Hemodialysis Efficiency Predictor in End-Stage Kidney Disease Using Real-Time Heart Rate Variability
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Ethical Statement
2.3. Data Collection
2.4. ECG-Monitoring Device
2.5. HRV Parameters
- The R peaks were detected using the geometric angle between two consecutive samples of the ECG signal [9]. The detected R peaks were then used to generate an R–R interval time series. To remove abnormal intervals caused by ectopic beats, arrhythmic events, missing data and noise, intervals <80% or >120% of the average of the last six intervals were excluded. Time domain parameters were calculated from the R–R interval time series.
- The R–R interval time series was resampled at 4 Hz using linear interpolation. The resulting series was detrended by eliminating linear trends [10]. After detrending, the power spectral density for the R–R interval time series was estimated using the Burg autoregressive model, where the order of the model was 33. In the time domain, we analyzed the R–R intervals, standard deviations of the R–R intervals, square root of the mean squared difference of successive R–R intervals and the percentage of adjacent N–N intervals that differed by more than 50 ms (NN50).
2.6. Assessment of Electrolytes
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Shah, A.S.; El Ghormli, L.; Vajravelu, M.E.; Bacha, F.; Farrell, R.M.; Gidding, S.S.; Katz, L.E.L.; Tryggestad, J.B.; White, N.H.; Urbina, E.M. Heart Rate Variability and Cardiac Autonomic Dysfunction: Prevalence, Risk Factors, and Relationship to Arterial Stiffness in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. Diabetes Care 2019, 42, 2143–2150. [Google Scholar] [CrossRef]
- Shinzato, T.; Nakai, S.; Akiba, T.; Yamagami, S.; Yamazaki, C.; Kitaoka, T.; Kubo, K.; Maeda, K.; Morii, H. Report on the annual statistical survey of the Japanese Society for Dialysis Therapy in 1996. Kidney Int. 1999, 55, 700–712. [Google Scholar] [CrossRef]
- Oikawa, K.; Ishihara, R.; Maeda, T.; Yamaguchi, K.; Koike, A.; Kawaguchi, H.; Tabata, Y.; Murotani, N.; Itoh, H. Prognostic value of heart rate variability in patients with renal failure on hemodialysis. Int. J. Cardiol. 2009, 131, 370–377. [Google Scholar] [CrossRef]
- Chen, S.-C.; Huang, J.-C.; Tsai, Y.-C.; Mai, R.N.H.-C.; Chen, R.N.J.-H.; Kuo, P.-L.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Heart Rate Variability Change Before and After Hemodialysis is Associated with Overall and Cardiovascular Mortality in Hemodialysis. Sci. Rep. 2016, 6, 20597. [Google Scholar] [CrossRef]
- Sudo, S.Z.; Montagnoli, T.L.; Rocha, B.d.S.; Santos, A.D.; de Sá, M.P.L.; Zapata-Sudo, G. Diabetes-Induced Cardiac Autonomic Neuropathy: Impact on Heart Function and Prognosis. Biomedicines 2022, 10, 3258. [Google Scholar] [CrossRef]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta–analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Song, M.-H.; Cho, S.-P.; Kim, W.; Lee, K.-J. New real-time heartbeat detection method using the angle of a single-lead electrocardiogram. Comput. Biol. Med. 2015, 59, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.; Ranta-Aho, P.; Karjalainen, P. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Drawz, P.E.; Babineau, D.C.; Brecklin, C.; He, J.; Kallem, R.R.; Soliman, E.Z.; Xie, D.; Appleby, D.; Anderson, A.H.; Rahman, M.; et al. Heart Rate Variability Is a Predictor of Mortality in Chronic Kidney Disease: A Report from the CRIC Study. Am. J. Nephrol. 2013, 38, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Kuo, G.; Chen, S.-W.; Huang, J.-Y.; Wu, C.-Y.; Fu, C.-M.; Chang, C.-H.; Liu, S.-H.; Chan, Y.-H.; Wu, I.-W.; Yang, H.-Y. Short-term heart rate variability as a predictor of long-term survival in patients with chronic hemodialysis: A prospective cohort study. J. Formos. Med. Assoc. 2018, 117, 1058–1064. [Google Scholar] [CrossRef]
- Giordano, M.; Manzella, D.; Paolisso, G.; Caliendo, A.; Varricchio, M.; Giordano, C. Differences in heart rate variability parameters during the post-dialytic period in type II diabetic and non-diabetic ESRD patients. Nephrol. Dial. Transplant. 2001, 16, 566–573. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Huang, Y.-T.; Chen, I.-L.; Yang, C.-L.; Leu, S.-C.; Su, H.-L.; Kao, J.-L.; Tsai, S.-C.; Jhen, R.-N.; Shiao, C.-C. Heart rate variability as an independent predictor for 8-year mortality among chronic hemodialysis patients. Sci. Rep. 2020, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-T.; Chang, Y.-M.; Chen, I.-L.; Yang, C.-L.; Leu, S.-C.; Su, H.-L.; Kao, J.-L.; Tsai, S.-C.; Jhen, R.-N.; Tang, W.-R.; et al. Correction: Heart rate variability during hemodialysis is an indicator for long-term vascular access survival in uremic patients. PLoS ONE 2017, 12, e0181283. [Google Scholar] [CrossRef]
- Ewing, D.; Winney, R. Autonomic Function in Patients with Chronic Renal Failure on Intermittent Haemodialysis. Nephron 1975, 15, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.J.; Boland, O.; Neilson, J.M.M.; Cho, C.G.; Clarke, B.F. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia 1991, 34, 182–185. [Google Scholar] [CrossRef]
- Verrotti, A.; Loiacono, G.; Mohn, A.; Chiarelli, F. New insights in diabetic autonomic neuropathy in children and adolescents. Eur. J. Endocrinol. 2009, 161, 811–818. [Google Scholar] [CrossRef]
- Tsuji, H.; Larson, M.G.; Venditti, F.J.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of Reduced Heart Rate Variability on Risk for Cardiac Events: The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Carnethon, M.; Evans, G.W.; Cascio, W.E.; Heiss, G. Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: The atherosclerosis risk in communities (ARIC) study. Diabetes 2002, 51, 3524–3531. [Google Scholar] [CrossRef]
- Qiu, Q.; Song, W.; Zhou, X.; Yu, Z.; Wang, M.; Hao, H.; Pan, D.; Luo, X. Heart rate variability is associated with cerebral small vessel disease in patients with diabetes. Front. Neurol. 2022, 13, 989064. [Google Scholar] [CrossRef]
- Hufnagel, C.; Chambres, P.; Bertrand, P.R.; Dutheil, F. The Need for Objective Measures of Stress in Autism. Front. Psychol. 2017, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-D.; Chang, L.-H.; Wu, Y.-R.; Hsu, W.-H.; Kuo, C.-H.; Tsai, J.-R.; Yu, M.-L.; Su, W.-S.; Lin, I.-M. Association of depression and parasympathetic activation with glycemic control in type 2 diabetes mellitus. J. Diabetes Complicat. 2022, 36, 108264. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, D.; Malik, M. Challenges of ECG monitoring and ECG interpretation in dialysis units. J. Electrocardiol. 2016, 49, 855–859. [Google Scholar] [CrossRef]
- Askin, L.; Cetin, M.; Turkmen, S. Ambulatory blood pressure results and heart rate variability in patients with premature ventricular contractions. Clin. Exp. Hypertens. 2017, 40, 251–256. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, P.E.; Amaral, J.A.T.D.; da Silva Paiva, L.; Adami, F.; Raimudo, J.Z.; Valenti, V.E.; de Abreu, L.C. Reduction of heart rate variability in hypertensive elderly. Blood Press. 2017, 26, 350–358. [Google Scholar] [CrossRef]
- Schroeder, E.B.; Liao, D.; Chambless, L.E.; Prineas, R.J.; Evans, G.W.; Heiss, G. Hypertension, blood pressure, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension 2003, 42, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Voss, A.; Rathmann, W.; Strom, A.; Perz, S.; Roden, M.; Peters, A.; Meisinger, C. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: The KORA S4 survey. Diabetologia 2015, 58, 1118–1128. [Google Scholar] [CrossRef]
- Meyer, M.L.; Gotman, N.M.; Soliman, E.Z.; Whitsel, E.A.; Arens, R.; Cai, J.; Daviglus, M.L.; Denes, P.; González, H.M.; Moreiras, J.; et al. Association of glucose homeostasis measures with heart rate variability among Hispanic/Latino adults without diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Cardiovasc. Diabetol. 2016, 15, 45. [Google Scholar] [CrossRef]
Variables | All ESKD Patients (n = 50) |
---|---|
Age (years) | 62.2 ± 10.8 |
Gender (Male, %) | 20 (40.0) |
DM (%) | 25 (50.0) |
HTN (%) | 44 (88.0) |
CAD (%) | 11 (22.0) |
Stroke (%) | 6 (12.0) |
Medications | |
Aspirin (%) | 9 (18.0) |
Statin (%) | 28 (56.0) |
Beta-blocker (%) | 31 (62.0) |
ACEi or ARB (%) | 29 (58.0) |
CCB (%) | 25 (50.0) |
Diuretics (%) | 5 (10.0) |
Hemodialysis parameters | |
BFR (mL/min) | 261.4 ± 10.7 |
DFR (mL/min) | 510.0 ± 30.3 |
UFR (mL/min) | 3072.0 ± 840.8 |
Kt/V | 1.7 ± 0.2 |
URR | 0.7 ± 0.05 |
Baseline Electrolytes | |
Na+ (mEq/L) | 136.4 ± 3.4 |
K+ (mEq/L) | 4.9 ± 0.7 |
Ca2+ (mEq/L) | 8.7 ± 0.6 |
P+ (mEq/L) | 5.3 ± 1.4 |
CO2 (mEq/L) | 21.7 ± 4.3 |
Echo parameters | |
LVEF (%) | 61.4 ± 11.2 |
LVIDs (mm) | 33.2 ± 8.5 |
LVIDd (mm) | 49.4 ± 7.8 |
IVSD (mm) | 11.6 ± 2.3 |
LVPWD (mm) | 9.9 ± 1.4 |
LAD (mm) | 39.5 ± 7.1 |
E velocity (cm/sec) | 0.8 ± 0.3 |
A velocity (cm/sec) | 1.0 ± 0.0.3 |
E/A | 0.9 ± 0.5 |
E/E’ | 17.1 ± 9.6 |
HRV | |||
---|---|---|---|
Time Domain | Lower K+ Level Change Group (<0.5 mEq/L) | Higher K+ Level Change Group (≥0.5 mEq/L) | p-Value |
SDNN, ms | 66.8 ± 39.1 | 43.6 ± 31.8 | <0.001 |
RMSSD, ms | 57.6 ± 7.7 | 42.0 ± 9.2 | 0.006 |
SDSD, ms | 57.7 ± 7.7 | 42.1 ± 9.1 | 0.006 |
NN50, count | 49.6 ± 7.5 | 30.4 ± 7.4 | <0.001 |
pNN50, % | 14.9 ± 1.9 | 9.6 ± 2.2 | <0.001 |
Frequency domain | |||
nLF, N.U. × 106 | 0.6 ± 0.2 | 0.5 ± 0.2 | <0.001 |
nHF, N.U. × 106 | 0.4 ± 0.2 | 0.5 ± 0.2 | <0.001 |
LF/HF ratio | 2.9 ± 0.2 | 2.3 ± 0.1 | 0.008 |
Variables | |||
Mean HR, beats/min | 72.7 ± 12.1 | 69.3 ± 13.4 | 0.93 |
Arrhythmia (%) | 7.2 ± 0.7 | 1.6 ± 0.9 | <0.001 |
APC (total beats) | 78.3 ± 14.5 | 1.4 ± 0.4 | <0.001 |
VPC (total beats) | 58.3 ± 12.8 | 23.9 ± 10.9 | 0.046 |
HRV | |||
---|---|---|---|
Time Domain | Lower P+ Level Change Group (<2 mEq/L) | Higher P+ Level Change Group (≥2 mEq/L) | p-Value |
SDNN, ms | 62.1 ± 4.2 | 41.6 ± 1.1 | <0.001 |
RMSSD, ms | 80.8 ± 6.5 | 32.8 ± 1.4 | <0.001 |
SDSD, ms | 80.9 ± 6.5 | 32.8 ± 1.4 | <0.001 |
NN50, count | 53.3 ± 4.6 | 25.7 ± 1.4 | <0.001 |
pNN50, % | 16.1 ± 1.4 | 8.3 ± 0.4 | <0.001 |
Frequency domain | |||
nLF, N.U. × 106 | 0.5 ± 0.2 | 0.5 ± 0.2 | <0.001 |
nHF, N.U. × 106 | 0.5 ± 0.2 | 0.4 ± 0.2 | <0.001 |
LF/HF ratio | 2.1 ± 0.2 | 2.5 ± 0.8 | 0.011 |
Variables | |||
Mean HR, beats/min | 82.0 ± 13.0 | 67.6 ± 11.6 | <0.001 |
Arrhythmia (%) | 5.6 ± 1.4 | 1.3 ± 0.3 | <0.001 |
APC (total beats) | 18.7 ± 6.8 | 8.0 ± 3.0 | 0.003 |
VPC (total beats) | 81.5 ± 21.9 | 13.2 ± 3.4 | <0.001 |
(A) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Variable. n (%) | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
SDNN | 0.996 (0.994–0.997) | <0.001 | ||
minNN | 1.004 (1.003–1.004) | <0.001 | 1.004 (1.003–1.005) | <0.001 |
nHF | 4.933 (2.852–8.534) | <0.001 | 6.441 (3.610–11.489) | <0.001 |
QTc change | 1.042 (1.002–1.084) | 0.038 | ||
(B) | Univariate Analysis | Multivariate Analysis | ||
Variable. n (%) | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
SDNN | 0.996 (0.994–0.997) | <0.001 | 1.006 (1.004–1.006) | <0.001 |
minNN | 1.006 (1.005–1.006) | <0.001 | 1.007 (1.006–1.008) | <0.001 |
nLF | 3.039 (2.034–4.541) | <0.001 | ||
nHF | 0.336 (0.225–0.502) | <0.001 | ||
LF/HF ratio | 1.045 (1.010–1.081) | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, S.I.; Kim, Y.N.; Kim, H.S.; Kim, S.J.; Bae, S.H.; Kim, B.J.; Heo, J.H.; Jung, Y.; Rim, H.; Cho, S.P.; et al. Hemodialysis Efficiency Predictor in End-Stage Kidney Disease Using Real-Time Heart Rate Variability. Biomedicines 2024, 12, 474. https://doi.org/10.3390/biomedicines12030474
Im SI, Kim YN, Kim HS, Kim SJ, Bae SH, Kim BJ, Heo JH, Jung Y, Rim H, Cho SP, et al. Hemodialysis Efficiency Predictor in End-Stage Kidney Disease Using Real-Time Heart Rate Variability. Biomedicines. 2024; 12(3):474. https://doi.org/10.3390/biomedicines12030474
Chicago/Turabian StyleIm, Sung Il, Ye Na Kim, Hyun Su Kim, Soo Jin Kim, Su Hyun Bae, Bong Joon Kim, Jung Ho Heo, Yeonsoon Jung, Hark Rim, Sung Pil Cho, and et al. 2024. "Hemodialysis Efficiency Predictor in End-Stage Kidney Disease Using Real-Time Heart Rate Variability" Biomedicines 12, no. 3: 474. https://doi.org/10.3390/biomedicines12030474
APA StyleIm, S. I., Kim, Y. N., Kim, H. S., Kim, S. J., Bae, S. H., Kim, B. J., Heo, J. H., Jung, Y., Rim, H., Cho, S. P., Park, J. H., & Shin, H. S. (2024). Hemodialysis Efficiency Predictor in End-Stage Kidney Disease Using Real-Time Heart Rate Variability. Biomedicines, 12(3), 474. https://doi.org/10.3390/biomedicines12030474