Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction
Abstract
:1. Introduction
2. Classification of Anti-Inflammatory Trials in AMI
3. Studies with Specific-Target Anti-Inflammatory Agents
3.1. CANTOS Study (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study)
3.2. VISTA-16 Trial (Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 Weeks)
3.3. LATITUDE-TIMI 60 Trial (Losmapimod to Inhibit p38 MAP Kinase as a Therapeutic Target and Modify Outcomes after an Acute Coronary Syndrome)
3.4. SOLID-TIMI 52 Trial (Stabilization of Plaques Using Darapladib-Thrombolysis in Myocardial Infarction 52)
3.5. ASSAIL-MI-Trial (Assessing the Effect of Anti-IL-6 Treatment in Myocardial Infarction)
3.6. SELECT-ACS (Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage after Percutaneous Coronary Intervention for Non-ST-Elevation Myocardial Infarction)
4. Studies with Broad-Spectrum Anti-Inflammatory Agents
4.1. COLCOT Trial (Colchicine Cardiovascular Outcomes Trial)
4.2. LoDoCo2 Trial (Low-Dose Colchicine after Myocardial Infarction)
4.3. COPS Trial (Colchicine in Patients with Acute Coronary Syndrome)
4.4. CIRT Trial (Cardiovascular Inflammation Reduction Trial)
4.5. AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes)
4.6. ALL-Heart Study (Allopurinol versus Usual Care in UK Patients with Ischemic Heart Disease)
5. Discussion
6. Future Directions and Emerging Trends
7. Implications for Clinical Practice
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McManus, D.D.; Gore, J.; Yarzebski, J.; Spencer, F.; Lessard, D.; Goldberg, R.J. Recent Trends in the Incidence, Treatment, and Outcomes of Patients with STEMI and NSTEMI. Am. J. Med. 2011, 124, 40–47. [Google Scholar] [CrossRef]
- Libby, P. Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef]
- Libby, P. The Changing Landscape of Atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Mitsis, A.; Kadoglou, N.P.E.; Lambadiari, V.; Alexiou, S.; Theodoropoulos, K.C.; Avraamides, P.; Kassimis, G. Prognostic Role of Inflammatory Cytokines and Novel Adipokines in Acute Myocardial Infarction: An Updated and Comprehensive Review. Cytokine 2022, 153, 155848. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis--an Inflammatory Disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Berk, B.C.; Weintraub, W.S.; Alexander, R.W. Elevation of C-Reactive Protein in “Active” Coronary Artery Disease. Am. J. Cardiol. 1990, 65, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto, A.M. Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators Measurement of C-Reactive Protein for the Targeting of Statin Therapy in the Primary Prevention of Acute Coronary Events. N. Engl. J. Med. 2001, 344, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Lindmark, E.; Diderholm, E.; Wallentin, L.; Siegbahn, A. Relationship between Interleukin 6 and Mortality in Patients with Unstable Coronary Artery Disease: Effects of an Early Invasive or Noninvasive Strategy. JAMA 2001, 286, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- Al-Bahrani, A.; Taha, S.; Shaath, H.; Bakhiet, M. TNF-Alpha and IL-8 in Acute Stroke and the Modulation of These Cytokines by Antiplatelet Agents. Curr. Neurovasc. Res. 2007, 4, 31–37. [Google Scholar] [CrossRef]
- Heinzmann, A.C.A.; Coenen, D.M.; Vajen, T.; Cosemans, J.M.E.M.; Koenen, R.R. Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH Open 2021, 5, e533–e542. [Google Scholar] [CrossRef]
- Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; et al. Effect of a Single Dose of the Interleukin-6 Receptor Antagonist Tocilizumab on Inflammation and Troponin T Release in Patients with Non-ST-Elevation Myocardial Infarction: A Double-Blind, Randomized, Placebo-Controlled Phase 2 Trial. Eur. Heart J. 2016, 37, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Wollenweber, T.; Roentgen, P.; Schäfer, A.; Schatka, I.; Zwadlo, C.; Brunkhorst, T.; Berding, G.; Bauersachs, J.; Bengel, F.M. Characterizing the Inflammatory Tissue Response to Acute Myocardial Infarction by Clinical Multimodality Noninvasive Imaging. Circ. Cardiovasc. Imaging 2014, 7, 811–818. [Google Scholar] [CrossRef]
- Ridker, P.M.; Lüscher, T.F. Anti-Inflammatory Therapies for Cardiovascular Disease. Eur. Heart J. 2014, 35, 1782–1791. [Google Scholar] [CrossRef]
- Gabriel, A.S.; Martinsson, A.; Wretlind, B.; Ahnve, S. IL-6 Levels in Acute and Post Myocardial Infarction: Their Relation to CRP Levels, Infarction Size, Left Ventricular Systolic Function, and Heart Failure. Eur. J. Intern. Med. 2004, 15, 523–528. [Google Scholar] [CrossRef]
- Libby, P. Targeting Inflammatory Pathways in Cardiovascular Disease: The Inflammasome, Interleukin-1, Interleukin-6 and Beyond. Cells 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rane, M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ. Res. 2021, 128, 1728–1746. [Google Scholar] [CrossRef] [PubMed]
- Anzai, A.; Ko, S.; Fukuda, K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int. J. Mol. Sci. 2022, 23, 5214. [Google Scholar] [CrossRef]
- Halade, G.V.; Jin, Y.-F.; Lindsey, M.L. Matrix Metalloproteinase (MMP)-9: A Proximal Biomarker for Cardiac Remodeling and a Distal Biomarker for Inflammation. Pharmacol. Ther. 2013, 139, 32–40. [Google Scholar] [CrossRef]
- Gerber, Y.; McConnell, J.P.; Jaffe, A.S.; Weston, S.A.; Killian, J.M.; Roger, V.L. Lipoprotein-Associated Phospholipase A2 and Prognosis after Myocardial Infarction in the Community. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2517–2522. [Google Scholar] [CrossRef]
- Kerner, T.; Ahlers, O.; Reschreiter, H.; Bührer, C.; Möckel, M.; Gerlach, H. Adhesion Molecules in Different Treatments of Acute Myocardial Infarction. Crit. Care 2001, 5, 145–150. [Google Scholar] [CrossRef]
- Tzikas, S.; Palapies, L.; Bakogiannis, C.; Zeller, T.; Sinning, C.; Baldus, S.; Bickel, C.; Vassilikos, V.; Lackner, K.J.; Zeiher, A.; et al. GDF-15 Predicts Cardiovascular Events in Acute Chest Pain Patients. PLoS ONE 2017, 12, e0182314. [Google Scholar] [CrossRef]
- Tzikas, S.; Vassilikos, V.; Keller, T. GDF-15 as a Risk Stratification Biomarker for Cardiovascular Disease. Int. J. Cardiol. 2019, 292, 246–247. [Google Scholar] [CrossRef]
- Abe, J.I.; Baines, C.P.; Berk, B.C. Role of Mitogen-Activated Protein Kinases in Ischemia and Reperfusion Injury: The Good and the Bad. Circ. Res. 2000, 86, 607–609. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Lu, X.; Zhang, Y.; Zeng, S.; Pan, X.; Zhou, Y.; Wang, H.; Chen, N.; Cai, F.; et al. IL-6 Inhibitors Effectively Reverse Post-Infarction Cardiac Injury and Ischemic Myocardial Remodeling via the TGF-Β1/Smad3 Signaling Pathway. Exp. Ther. Med. 2022, 24, 576. [Google Scholar] [CrossRef]
- Ridker, P.M.; Thuren, T.; Zalewski, A.; Libby, P. Interleukin-1β Inhibition and the Prevention of Recurrent Cardiovascular Events: Rationale and Design of the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 2011, 162, 597–605. [Google Scholar] [CrossRef]
- Welzel, T.; Oefelein, L.; Twilt, M.; Pfister, M.; Kuemmerle-Deschner, J.B.; Benseler, S.M. Tapering of Biological Treatment in Autoinflammatory Diseases: A Scoping Review. Pediatr. Rheumatol. Online J. 2022, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation and Atherosclerosis: The End of a Controversy. Circulation 2017, 136, 1875–1877. [Google Scholar] [CrossRef] [PubMed]
- Kugiyama, K.; Ota, Y.; Sugiyama, S.; Kawano, H.; Doi, H.; Soejima, H.; Miyamoto, S.; Ogawa, H.; Takazoe, K.; Yasue, H. Prognostic Value of Plasma Levels of Secretory Type II Phospholipase A2 in Patients with Unstable Angina Pectoris. Am. J. Cardiol. 2000, 86, 718–722. [Google Scholar] [CrossRef]
- Mallat, Z.; Lambeau, G.; Tedgui, A. Lipoprotein-Associated and Secreted Phospholipases A₂ in Cardiovascular Disease: Roles as Biological Effectors and Biomarkers. Circulation 2010, 122, 2183–2200. [Google Scholar] [CrossRef] [PubMed]
- Fras, Z.; Tršan, J.; Banach, M. On the Present and Future Role of Lp-PLA2 in Atherosclerosis-Related Cardiovascular Risk Prediction and Management. Arch. Med. Sci. 2021, 17, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Cavender, M.A.; Kastelein, J.J.P.; Schwartz, G.; Waters, D.D.; Rosenson, R.S.; Bash, D.; Hislop, C. Inhibition of Secretory Phospholipase A2 in Patients with Acute Coronary Syndromes: Rationale and Design of the Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 Weeks (VISTA-16) Trial. Cardiovasc. Drugs Ther. 2012, 26, 71–75. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Kastelein, J.J.P.; Schwartz, G.G.; Bash, D.; Rosenson, R.S.; Cavender, M.A.; Brennan, D.M.; Koenig, W.; Jukema, J.W.; Nambi, V.; et al. Varespladib and Cardiovascular Events in Patients with an Acute Coronary Syndrome: The VISTA-16 Randomized Clinical Trial. JAMA 2014, 311, 252. [Google Scholar] [CrossRef]
- Mani, P.; Puri, R.; Schwartz, G.G.; Nissen, S.E.; Shao, M.; Kastelein, J.J.P.; Menon, V.; Lincoff, A.M.; Nicholls, S.J. Association of Initial and Serial C-Reactive Protein Levels with Adverse Cardiovascular Events and Death After Acute Coronary Syndrome: A Secondary Analysis of the VISTA-16 Trial. JAMA Cardiol. 2019, 4, 314. [Google Scholar] [CrossRef] [PubMed]
- Denise Martin, E.; De Nicola, G.F.; Marber, M.S. New Therapeutic Targets in Cardiology: P38 Alpha Mitogen-Activated Protein Kinase for Ischemic Heart Disease. Circulation 2012, 126, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Seeger, F.H.; Sedding, D.; Langheinrich, A.C.; Haendeler, J.; Zeiher, A.M.; Dimmeler, S. Inhibition of the P38 MAP Kinase in Vivo Improves Number and Functional Activity of Vasculogenic Cells and Reduces Atherosclerotic Disease Progression. Basic. Res. Cardiol. 2010, 105, 389–397. [Google Scholar] [CrossRef]
- Muslin, A.J. MAPK Signaling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets. Clin. Sci. 2008, 115, 203–218. [Google Scholar] [CrossRef]
- Clerk, A.; Sugden, P.H. Inflame My Heart (by P38-MAPK). Circ. Res. 2006, 99, 455–458. [Google Scholar] [CrossRef]
- Newby, L.K.; Marber, M.S.; Melloni, C.; Sarov-Blat, L.; Aberle, L.H.; Aylward, P.E.; Cai, G.; de Winter, R.J.; Hamm, C.W.; Heitner, J.F.; et al. Losmapimod, a Novel P38 Mitogen-Activated Protein Kinase Inhibitor, in Non-ST-Segment Elevation Myocardial Infarction: A Randomised Phase 2 Trial. Lancet 2014, 384, 1187–1195. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Glaser, R.; Cavender, M.A.; Aylward, P.E.; Bonaca, M.P.; Budaj, A.; Davies, R.Y.; Dellborg, M.; Fox, K.A.A.; Gutierrez, J.A.T.; et al. Effect of Losmapimod on Cardiovascular Outcomes in Patients Hospitalized with Acute Myocardial Infarction: A Randomized Clinical Trial. JAMA 2016, 315, 1591. [Google Scholar] [CrossRef]
- Cavender, M.A.; O’Donoghue, M.L.; Abbate, A.; Aylward, P.; Fox, K.A.; Glaser, R.X.; Park, J.-G.; Lopez-Sendon, J.; Steg, P.G.; Sabatine, M.S.; et al. Inhibition of P38 MAP Kinase in Patients with ST-Elevation Myocardial Infarction—Findings from the LATITUDE-TIMI 60 Trial. Am. Heart J. 2022, 243, 147–157. [Google Scholar] [CrossRef]
- Jabor, B.; Choi, H.; Ruel, I.; Hafiane, A.; Mourad, W.; Genest, J. Lipoprotein-Associated Phospholipase A(2) (Lp-PLA(2)) in Acute Coronary Syndrome: Relationship with Low-Density Lipoprotein Cholesterol. Can. J. Cardiol. 2013, 29, 1679–1686. [Google Scholar] [CrossRef]
- Johnson, J.L.; Shi, Y.; Snipes, R.; Janmohamed, S.; Rolfe, T.E.; Davis, B.; Postle, A.; Macphee, C.H. Effect of Darapladib Treatment on Endarterectomy Carotid Plaque Lipoprotein-Associated Phospholipase A2 Activity: A Randomized, Controlled Trial. PLoS ONE 2014, 9, e89034. [Google Scholar] [CrossRef]
- STABILITY Investigators; White, H.D.; Held, C.; Stewart, R.; Tarka, E.; Brown, R.; Davies, R.Y.; Budaj, A.; Harrington, R.A.; Steg, P.G.; et al. Darapladib for Preventing Ischemic Events in Stable Coronary Heart Disease. N. Engl. J. Med. 2014, 370, 1702–1711. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Braunwald, E.; White, H.D.; Serruys, P.; Steg, P.G.; Hochman, J.; Maggioni, A.P.; Bode, C.; Weaver, D.; Johnson, J.L.; et al. Study Design and Rationale for the Stabilization of pLaques usIng Darapladib—Thrombolysis in Myocardial Infarction (SOLID-TIMI 52) Trial in Patients after an Acute Coronary Syndrome. Am. Heart J. 2011, 162, 613–619.e1. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Braunwald, E.; White, H.D.; Steen, D.P.; Lukas, M.A.; Tarka, E.; Steg, P.G.; Hochman, J.S.; Bode, C.; Maggioni, A.P.; et al. Effect of Darapladib on Major Coronary Events After an Acute Coronary Syndrome: The SOLID-TIMI 52 Randomized Clinical Trial. JAMA 2014, 312, 1006. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the Interleukin-6 Signalling Pathway and Incidence Rates of Atherosclerotic Events and All-Cause Mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018, 39, 3499–3507. [Google Scholar] [CrossRef] [PubMed]
- Alter, C.; Henseler, A.-S.; Owenier, C.; Hesse, J.; Ding, Z.; Lautwein, T.; Bahr, J.; Hayat, S.; Kramann, R.; Kostenis, E.; et al. IL-6 in the Infarcted Heart Is Preferentially Formed by Fibroblasts and Modulated by Purinergic Signaling. J. Clin. Investig. 2023, 133, e163799. [Google Scholar] [CrossRef] [PubMed]
- Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Broch, K.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; Hopp, E.; et al. Rationale for the ASSAIL-MI-Trial: A Randomised Controlled Trial Designed to Assess the Effect of Tocilizumab on Myocardial Salvage in Patients with Acute ST-Elevation Myocardial Infarction (STEMI). Open Heart 2019, 6, e001108. [Google Scholar] [CrossRef]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients with Acute ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.-C.; Tanguay, J.-F.; Wright, S.R.; Duchatelle, V.; Petroni, T.; Grégoire, J.C.; Ibrahim, R.; Heinonen, T.M.; Robb, S.; Bertrand, O.F.; et al. Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage after Percutaneous Coronary Intervention for Non-ST-Segment Elevation Myocardial Infarction: Results of the SELECT-ACS Trial. J. Am. Coll. Cardiol. 2013, 61, 2048–2055. [Google Scholar] [CrossRef] [PubMed]
- Blann, A.D.; Nadar, S.K.; Lip, G.Y.H. The Adhesion Molecule P-Selectin and Cardiovascular Disease. Eur. Heart J. 2003, 24, 2166–2179. [Google Scholar] [CrossRef]
- Tanguay, J.-F.; Geoffroy, P.; Sirois, M.G.; Libersan, D.; Kumar, A.; Schaub, R.G.; Merhi, Y. Prevention of In-Stent Restenosis via Reduction of Thrombo-Inflammatory Reactions with Recombinant P-Selectin Glycoprotein Ligand-1. Thromb. Haemost. 2004, 91, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Stähli, B.E.; Gebhard, C.; Duchatelle, V.; Cournoyer, D.; Petroni, T.; Tanguay, J.-F.; Robb, S.; Mann, J.; Guertin, M.-C.; Wright, R.S.; et al. Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage After Percutaneous Coronary Intervention According to Timing of Infusion: Insights from the SELECT-ACS Trial. J. Am. Heart Assoc. 2016, 5, e004255. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine--Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-Treatment Initiation of Colchicine and Cardiovascular Outcomes after Myocardial Infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease. J. Am. Coll. Cardiol. 2013, 61, 404–410. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; Bax, W.A.; Budgeon, C.A.; Tijssen, J.G.P.; Mosterd, A.; Cornel, J.H.; et al. The Effect of Low-Dose Colchicine in Patients with Stable Coronary Artery Disease: The LoDoCo2 Trial Rationale, Design, and Baseline Characteristics. Am. Heart J. 2019, 218, 46–56. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Blondeau, L.; Tardif, J.-C. Lessons from COLCOT and LoDoCo2: Colchicine for Secondary Prevention in Coronary Artery Disease. Eur. Heart J. 2021, 42, 2800–2801. [Google Scholar] [CrossRef]
- Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; et al. Colchicine in Patients with Acute Coronary Syndrome: The Australian COPS Randomized Clinical Trial. Circulation 2020, 142, 1890–1900. [Google Scholar] [CrossRef]
- Everett, B.M.; Pradhan, A.D.; Solomon, D.H.; Paynter, N.; Macfadyen, J.; Zaharris, E.; Gupta, M.; Clearfield, M.; Libby, P.; Hasan, A.A.K.; et al. Rationale and Design of the Cardiovascular Inflammation Reduction Trial: A Test of the Inflammatory Hypothesis of Atherothrombosis. Am. Heart J. 2013, 166, 199–207.e15. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Guyton, J.R.; Slee, A.E.; Anderson, T.; Fleg, J.L.; Goldberg, R.B.; Kashyap, M.L.; Marcovina, S.M.; Nash, S.D.; O’Brien, K.D.; Weintraub, W.S.; et al. Relationship of Lipoproteins to Cardiovascular Events: The AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 2013, 62, 1580–1584. [Google Scholar] [CrossRef]
- Weisman, A.; Tomlinson, G.A.; Lipscombe, L.L.; Perkins, B.A.; Hawker, G.A. Association between Allopurinol and Cardiovascular Outcomes and All-Cause Mortality in Diabetes: A Retrospective, Population-Based Cohort Study. Diabetes Obes. Metab. 2019, 21, 1322–1329. [Google Scholar] [CrossRef]
- Lai, S.-W.; Lin, C.-L.; Liao, K.-F. Case-Control Study Examining the Association between Allopurinol Use and Ischemic Cerebrovascular Disease. J. Investig. Med. 2019, 67, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Lai, R.W.C.; Li, K.H.C.; Hung, J.K.F.; Lai, J.C.L.; Ho, J.; Liu, Y.; Tsoi, M.F.; Liu, T.; Cheung, B.M.Y.; et al. Comparative Cardiovascular Risk in Users versus Non-Users of Xanthine Oxidase Inhibitors and Febuxostat versus Allopurinol Users. Rheumatology 2020, 59, 2340–2349. [Google Scholar] [CrossRef]
- George, J.; Carr, E.; Davies, J.; Belch, J.J.F.; Struthers, A. High-Dose Allopurinol Improves Endothelial Function by Profoundly Reducing Vascular Oxidative Stress and Not by Lowering Uric Acid. Circulation 2006, 114, 2508–2516. [Google Scholar] [CrossRef]
- Rajendra, N.S.; Ireland, S.; George, J.; Belch, J.J.F.; Lang, C.C.; Struthers, A.D. Mechanistic Insights into the Therapeutic Use of High-Dose Allopurinol in Angina Pectoris. J. Am. Coll. Cardiol. 2011, 58, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, I.S.; Hawkey, C.J.; Ford, I.; Greenlaw, N.; Pigazzani, F.; Rogers, A.; Struthers, A.D.; Begg, A.G.; Wei, L.; Avery, A.J.; et al. Allopurinol versus Usual Care in UK Patients with Ischaemic Heart Disease (ALL-HEART): A Multicentre, Prospective, Randomised, Open-Label, Blinded-Endpoint Trial. Lancet 2022, 400, 1195–1205. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; et al. Relationship of C-Reactive Protein Reduction to Cardiovascular Event Reduction Following Treatment with Canakinumab: A Secondary Analysis from the CANTOS Randomised Controlled Trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From CANTOS to CIRT to COLCOT to Clinic: Will All Atherosclerosis Patients Soon Be Treated with Combination Lipid-Lowering and Inflammation-Inhibiting Agents? Circulation 2020, 141, 787–789. [Google Scholar] [CrossRef]
- Hemkens, L.G.; Ewald, H.; Gloy, V.L.; Arpagaus, A.; Olu, K.K.; Nidorf, M.; Glinz, D.; Nordmann, A.J.; Briel, M. Colchicine for Prevention of Cardiovascular Events. Cochrane Database Syst. Rev. 2016, 2016, CD011047. [Google Scholar] [CrossRef]
- Nelson, K.; Fuster, V.; Ridker, P.M. Low-Dose Colchicine for Secondary Prevention of Coronary Artery Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 82, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Tardif, J.-C.; Bouabdallaoui, N.; Khairy, P.; Dubé, M.-P.; Blondeau, L.; Guertin, M.-C. Colchicine for Secondary Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can. J. Cardiol. 2021, 37, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Dubé, M.-P.; Hennessy, T.; Schultz, C.J.; Barhdadi, A.; Rhainds, D.; Hillis, G.S.; Tardif, J.-C. Low-Dose Colchicine and High-Sensitivity C-Reactive Protein after Myocardial Infarction: A Combined Analysis Using Individual Patient Data from the COLCOT and LoDoCo-MI Studies. Int. J. Cardiol. 2022, 363, 20–22. [Google Scholar] [CrossRef]
- German, C.A.; Liao, J.K. Understanding the Molecular Mechanisms of Statin Pleiotropic Effects. Arch. Toxicol. 2023, 97, 1529–1545. [Google Scholar] [CrossRef]
- Torngren, K.; Rylance, R.; Gan, L.-M.; Omerovic, E.; Svedlund, S.; Erlinge, D. Ticagrelor Treatment Is Associated with Increased Coronary Flow Reserve in Survivors of Myocardial Infarction. Heart Lung Circ. 2023, 32, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.A.E.; Storey, R.F. The Role of Platelet P2Y12 Receptors in Inflammation. Br. J. Pharmacol. 2024, 181, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Mancini, G.B.J. Emerging Role of Angiotensin II Type 1 Receptor Blockers for the Treatment of Endothelial Dysfunction and Vascular Inflammation. Can. J. Cardiol. 2002, 18, 1309–1316. [Google Scholar] [PubMed]
- Kaschina, E.; Lauer, D.; Lange, C.; Unger, T. Angiotensin AT2 Receptors Reduce Inflammation and Fibrosis in Cardiovascular Remodeling. Biochem. Pharmacol. 2024, 222, 116062. [Google Scholar] [CrossRef] [PubMed]
- Sakata, N. The Anti-Inflammatory Effect of Metformin: The Molecular Targets. Genes. Cells 2024, 29, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Nesti, L.; Tricò, D.; Mengozzi, A.; Natali, A. Rethinking Pioglitazone as a Cardioprotective Agent: A New Perspective on an Overlooked Drug. Cardiovasc. Diabetol. 2021, 20, 109. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, A.; Avraamides, P.; Lakoumentas, J.; Kyriakou, M.; Sokratous, S.; Karmioti, G.; Drakomathioulakis, M.; Theodoropoulos, K.C.; Nasoufidou, A.; Evangeliou, A.; et al. Role of Inflammation Following an Acute Myocardial Infarction: Design of INFINITY. Biomark. Med. 2023, 17, 971–981. [Google Scholar] [CrossRef]
- Malick, W.A.; Goonewardena, S.N.; Koenig, W.; Rosenson, R.S. Clinical Trial Design for Lipoprotein(a)-Lowering Therapies: JACC Focus Seminar 2/3. J. Am. Coll. Cardiol. 2023, 81, 1633–1645. [Google Scholar] [CrossRef]
- Distler, O.; Ludwig, R.J.; Niemann, S.; Riemekasten, G.; Schreiber, S. Editorial: Precision Medicine in Chronic Inflammation. Front. Immunol. 2021, 12, 770462. [Google Scholar] [CrossRef]
- West, H.W.; Dangas, K.; Antoniades, C. Advances in Clinical Imaging of Vascular Inflammation: A State-of-the-Art Review. JACC Basic. Transl. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R. Inflammation Is a Major Regulator of Drug Metabolizing Enzymes and Transporters: Consequences for the Personalization of Drug Treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
- Vilne, B.; Ķibilds, J.; Siksna, I.; Lazda, I.; Valciņa, O.; Krūmiņa, A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front. Microbiol. 2022, 13, 627892. [Google Scholar] [CrossRef]
- Gupta, A.; Slater, J.J.; Boyne, D.; Mitsakakis, N.; Béliveau, A.; Druzdzel, M.J.; Brenner, D.R.; Hussain, S.; Arora, P. Probabilistic Graphical Modeling for Estimating Risk of Coronary Artery Disease: Applications of a Flexible Machine-Learning Method. Med. Decis. Mak. 2019, 39, 1032–1044. [Google Scholar] [CrossRef]
- Puspitasari, Y.M.; Ministrini, S.; Schwarz, L.; Karch, C.; Liberale, L.; Camici, G.G. Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Front. Cell Dev. Biol. 2022, 10, 882211. [Google Scholar] [CrossRef]
- Liberale, L.; Montecucco, F.; Tardif, J.-C.; Libby, P.; Camici, G.G. Inflamm-Ageing: The Role of Inflammation in Age-Dependent Cardiovascular Disease. Eur. Heart J. 2020, 41, 2974–2982. [Google Scholar] [CrossRef]
- Mattace-Raso, F.U.S.; van der Cammen, T.J.M.; van der Meer, I.M.; Schalekamp, M.A.D.H.; Asmar, R.; Hofman, A.; Witteman, J.C.M. C-Reactive Protein and Arterial Stiffness in Older Adults: The Rotterdam Study. Atherosclerosis 2004, 176, 111–116. [Google Scholar] [CrossRef]
- Mozos, I.; Jianu, D.; Gug, C.; Stoian, D. Links between High-Sensitivity C-Reactive Protein and Pulse Wave Analysis in Middle-Aged Patients with Hypertension and High Normal Blood Pressure. Dis. Markers 2019, 2019, 2568069. [Google Scholar] [CrossRef]
- Dhamoon, M.S.; Cheung, Y.-K.; Moon, Y.P.; Wright, C.B.; Willey, J.Z.; Sacco, R.; Elkind, M.S. C-Reactive Protein Is Associated with Disability Independently of Vascular Events: The Northern Manhattan Study. Age Ageing 2017, 46, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Y.; Zhang, D.; Wu, T.; Li, Q. The Relationship Between Dietary Inflammatory Index and All-Cause, Cardiovascular Disease-Related, and Cancer-Related Mortality. J. Multidiscip. Healthc. 2023, 16, 2543–2556. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Miao, S.; Hu, W.; Yan, J. Association between the Dietary Inflammatory Index and All-Cause and Cardiovascular Mortality in Patients with Atherosclerotic Cardiovascular Disease. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1046–1053. [Google Scholar] [CrossRef]
- Yaşan, M.; Özel, R.; Yildiz, A.; Savaş, G.; Korkmaz, A. The Predictive Value of Systemic Immune-Inflammation Index for Long-Term Cardiovascular Mortality in Non-ST Segment Elevation Myocardial Infarction. Coron. Artery Dis. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Karadeniz, F.Ö.; Karadeniz, Y.; Altuntaş, E. Systemic Immune-Inflammation Index, and Neutrophilto-Lymphocyte and Platelet-to-Lymphocyte Ratios Can Predict Clinical Outcomes in Patients with Acute Coronary Syndrome. Cardiovasc. J. Afr. 2023, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Diao, J.; Qi, C.; Jin, J.; Li, L.; Gao, X.; Gong, L.; Wu, W. Predictive Value of Neutrophil to Lymphocyte Ratio in Patients with Acute ST Segment Elevation Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis. BMC Cardiovasc. Disord. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Litman, T. Personalized Medicine—Concepts, Technologies, and Applications in Inflammatory Skin Diseases. APMIS 2019, 127, 386–424. [Google Scholar] [CrossRef]
- Charo, I.F.; Taub, R. Anti-Inflammatory Therapeutics for the Treatment of Atherosclerosis. Nat. Rev. Drug Discov. 2011, 10, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting Inflammation in Atherosclerosis—from Experimental Insights to the Clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Matter, M.A.; Paneni, F.; Libby, P.; Frantz, S.; Stähli, B.E.; Templin, C.; Mengozzi, A.; Wang, Y.-J.; Kündig, T.M.; Räber, L.; et al. Inflammation in Acute Myocardial Infarction: The Good, the Bad and the Ugly. Eur. Heart J. 2024, 45, 89–103. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Ding, Z.; Mehta, J.L. Inflammation, Autophagy, and Apoptosis After Myocardial Infarction. J. Am. Heart Assoc. 2018, 7, e008024. [Google Scholar] [CrossRef]
Targeted Inflammatory Pathway | Class of Anti-Inflammatory Drug | Patient Population | Outcome Measures | Trial Phase | Trial Result |
---|---|---|---|---|---|
Studies targeting the IL-6 pathway | Studies with specific-target anti-inflammatory agents | ACS patients | Trials assessing the impact on infarct size through anti-inflammatory interventions. | Early-phase trials (trials assessing the safety and initial efficacy) | Positive result |
Trials outside the IL-6 pathway | Studies with broad anti-inflammatory agents | Stable CAD patients | Trials measuring clinical endpoints like MACE reduction. | Late-phase trials (larger trials evaluating effectiveness in a broader population) | Negative result |
Trial Name | Year | Intervention | Patient Population | Follow up Period | Population (Number) | Key Findings | Notable Features and Considerations |
---|---|---|---|---|---|---|---|
CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) | 2017 | Canakinumab (IL-1β inhibitor) | Patients with prior MI and elevated hsCRP | 48 months | 10,061 | Reduction in recurrent cardiovascular events in patients receiving canakinumab. | Notable for targeting interleukin-1β and demonstrating a link between inflammation (hsCRP) and cardiovascular risk. |
VISTA-16 (Vascular Inflammation Suppression to Treat Acute Coronary Syndrome for 16 Weeks) | 2014 | Varespladib (phospholipase A2 inhibitor) | ACS patients (47% STEMI, 38% NSTEMI, 15% UA) | 16 weeks | 5145 | No significant reduction in major cardiovascular events with varespladib. | Failed to prove the benefit of varespladib in patients with recent ACS who were on atorvastatin. |
LATITUDE-TIMI 60 trial (Losmapimod to Inhibit p38 MAP Kinase as a Therapeutic Target and Modify Outcomes After an Acute Coronary Syndrome) | 2016 | Losmapimod (p38 MAPK inhibitor) | ACS patients (25% STEMI, 75% NSTEMI) | 24 weeks | 3503 | No reduction for recurrent MACEs events over the 12-week treatment period in patients hospitalized with ACS. | Failed to support a strategy of p38 MAPK inhibition with losmapimod in patients hospitalized with MI. |
SOLID-TIMI 52 trial (Stabilization of plaques using Darapladib-Thrombolysis in Myocardial Infarction) | 2014 | Darapladib (lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor) | ACS patients (45.2% STEMI, 42.7 NSTEMI, and 12.2% UA) | 2.5 years median | 13,026 | Darapladib did not reduce the risk of recurrent major coronary events. | Failed to support the use of targeted Lp-PLA2 inhibition with darapladib in patients stabilized after an ACS event. |
ASSAIL-MI (Assessing the effect of Anti-IL-6 treatment in Myocardial Infarction) | 2021 | Tocilizumab (IL-6 receptor antagonist) | STEMI patients admitted within 6 h | 7 days | 199 | Tocilizumab increased the myocardial salvage index compared to placebo. No significant difference in the final infarct size (7.2% vs. 9.1%, p = 0.08). | Conducted at three high-volume PCI centers in Norway; the single infusion of 280 mg tocilizumab or placebo; and the primary endpoint: the myocardial salvage index measured by MRI after 3 to 7 days. |
SELECT ACS (Effects of the P-Selectin Antagonist Inclacumab on Myocardial Damage After Percutaneous Coronary Intervention for Non-ST-Elevation Myocardial Infarction) | 2013 | Inclacumab (anti-P-selectin) | NSTEMI patients undergoing PCI | 24 h for efficacy and 120 days for safety evaluations | 544 | Inclacumab at 20 mg/kg demonstrated a significant reduction in troponin I levels at 24 h (p = 0.05) and 16 h (p = 0.07) after PCI compared to placebo. Adverse events did not significantly differ. | The P-selectin antagonist inclacumab reduced myocardial damage after PCI in patients with NSTEMI. |
Trial Name | Year | Intervention | Patient Population | Follow up Period | Population (Number) | Key Findings | Notable Features and Considerations |
---|---|---|---|---|---|---|---|
COLCOT (Colchicine Cardiovascular Outcomes Trial) | 2019 | Colchicine | Patients post-MI | Median 22.6 months | 4745 | Reduction in cardiovascular events in patients receiving colchicine. | Diarrhea was reported in 9.7% of the patients in the colchicine group and in 8.9% of those in the placebo group (p = 0.35). |
LoDoCo2 (Low-Dose Colchicine after Myocardial Infarction) | 2020 | Colchicine | Patients post-MI | Median 28.6 months | 5522 | Reduction in major cardiovascular events with low-dose colchicine. | Focused on evaluating the efficacy of a lower colchicine dose in cardiovascular event prevention. |
COPS (Colchicine in Patients with Acute Coronary Syndromes) | 2020 | Colchicine | ACS | 12 months | 795 | The addition of colchicine to standard medical therapy did not significantly affect cardiovascular outcomes at 12 months in patients with ACS. | Colchicine was associated with a higher rate of mortality. |
CIRT (Cardiovascular Inflammation Reduction Trial) | 2019 | Methotrexate | History of MI or multi-vessel CAD, and type 2 DM and/or metabolic syndrome | Median 2.3 years | 4786 | Methotrexate did not affect the cardiovascular outcomes or plasma markers. | Methotrexate was associated with modest elevations in liver enzyme levels and reductions in leukocyte counts and hematocrit levels, as well as a higher incidence of non-basal cell skin cancers than placebo. |
AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes) | 2011 | Extended-Release Niacin | Patients with a history of cardiovascular disease | 3 years | 3414 | The trial did not demonstrate additional cardiovascular benefit from niacin therapy. | Raised questions about the efficacy of niacin in improving cardiovascular outcomes in this patient population. |
ALL-HEART study (Allopurinol versus usual care in UK patients with ischemic heart disease)) | Allopurinol | Patients with a history of cardiovascular disease and without gout | Mean 4.8 years | 5721 | No significant difference in the primary outcome between the two groups | While allopurinol has benefits in other conditions like gout, its role in reducing cardiovascular events in patients with CAD without gout may be limited |
Trial Name | Study Design | Intervention | Target | Patient Population | Population (Number) | Primary Outcome | Clinical Trials Identifier |
---|---|---|---|---|---|---|---|
ZEUS | Phase III, multicenter, double-blind, randomized, and placebo-controlled | Ziltivekimab | IL-6 blocking monoclonal antibody | Patients with CKD stage 3 to 4, known CAD, and a hs-CRP of >2 mg/L | 6200 | Time to first occurrence of MACE | NCT05021835 |
Lp(a) HORIZON | Phase III, multicenter, double-blind, randomized, and placebo-controlled | Pelacarsen | Antisense oligonucleotide targeting Apo(a) | Patients with established CVD and a Lp(a) of ≥70 mg/dL | 7680 | Time to first occurrence of expanded MACE in patients with a Lp(a) of ≥ 70 mg/dL or a Lp(a) of ≥ 90 mg/dL | NCT04023552 |
GOLDILOX | Phase IIB, multicenter, double-blind, randomized, and placebo-controlled | MEDI6570 | LOX-1 receptor blocking monoclonal antibody | Patients aged ≥ 21 years with a history of MI and a hs-CRP of >1 mg/L | 400 | Change in non-calcified plaque volume measured by CTA | NCT04610892 |
anaRITA MI2 | Phase II multicenter, double-blind, randomized, and placebo-controlled | Rituximab | B-cell depletion with CD20 | Patients with STEMI | 558 | LVEF at 6 months with cardiac magnetic resonance | NCT05211401 |
PULSE-MI | Randomized, multicenter, double-blind, and placebo-controlled clinical trial | A methylprednisolone 250 mg IV in a prehospital setting | Ischemia-reperfusion injury prevention and wide anti-inflammatory effect | Patients with STEMI | 400 | Infarct size measured by late-gadolinium enhancement on CMR at 90 days | NCT05462730 |
IVORY | Phase II, randomized, double-blind, placebo-controlled, and a parallel group | Low dose IL-2 | Induces expansion of regulatory T cells | Patients with ACS or UA who have a hsCRP of >2 mg/L | 60 | Change in vascular inflammation measured by mean TBRmax in the index of 18F-FDG PET/CT | NCT04241601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsis, A.; Kyriakou, M.; Sokratous, S.; Karmioti, G.; Drakomathioulakis, M.; Myrianthefs, M.; Ziakas, A.; Tzikas, S.; Kassimis, G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024, 12, 701. https://doi.org/10.3390/biomedicines12030701
Mitsis A, Kyriakou M, Sokratous S, Karmioti G, Drakomathioulakis M, Myrianthefs M, Ziakas A, Tzikas S, Kassimis G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines. 2024; 12(3):701. https://doi.org/10.3390/biomedicines12030701
Chicago/Turabian StyleMitsis, Andreas, Michaela Kyriakou, Stefanos Sokratous, Georgia Karmioti, Michail Drakomathioulakis, Michael Myrianthefs, Antonios Ziakas, Stergios Tzikas, and George Kassimis. 2024. "Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction" Biomedicines 12, no. 3: 701. https://doi.org/10.3390/biomedicines12030701
APA StyleMitsis, A., Kyriakou, M., Sokratous, S., Karmioti, G., Drakomathioulakis, M., Myrianthefs, M., Ziakas, A., Tzikas, S., & Kassimis, G. (2024). Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines, 12(3), 701. https://doi.org/10.3390/biomedicines12030701