BMI and waist circumference decrease SBP and DBP decrease FPG and HbA1c decrease TC, LDL-C, and Tg decrease | (Hadi 2021) [37] |
T2DM patients (n = 50) | 1 g/day Nigella sativa oil 8 weeks | FPG decreases TC, LDL-C, and Tg decrease HDL-C increases hs-CRP decreases MDA decreases | (Kooshki 2020) [38] |
Anti-obesity and anti-dyslipidemic activities | |||
Obese and prediabetic subjects (n = 105) |
| BMI and body weight decrease Homa B increases (lifestyle modification group) FPG, PPG, and HOMA-IR decrease (metformin group) FPG, FPI, and HOMA-IR decrease (Nigella sativa group) TC, LDL-C, and Tg decrease and HDL-C increases (Nigella sativa group) TNF-decreases (Nigella sativa group) | (Mostafa 2021) [45] |
Anti-oxidant and anti-inflammatory activities | |||
Behcet’s disease patients (n = 89) | 1 g/day Nigella sativa oil 8 weeks | MDA decreases TAC increases | (Amizadeh 2020) [54] |
Female patients with rheumatoid arthritis (n = 40) | 1 g/day Nigella sativa oil 1 months | DAS-28, number of swollen joints, and duration of morning stiffness decrease | (Gheita 2012) [55] |
4.5. Hepatoprotective Activity
4.6. Effects of Nigella sativa in Menopause
Experimental Model | Treatment and Period | Results | Reference |
---|---|---|---|
Menopausal women (n = 37) | 1 g/day Nigella sativa seeds powder 2 months | TC, LDL-C, and Tg decrease HDL-C increases | (Ibrahim 2014) [71] |
Menopausal women with metabolic syndrome (n = 30) | 1 g/day Nigella sativa seeds powder 2 months | FPG decreases TC, LDL-C, and Tg decrease | (Ibrahim 2014) [72] |
Postmenopausal women with metabolic syndrome (n = 140) | 500 mg/day Nigella sativa extract 2 months | FPG decreases TC, LDL-C, and Tg decrease | (Shirazi 2020) [73] |
Postmenopausal women with low BMD (n = 120) |
| MicroRNA-21 expression increases with Nigella sativa oil alone or in association with nanomicelle curcumin | (Farshbaf-khalili 2021) [78] |
Perimenopausal women with climacteric symptoms (n = 41) | 1.6 g/day Nigella sativa powder 12 weeks | Incidence and severity of menopausal symptoms decrease Quality of life (general health, role, vitality, emotional and mental health) improvement | (Latiff 2014) [91] |
Menopausal women (n = 72) | 1 g/day Nigella sativa oil 8 weeks | Prevalence and severity of menopausal symptoms decrease Frequency of hot flashes decreases | (Azami 2022) [92] |
Healthy postmenopausal women (n = 30) | 3 g/day Nigella sativa powder 8 weeks | MDA decreases | (Mostafa 2013) [93] |
Postmenopausal women (n = 30) | 1 g/day Nigella sativa powder 2 months | Body weight and BMI decrease GSH increases | (Sana 2019) [95] |
Postmenopausal women (n = 30) | 1 g/day Nigella sativa powder 8 weeks | Estradiol levels increase Menopausal symptom severity decreases | (Sana 2021) [96] |
5. Safety and Toxicity
6. Pharmaceutical Technology Applied to Nigella sativa
7. Legislative Aspects
8. The International Market for Products Based on Nigella sativa
9. The Italian Market for Products Based on Nigella sativa
10. Conclusions
Funding
Conflicts of Interest
References
- Dalli, M.; Bekkouch, O.; Azizi, S.E.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. Phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules 2021, 12, 20. [Google Scholar] [CrossRef]
- Hannan, A.; Rahman, A.; Sohag, A.A.M.; Uddin, J.; Dash, R.; Sikder, M.H.; Rahman, S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Burdock, G.A. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol. 2022, 128, 105088. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Anti-oxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A review of ethnobotany, phytochemistry, anti-microbial pharmacology and toxicology of Nigella sativa L. Biomed. Pharmacother. 2021, 143, 112182. [Google Scholar] [CrossRef]
- Sharma, N.; Ahirwar, D.; Jhade, D.; Gupta, S. Medicinal and phamacological potential of Nigella sativa: A review. Ethnobot. Leafl. 2009, 13, 946–955. [Google Scholar]
- Greenish, H.G. Beiträge zur Chemie von Nigella sativa. Anal. Bioanal. Chem. 1882, 21, 462. [Google Scholar] [CrossRef]
- Goyal, S.N.; Prajapati, C.P.; Gore, P.R.; Patil, C.R.; Mahajan, U.B.; Sharma, C.; Talla, S.P.; Ojha, S.K. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front. Pharmacol. 2017, 8, 656. [Google Scholar] [CrossRef] [PubMed]
- Mohammadabadi, M.; Mozafari, M. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J. Drug Deliv. Sci. Technol. 2018, 47, 445–453. [Google Scholar] [CrossRef]
- Alkharfy, K.M.; Ahmad, A.; Khan, R.M.; Al-Shagha, W.M. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Jakaria, M.; Cho, D.-Y.; Haque, E.; Karthivashan, G.; Kim, I.-S.; Ganesan, P.; Choi, D.-K. Neuropharmacological Potential and Delivery Prospects of Thymoquinone for Neurological Disorders. Oxidative Med. Cell. Longev. 2018, 2018, 1209801. [Google Scholar] [CrossRef] [PubMed]
- Alrashedi, M.G.; Ali, A.S.; Ali, S.S.; Khan, L.M. Impact of thymoquinone on cyclosporine A pharmacokinetics and toxicity in rodents. J. Pharm. Pharmacol. 2018, 70, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Ismail, M.; Azmi, N.H.; Bakar, M.F.A.; Yida, Z.; Abdullah, M.A.; Basri, H. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed. Pharmacother. 2017, 95, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Rathore, C.; Upadhyay, N.; Kaundal, R.; Dwivedi, R.P.; Rahatekar, S.; John, A.; Dua, K.; Tambuwala, M.M.; Jain, S.; Chaudari, D.; et al. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nanoconstructs. Expert Opin. Drug Deliv. 2020, 17, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Cheikh-Rouhou, S.; Besbes, S.; Lognay, G.; Blecker, C.; Deroanne, C.; Attia, H. Sterol composition of black cumin (Nigella sativa L.) and Aleppo pine (Pinus halepensis Mill.) seed oils. J. Food Compos. Anal. 2008, 21, 162–168. [Google Scholar] [CrossRef]
- Akram Khan, M.; Afzal, M. Chemical composition of Nigella sativa Linn: Part 2 Recent advances. Inflammopharmacology 2016, 24, 67–79. [Google Scholar] [CrossRef]
- Nickavar, B.; Mojab, F.; Javidnia, K.; Amoli, M.A.R. Chemical Composition of the Fixed and Volatile Oils of Nigella sativa L. from Iran. Z. Für Naturforschung C 2003, 58, 629–631. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind. Crop. Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Toma, C.C.; Olah, N.K.; Vlase, L.; Mogoșan, C.; Mocan, A. Comparative Studies on Polyphenolic Composition, Anti-oxidant and Diuretic Effects of Nigella sativa L. (Black Cumin) and Nigella damascena L. (Lady-in-a-Mist) Seeds. Molecules 2015, 20, 9560. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef]
- Leong, X.F.; Rais Mustafa, M.; Jaarin, K. Nigella sativa and Its Protective Role in Oxidative Stress and Hypertension. Evid. Based Complement. Alternat. Med. 2013, 2013, 120732. [Google Scholar] [CrossRef]
- Ojha, S.; Azimullah, S.; Mohanraj, R.; Sharma, C.; Yasin, J.; Arya, D.S.; Adem, A. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation. Evid. Based Complement. Alternat. Med. 2015, 2015, 143629. [Google Scholar] [CrossRef]
- Ghoreyshi, M.; Mahmoudabady, M.; Bafadam, S.; Niazmand, S. The Protective Effects of Pharmacologic Postconditioning of Hydroalcoholic Extract of Nigella sativa on Functional Activities and Oxidative Stress Injury During Ischemia-Reperfusion in Isolated Rat Heart. Cardiovasc. Toxicol. 2020, 20, 130–138. [Google Scholar] [CrossRef]
- Hussain, N.; Majid, S.A.; Abbasi, M.S.; Hussain, M.A.; Rehman, K.; Khan, M.Q.; Dar, M.E.U.I.; Shaheen, H.; Habib, T. Use of black seed (Nigella sativa L.) oil in the management of hypertensive and hyperlipidemic individuals of district Muzaffarabad, Azad Kashmir, Pakistan. Appl. Ecol. Environ. Res. 2017, 15, 31–48. [Google Scholar] [CrossRef]
- Dehkordi, F.R.; Kamkhah, A.F. Anti-hypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fun-dam. Clin. Pharmacol. 2008, 22, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Fallah Huseini, H.; Amini, M.; Mohtashami, R.; Ghamarchehre, M.E.; Sadeqhi, Z.; Kianbakht, S.; Fallah Huseini, A. Blood pressure lowering effect of Nigella sativa L. seed oil in healthy volunteers: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2013, 27, 1849–1853. [Google Scholar] [CrossRef] [PubMed]
- Shoaei-Hagh, P.; Kamelan Kafi, F.; Najafi, S.; Zamanzadeh, M.; Heidari Bakavoli, A.; Ramezani, J.; Soltanian, S.; Asili, J.; Hosseinzadeh, H.; Eslami, S.; et al. A randomized, double-blind, placebo-controlled, clinical trial to evaluate the benefits of Nigella sativa seeds oil in reducing cardiovascular risks in hypertensive patients. Phytother. Res. 2021, 35, 4388–4400. [Google Scholar] [CrossRef] [PubMed]
- Razmpoosh, E.; Safi, S.; Nadjarzadeh, A.; Fallahzadeh, H.; Abdollahi, N.; Mazaheri, M.; Nazari, M.; Salehi-Abargouei, A. The effect of Nigella sativa supplementation on cardiovascular risk factors in obese and overweight women: A crossover, double-blind, placebo-controlled randomized clinical trial. Eur. J. Nutr. 2021, 60, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Haji Idrus, R.; Mokhtar, M.H. Effects of Nigella sativa on Type-2 Diabetes Mellitus: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4911. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Louis, M.C.; Diane, V.; Yara, H.; Pierre, H.S. Anti-diabetic effects of Nigella sativa are mediated by activation of insulin and AMPK pathways, and by mitochondrial uncoupling. Can. J. Diabetes 2008, 32, 333. [Google Scholar] [CrossRef]
- Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK Enhances Insulin-Stimulated GLUT4 Regulation via Lowering Membrane Cholesterol. Endocrinology 2012, 153, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- Tiji, S.; Bouhrim, M.; Addi, M.; Drouet, S.; Lorenzo, J.M.; Hano, C.; Bnouham, M.; Mimouni, M. Linking the Phytochemicals and the α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Nigella sativa Seed Extracts. Foods 2021, 10, 1818. [Google Scholar] [CrossRef] [PubMed]
- El-Shamy, K.A.; Mosa, M.M.A.; El-Nabarawy, S.K.; El-Qattan, G.M. Effect of Nigella sativa tea in type 2-diabetic patients as regards glucose homeostasis, liver and kidney functions. J. Appl. Sci. Res. 2011, 7, 2524–2534. [Google Scholar]
- Ali, S.M.; Chen, P.; Sheikh, S.; Ahmad, A.; Ahmad, M.; Paithankar, M.; Desai, B.; Patel, P.; Khan, M.; Chaturvedi, A.; et al. Thymoquinone with Metformin Decreases Fasting, Post Prandial Glucose, and HbA1c in Type 2 Diabetic Patients. Drug Res. 2021, 71, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Hadi, S.; Daryabeygi-Khotbehsara, R.; Mirmiran, P.; McVicar, J.; Hadi, V.; Soleimani, D.; Askari, G. Effect of Nigella sativa oil extract on cardiometabolic risk factors in type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2021, 35, 3747–3755. [Google Scholar] [CrossRef]
- Kooshki, A.; Tofighiyan, T.; Rastgoo, N.; Rakhshani, M.H.; Miri, M. Effect of Nigella sativa oil supplement on risk factors for cardiovascular diseases in patients with type 2 diabetes mellitus. Phytother. Res. 2020, 34, 2706–2711. [Google Scholar] [CrossRef]
- Al Asoom, L. Is Nigella sativa an Effective Bodyweight Lowering Agent and a Mitigator of Obesity Risk? A Literature Review. Vasc. Health Risk Manag. 2022, 18, 495–505. [Google Scholar] [CrossRef]
- Le, P.M.; Benhaddou-Andaloussi, A.; Elimadi, A.; Settaf, A.; Cherrah, Y.; Haddad, P.S. The petroleum ether extract of Nigella sativa exerts lipid-lowering and insulin-sensitizing actions in the rat. J. Ethnopharmacol. 2004, 94, 251–259. [Google Scholar] [CrossRef]
- Safi, S.; Razmpoosh, E.; Fallahzadeh, H.; Mazaheri, M.; Abdollahi, N.; Nazari, M.; Nadjarzadeh, A.; Salehi-Abargouei, A. The effect of Nigella sativa on appetite, anthropometric and body composition indices among overweight and obese women: A crossover, double-blind, placebo-controlled, randomized clinical trial. Complement. Ther. Med. 2021, 57, 102653. [Google Scholar] [CrossRef]
- Meddah, B.; Ducroc, R.; Faouzi, M.E.A.; Eto, B.; Mahraoui, L.; Benhaddou-Andaloussi, A.; Martineau, L.C.; Cherrah, Y.; Haddad, P.S. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J. Ethnopharmacol. 2009, 121, 419–424. [Google Scholar] [CrossRef]
- Moustafa, H.A.M.; El Wakeel, L.M.; Halawa, M.R.; Sabri, N.A.; El-Bahy, A.Z.; Singab, A.N. Effect of Nigella sativa oil versus metformin on glycemic control and biochemical parameters of newly diagnosed type 2 diabetes mellitus patients. Endocrine 2019, 65, 286–294. [Google Scholar] [CrossRef]
- Mahdavi, R.; Alizadeh, M.; Namazi, N.; Farajnia, S. Changes of body composition and circulating adipokines in response to Ni-gella sativa oil with a calorie restricted diet in obese women. J. Herb. Med. 2016, 6, 67–72. [Google Scholar] [CrossRef]
- Mostafa, T.M.; Hegazy, S.K.; Elnaidany, S.S.; Shehabeldin, W.A.; Sawan, E.S. Nigella sativa as a promising intervention for metabolic and inflammatory disorders in obese prediabetic subjects: A comparative study of Nigella sativa versus both lifestyle modifi-cation and metformin. J. Diabetes Complicat. 2021, 35, 107947. [Google Scholar] [CrossRef]
- Lupoli, F.; Vannocci, T.; Longo, G.; Niccolai, N.; Pastore, A. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 2018, 592, 718–727. [Google Scholar] [CrossRef]
- Kazemi, M. Phytochemical composition, anti-oxidant, anti-inflammatory and anti-microbial activity of Nigella sativa L. essential oil. J. Essent. Oil Bear. Plants 2014, 17, 1002–1111. [Google Scholar] [CrossRef]
- Singh, S.; Das, S.S.; Singh, G.; Schuff, C.; de Lampasona, M.P.; Catalán, C.A. Composition, in vitro anti-oxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). BioMed Res. Int. 2014, 2014, 918209. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Al-Naqeep, G.; Chan, K.W. Nigella sativa thymoquinone-rich fraction greatly improves plasma anti-oxidant capacity and expression of anti-oxidant genes in hypercholesterolemic rats. Free Radic. Biol. Med. 2010, 48, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Kanter, M.; Coskun, O.; Budancamanak, M. Hepatoprotective effects of Nigella sativa L and Urtica dioica L. on lipid peroxidation, anti-oxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats. World J Gastroenterol. 2005, 11, 6684–6688. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Qiao, J.; Zhao, X.; Chen, T.; Guan, D. Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. Inflammation 2015, 38, 2235–2241. [Google Scholar] [CrossRef]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 2009, 11, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Mohit, M.; Farrokhzad, A.; Faraji, S.N.; Heidarzadeh-Esfahani, N.; Kafeshani, M. Effect of Nigella sativa L. supplementation on inflammatory and oxidative stress indicators: A systematic review and meta-analysis of controlled clinical trials. Complement. Ther. Med. 2020, 54, 102535. [Google Scholar] [CrossRef]
- Amizadeh, S.; Rashtchizadeh, N.; Khabbazi, A.; Ghorbanihaghjo, A.; Ebrahimi, A.A.; Vatankhah, A.M.; Mahdavi, A.M.; Taghizadeh, M. Effect of Nigella sativa oil extracts on inflammatory and oxidative stress markers in Behcet’s disease: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J. Phytomed. 2020, 10, 181–189. [Google Scholar] [PubMed]
- Gheita, T.A.; Kenawy, S.A. Effectiveness of Nigella sativa Oil in the Management of Rheumatoid Arthritis Patients: A Placebo Controlled Study. Phytother. Res. 2012, 26, 1246–1248. [Google Scholar] [CrossRef]
- Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Shaterzadeh-Yazdi, H.; Farkhondeh, T. An overview of hepatoprotective effects of thymoquinone. Recent Pat. Food Nutr. Agric. 2018, 9, 14–22. [Google Scholar] [CrossRef]
- Tabassum, H.; Ahmad, A.; Ahmad, I.Z. Nigella sativa L. and its bioactive constituents as hepatoprotectant: A review. Curr. Pharm. Biotechnol. 2018, 19, 43–67. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.S.; Vishnubhatla, S.; Amarapurkar, D.N.; Das, K.; Sood, A.; Chawla, Y.K.; Eapen, C.E.; Boddu, P.; Thomas, V.; Varshney, S.; et al. Etiology and mode of presentation of chronic liver diseases in India: A multi centric study. PLoS ONE 2017, 12, e0187033. [Google Scholar] [CrossRef]
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef]
- Huang, T.D.; Behary, J.; Zekry, A. Non-alcoholic fatty liver disease: A review of epidemiology, risk factors, diagnosis and man-agement. Intern. Med. J. 2020, 50, 1038–1047. [Google Scholar] [CrossRef]
- Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. JAMA 2015, 313, 2263–2273. [Google Scholar] [CrossRef]
- Marchesini, G.; Bugianesi, E.; Forlani, G.; Cerrelli, F.; Lenzi, M.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; Melchionda, N.; et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003, 37, 917–923. [Google Scholar] [CrossRef]
- Hussain, M.; Tunio, A.G.; Akhtar, L.; Shaikh, G.S. Effects of Nigella sativa on various parameters in Patients of non-alcoholic fatty liver disease. JAMC 2017, 29, 403–407. [Google Scholar]
- Hosseini, S.M.R.; Razmgah, G.R.G.; Nematy, M.; Esmaily, H.; Yousefi, M.; Kamalinejad, M.; Mosavat, S.H. Efficacy of black seed (Nigella sativa) and lemon balm (Melissa officinalis) on non-alcoholic fatty liver disease: A randomized controlled clinical trial. Iran. Red Crescent Med. J. 2018, 20, e59183. [Google Scholar] [CrossRef]
- Darand, M.; Darabi, Z.; Yari, Z.; Saadati, S.; Hedayati, M.; Khoncheh, A.; Hosseini-Ahangar, B.; Alavian, S.M.; Hekmatdoost, A. Nigella sativa and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: Results from a randomized, double-blind, placebo-controlled, clinical trial. Complement. Ther. Med. 2019, 44, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Darand, M.; Darabi, Z.; Yari, Z.; Hedayati, M.; Shahrbaf, M.A.; Khoncheh, A.; Hosseini-Ahangar, B.; Alavian, S.M.; Hekmatdoost, A. The effects of black seed supplementation on cardiovascular risk factors in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2019, 33, 2369–2377. [Google Scholar] [CrossRef] [PubMed]
- Rashidmayvan, M.; Mohammadshahi, M.; Seyedian, S.S.; Haghighizadeh, M.H. The effect of Nigella sativa oil on serum levels of inflammatory markers, liver enzymes, lipid profile, insulin and fasting blood sugar in patients with non-alcoholic fatty liver. J. Diabetes Metab. Disord. 2019, 18, 453–459. [Google Scholar] [CrossRef]
- Khonche, A.; Huseini, H.F.; Gholamian, M.; Mohtashami, R.; Nabati, F.; Kianbakht, S. Standardized Nigella sativa seed oil ameliorates hepatic steatosis, aminotransferase and lipid levels in non alcoholic fatty liver disease: A randomized, double-blind and placebo-controlled clinical trial. J. Ethnopharmacol. 2019, 234, 106–111. [Google Scholar] [CrossRef]
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef]
- Delamater, L.; Santoro, N. Management of the Perimenopause. Clin. Obstet. Gynecol. 2018, 61, 419–432. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Hamdan, N.S.; Mahmud, R.; Imam, M.U.; Saini, S.M.; Rashid, S.N.A.; Ghafar, S.A.A.; Ab Latiff, L.; Ismail, M. A randomised controlled trial on hypolipidemic effects of Nigella sativa seeds powder in menopausal women. J. Transl. Med. 2014, 12, 82. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Hamdan, N.S.; Ismail, M.; Saini, S.M.; Rashid, S.N.A.; Latiff, L.A.; Mahmud, R. Protective Effects of Nigella sativa on Metabolic Syndrome in Menopausal Women. Adv. Pharm. Bull. 2014, 4, 29–33. [Google Scholar] [CrossRef]
- Shirazi, M.; Khodakarami, F.; Feizabad, E.; Ghaemi, M. The effects of Nigella sativa on anthropometric and biochemical indices in postmenopausal women with metabolic syndrome. Endocrine 2020, 69, 49–52. [Google Scholar] [CrossRef]
- Bil, J.; Pietraszek, N.; Pawlowski, T.; Gil, R.J. Advances in Mechanisms and Treatment Options of MINOCA Caused by Vasospasm or Microcirculation Dysfunction. Curr. Pharm. Des. 2018, 24, 517–531. [Google Scholar] [CrossRef]
- Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the Anti-oxidant Activity of Dietary Polyphe-nols in Cancer: The Modulation of Estrogen Receptors (ERs) Signaling. Int. J. Mol. Sci. 2018, 19, 2624. [Google Scholar] [CrossRef]
- Koeppen, B.M.; Stanton, B.A. Berne and Levy Physiology e-Book, 7th ed.; Elsevier Health Sciences: Philadelphia, PA, USA; St. Louis, MO, USA; New York, NY, USA, 2017; p. 880. [Google Scholar]
- Agarwal, A.; Doshi, S. The role of oxidative stress in menopause. J. Midlife Health 2013, 4, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Farshbaf-Khalili, A.; Farajnia, S.; Pourzeinali, S.; Shakouri, S.K.; Salehi-Pourmehr, H. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA-21, miRNA-422a, and miRNA-503 gene in postmenopausal women with low bone mass density: A randomized, triple-blind, placebo-controlled clinical trial with factorial design. Phytother. Res. 2021, 35, 6216–6227. [Google Scholar] [PubMed]
- Jing, D.; Hao, J.; Shen, Y.; Tang, G.; Li, M.-L.; Huang, S.-H.; Zhao, Z.-H. The role of microRNAs in bone remodeling. Int. J. Oral Sci. 2015, 7, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Mao, Y.; Dai, P.; Sun, X.; Zhang, X.; Cheng, H.; Wang, Y.; Banda, I.; Wu, G.; et al. Curcumin Protects Osteoblasts from Oxidative Stress-Induced Dysfunction via GSK3β-Nrf2 Signaling Pathway. Front. Bioeng. Biotechnol. 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Xue, Y.; Wang, T.; Xie, Q.; Lin, J.; Wang, Y. Curcumin inhibits the migration of osteoclast precursors and osteoclastogene-sis by repressing CCL3 production. BMC Complement. Med. Ther. 2020, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Kawata, Y.; Amano, S.; Hanazawa, S. Stimulatory effect of curcumin on osteoclast apoptosis. Biochem. Pharmacol. 2000, 59, 1577–1581. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Fu, Q.; Zhang, J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 2014, 19, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Shuid, A.N.; Mohamed, N.; Mohamed, I.N.; Othman, F.; Suhaimi, F.; Mohd Ramli, E.S.; Muhammad, N.; Soelaiman, I.N. Nigella sativa: A Potential Anti-osteoporotic Agent. Evid. Based Complement. Alternat. Med. 2012, 2012, 696230. [Google Scholar] [CrossRef]
- Wirries, A.; Schubert, A.K.; Zimmermann, R.; Jabari, S.; Ruchholtz, S.; El-Najjar, N. Thymoquinone accelerates osteoblast differentiation and activates bone morphogenetic protein-2 and ERK pathway. Int. Immunopharmacol. 2013, 15, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Brownbill, R.A.; Petrosian, M.; Ilich, J.Z. Association between dietary conjugated linoleic acid and bone mineral density in post-menopausal women. J. Am. Coll. Nutr. 2005, 24, 177–181. [Google Scholar] [CrossRef]
- Javadivala, Z.; Merghati-Khoei, E.; Jafarabadi, M.A.; Allahverdipour, H.; Mirghafourvand, M.; Nadrian, H.; Kouzekanani, K. Efficacy of pharmacological and non-pharmacological interventions on low sexual interest/arousal of peri- and post-menopausal women: A meta-analysis. Sex. Relatsh. Ther. 2019, 34, 242–270. [Google Scholar] [CrossRef]
- Moore, T.R.; Franks, R.B.; Fox, C. Review of Efficacy of Complementary and Alternative Medicine Treatments for Menopausal Symptoms. J. Midwifery Women’s Health 2017, 62, 286–297. [Google Scholar] [CrossRef]
- Mueck, A.O. Problem-patients in HRT. Maturitas 2019, 124, 129. [Google Scholar] [CrossRef]
- Kenda, M.; Glavač, N.K.; Nagy, M.; Dolenc, M.S.; Oemonom, O.B.O.T. Herbal Products Used in Menopause and for Gynecological Disorders. Molecules 2021, 26, 7421. [Google Scholar] [CrossRef]
- Latiff, L.A.; Parhizkar, S.; Dollah, M.A.; Hassan, S.T. Alternative supplement for enhancement of reproductive health and meta-bolic profile among perimenopausal women: A novel role of Nigella sativa. Iran. J. Basic Med. Sci. 2014, 17, 980–985. [Google Scholar]
- Azami, R.; Farshbaf-Khalili, A.; Mahdipour, M.; Firozsalar, F.G.; Shahnazi, M. Effect of Nigella sativa oil on early menopausal symptoms and serum levels of oxidative markers in menopausal women: A randomized, triple-blind clinical trial. Nurs. Midwifery Stud. 2022, 11, 103–111. [Google Scholar]
- Mostafa, R.M.; Moustafa, Y.M.; Mirghani, Z.; AlKusayer, G.M.; Moustafa, K.M. Anti-oxidant effect of garlic (Allium sativum) and black seeds (Nigella sativa) in healthy postmenopausal women. Sage Open Med. 2013, 1, 2050312113517501. [Google Scholar] [CrossRef]
- Al-Seeni, M.N.; El Rabey, H.A.; Al-Hamed, A.M.; Zamazami, M.A. Nigella sativa oil protects against tartrazine toxicity in male rats. Toxicol. Rep. 2017, 5, 146–155. [Google Scholar] [CrossRef]
- Sana, S.; Saeed, M.; Umair, H.M. Effect of Nigella sativa on Oxidative Stress in Post-Menopausal Females. J. Islam. Med. Dent. Coll. 2019, 8, 88–91. [Google Scholar] [CrossRef]
- Sana, S.; Umair, H.M.; Saeed, M. Effect of Nigella sativa on Estradiol Levels and Menopausal Symptoms in Post-Menopausal Females. Proc. SZMC 2021, 5, 36–40. [Google Scholar] [CrossRef]
- Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev. 2020, 39, 115–122. [Google Scholar] [CrossRef]
- Ong, Y.S.; Saiful Yazan, L.; Ng, W.K.; Noordin, M.M.; Sapuan, S.; Foo, J.B.; Tor, Y.S. Acute and subacute toxicity profiles of thymoquinone-loaded nanostructured lipid carrier in BALB/c mice. Int. J. Nanomed. 2016, 11, 5905–5915. [Google Scholar] [CrossRef] [PubMed]
- Tubesha, Z.; Imam, M.U.; Mahmud, R.; Ismail, M. Study on the Potential Toxicity of a Thymoquinone-Rich Fraction Nanoemulsion in Sprague Dawley Rats. Molecules 2013, 18, 7460. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, K.; Kuttan, R.; Das Sivadasan, S.; Ittiyavirah, S.; Madhavamenon, K.I. Safety assessment of a thymoquinone-rich black cumin oil (BlaQmax®): Acute and sub-chronic toxicity studies. J. Nutr. Food Sci. 2021, 11, 811. [Google Scholar]
- Thomas, J.V.; Mohan, M.E.; Prabhakaran, P.; Maliakel, B.; Krishnakumar, I.M. A phase I clinical trial to evaluate the safety of thymoquinone-rich black cumin oil (BlaQmax®) on healthy subjects: Randomized, double-blinded, placebo-controlled prospective study. Toxicol. Rep. 2022, 9, 999–1007. [Google Scholar] [CrossRef]
- Heshmati, J.; Namazi, N.; Memarzadeh, M.-R.; Taghizadeh, M.; Kolahdooz, F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Food Res. Int. 2015, 70, 87–93. [Google Scholar] [CrossRef]
- Namazi, N.; Mahdavi, R.; Alizadeh, M.; Farajnia, S. Oxidative stress responses to Nigella sativa oil concurrent with a low-calorie diet in obese women: A randomized, double-blind controlled clinical trial. Phytother. Res. 2015, 29, 1722–1728. [Google Scholar] [CrossRef]
- Shad, K.F.; Soubra, W.; Cordato, D.J. The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1445–1453. [Google Scholar] [CrossRef]
- Kokoska, L.; Havlik, J.; Valterova, I.; Sovova, H.; Sajfrtova, M.; Jankovska, I. Comparison of chemical composition and anti-bacterial activity of Nigella sativa seed essential oils obtained by different extraction methods. J. Food Prot. 2008, 71, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E.; Kalemba, D.; Adamiec, J.; Piątkowski, M. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chem. 2016, 204, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Ketenoglu, O.; Kıralan, S.; Kiralan, M.; Ozkan, G.; Ramadan, M.F. Chapter 6—Cold pressed black cumin (Nigella sativa L.) seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 53–64. [Google Scholar]
- Mohammed, N.K.; Abd Manap, M.Y.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Meor Hussin, A.S. The Effects of Different Extraction Methods on Anti-oxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil. Evid. Based Complement. Alternat. Med. 2016, 2016, 6273817. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Novel Food Catalogue. 12 March 2021. Available online: https://www.efsa.europa.eu/en/topics/topic/novel-food (accessed on 4 November 2023).
- Doolaanea, A.A.; Alkhatib, H.; Mawazi, S.M.; Al-Mahmood, S.M.A.; Zaiter, A. Thymoquinone content in marketed black seed oil in Malaysia. J. Pharm. Bioallied Sci. 2020, 12, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Khaikin, E.; Chrubasik-Hausmann, S.; Kaya, S.; Zimmermann, B.F. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022, 14, 3501. [Google Scholar] [CrossRef] [PubMed]
- Syam Das, S.; Kannan, R.; Sanju, G.; Baby Chakrapani, P.S.; Balu, M.; Sibi, I.; Krishnakumar, I.M. Thymoquinone-rich black cumin oil improves sleep quality, alleviates anxiety/stress on healthy subjects with sleep disturbances—A pilot polysomnography study. J. Herb. Med. 2022, 32, 100507. [Google Scholar] [CrossRef]
- Mearelli, F.; Sgrignani, M. Terapia Moderna con Tinture Madri, Gemmoderivati e Oligoelementi, 2nd ed.; Planta Medica: Perugia, Italy, 1997. [Google Scholar]
- Chiereghin, P. Fitoterapia per il Farmacista; Tecniche Nuove: Milan, Italy, 2005. [Google Scholar]
- Cagnacci, A.; Xholli, A.; Fontanesi, F.; Neri, I.; Facchinetti, F.; Palma, F. Treatment of menopausal symptoms: Concomitant modification of cortisol. Menopause 2022, 29, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Romano, D.; D’angelo, A.; Maffioli, P. Female Sexual Dysfunction in Subjects with Type 2 Diabetes Mellitus. Sex. Disabil. 2023, 41, 221–233. [Google Scholar] [CrossRef]
- Armeni, A.; Anagnostis, P.; Armeni, E.; Mili, N.; Goulis, D.; Lambrinoudaki, I. Vasomotor symptoms and risk of cardiovascular disease in peri- and postmenopausal women: A systematic review and meta-analysis. Maturitas 2023, 171, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Biglia, N.; Cagnacci, A.; Gambacciani, M.; Lello, S.; Maffei, S.; Nappi, R.E. Vasomotor symptoms in menopause: A biomarker of cardiovascular disease risk and other chronic diseases? Climacteric 2017, 20, 306–312. [Google Scholar] [CrossRef] [PubMed]
Experimental Model | Treatment and Period | Results | Reference |
---|---|---|---|
Cardio-protective activity | |||
Isoproterenol-induced myocardial infarction in rats | TQ (20 mg/kg) 21 days | Mitigation of oxidative stress and inflammation Improvement of anti-oxidant status Preservation of structural integrity | (Ojha 2015) [24] |
Rats with ischemia–reperfusion injury | 200 g of powder | Improvement of oxidative stress | (Ghoreyshi 2020) [25] |
Anti-hypertensive activity | |||
Mild–moderate hypertensive and hyperlipidemic patients (n = 146) | 1 mL/day Nigella sativa virgin oil 45 days | SBP and DBP decrease TC, LDL-C, and Tg decrease HDL-C increases | (Hussain 2017) [26] |
Mild hypertensive patients (n = 108) | 100–200 mg twice day Nigella sativa extract 8 weeks | SBP and DBP decrease in a dose-dependent manner | (Dehkordi 2008) [27] |
Healthy volunteers (SBP ≥ 110 and ≤140 mmHg; DBP ≥ 60 and ≤90 mmHg) (n = 70) | 5 mL/day Nigella sativa oil 8 weeks | SBP and DBP decrease | (Fallah Huseini 2013) [28] |
Hypertensive not well-controlled patients (n = 55) | 5 mL/day Nigella sativa seeds oil 8 weeks | SBP and DBP decrease FPG, TC, and LDL-C decrease MDA decreases Glutathione reductase increase | (Shoaei-Hagh 2021) [29] |
Obese and overweight women (n = 39) | 2 g/day Nigella sativa oil 8 weeks | SBP decreases LDL-C and TC/HDL-C ratio decrease HDL-C increases | (Rampoosh 2021) [30] |
Experimental Model | Treatment and Period | Results | Reference |
---|---|---|---|
NAFLD patients (n = 70) | 2 g/day Nigella sativa powder 3 months | BMI and body weight decrease AST and ALT decrease Ultrasound grading of hepatic steatosis improves | (Hussain 2017) [63] |
NAFLD patients (n = 50) |
| BMI decreases AST and ALT decrease Grade of fatty liver improves | (Hosseini 2018) [64] |
NAFLD patients (n = 41) | 2 g/day Nigella sativa seeds 12 weeks | Serum glucose, serum insulin, and HOMA-IR decrease QUICKI increases hs-CRP, NF-κB, and TNF-α decrease Hepatic steatosis and its percentage decrease | (Darand 2019 a; Darand 2019 b) [65,66] |
NAFLD patients (n = 44) | 1 g/day Nigella sativa oil 8 weeks | FPG decreases TC, LDL-C, Tg, and VLDL decrease HDL-C increases AST and ALT decrease hs-CRP, TNF-α, and interleukine-6 decrease | (Rashidmayvan 2019) [67] |
NAFLD patients (n = 120) | 5 mL/day Nigella sativa seed oil fully standardized 3 months | LDL-C and Tg decrease HDL-C increases AST and ALT decrease Hepatic steatosis grade decreases | (Khoche 2019) [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derosa, G.; D’Angelo, A.; Maffioli, P.; Cucinella, L.; Nappi, R.E. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024, 12, 405. https://doi.org/10.3390/biomedicines12020405
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines. 2024; 12(2):405. https://doi.org/10.3390/biomedicines12020405
Chicago/Turabian StyleDerosa, Giuseppe, Angela D’Angelo, Pamela Maffioli, Laura Cucinella, and Rossella Elena Nappi. 2024. "The Use of Nigella sativa in Cardiometabolic Diseases" Biomedicines 12, no. 2: 405. https://doi.org/10.3390/biomedicines12020405
APA StyleDerosa, G., D’Angelo, A., Maffioli, P., Cucinella, L., & Nappi, R. E. (2024). The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines, 12(2), 405. https://doi.org/10.3390/biomedicines12020405