Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia
Abstract
:1. Postmenopausal Osteoporosis and Sarcopenia
2. Myokines
3. Irisin and Its Role in Postmenopausal Osteoporosis
4. Irisin and Its Role in Sarcopenia
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Filippi, L.; Camedda, R.; Frantellizzi, V.; Urbano, N.; De Vincentis, G.; Schillaci, O. Functional imaging in musculoskeletal disorders in menopause. Semin. Nucl. Med. 2023, 54, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and menopause: The role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Kawao, N.; Kaji, H. Interactions between muscle tissues and bone metabolism. J. Cell Biochem. 2015, 116, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Tian, L. Postmenopausal osteoporosis coexisting with sarcopenia: The role and mechanisms of estrogen. J. Endocrinol. 2023, 259, e230116. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Chae, J.S.; Paik, J.K.; Seo, H.S.; Jang, Y.; Cavaillon, J.M.; Lee, J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age 2012, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.C.; Arpke, R.W.; Larson, A.A.; Baumann, C.W.; Xie, N.; Cabelka, C.A.; Nash, N.L.; Juppi, H.K.; Laakkonen, E.K.; Sipilä, S.; et al. Estrogen regulates the satellite cell compartment in females. Cell Rep. 2019, 28, 368–381.e6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1165–R1170. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Sheng, R.; Cao, M.; Song, M.; Wang, M.; Zhang, Y.; Shi, L.; Xie, T.; Li, Y.; Wang, J.; Rui, Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J. Orthop. Translat. 2023, 43, 36–46. [Google Scholar] [CrossRef]
- Clynes, M.A.; Gregson, C.L.; Bruyère, O.; Cooper, C.; Dennison, E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology 2021, 60, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Coll, P.P.; Phu, S.; Hajjar, S.H.; Kirk, B.; Duque, G.; Taxel, P. The prevention of osteoporosis and sarcopenia in older adults. J. Am. Geriatr. Soc. 2021, 69, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Storlino, G.; Sanesi, L.; Colucci, S.; Grano, M. Myokines and osteokines in the pathogenesis of muscle and bone diseases. Curr. Osteoporos. Rep. 2020, 18, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hettchen, M.; von Stengel, S.; Kohl, M.; Murphy, M.H.; Shojaa, M.; Ghasemikaram, M.; Bragonzoni, L.; Benvenuti, F.; Ripamonti, C.; Benedetti, M.G.; et al. Changes in menopausal risk factors in early postmenopausal osteopenic women after 13 months of high-intensity exercise: The randomized controlled ACTLIFE-RCT. Clin. Interv. Aging 2021, 16, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Anker, S.D.; von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; Marzetti, E.; et al. Biomarkers for physical frailty and sarcopenia: State of the science and future developments. J. Cachexia Sarcopenia Muscle 2015, 6, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Gunendi, Z.; Ozyemisci-Taskiran, O.; Demirsoy, N. The effect of 4-week aerobic exercise program on postural balance in postmenopausal women with osteoporosis. Rheumatol. Int. 2008, 28, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Martínez, S.; Ramírez-Expósito, M.J.; Carrera-González, M.P.; Martínez-Martos, J.M. Physiopathology of osteoporosis: Nursing involvement and management. Biomedicines 2023, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Otero, M.; Esain, I.; González-Suarez, Á.M.; Gil, S.M. The effectiveness of a basic exercise intervention to improve strength and balance in women with osteoporosis. Clin. Interv. Aging 2017, 12, 505–513. [Google Scholar] [CrossRef]
- Picorelli, A.M.; Pereira, L.S.; Pereira, D.S.; Felício, D.; Sherrington, C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: A systematic review. J. Physiother. 2014, 60, 151–156. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, bone, and fat crosstalk: The biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, R.; Checcaglini, F.; Coscia, F.; Gigliotti, P.; Fulle, S.; Fanò-Illic, G. Biological aspects of selected myokines in skeletal muscle: Focus on aging. Int. J. Mol. Sci. 2021, 22, 8520. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar] [PubMed]
- Li, G.; Zhang, L.; Wang, D.; AIQudsy, L.; Jiang, J.X.; Xu, H.; Shang, P. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J. Cell Biochem. 2019, 120, 14262–14273. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.M.; Subramaniyam, N.; Sim, C.M.; Ge, X.; Sathiakumar, D.; McFarlane, C.; Sharma, M.; Kambadur, R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 2017, 8, 1104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Song, C. Crosstalk between bone and other organs. Med. Rev. 2022, 2, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in metabolic diseases. Endocrine 2018, 59, 260–274. [Google Scholar] [CrossRef]
- Kim, Y.C.; Ki, S.W.; Kim, H.; Kang, S.; Kim, H.; Go, G.W. Recent advances in nutraceuticals for the treatment of sarcopenic obesity. Nutrients 2023, 15, 3854. [Google Scholar] [CrossRef]
- Morgan, E.N.; Alsharidah, A.S.; Mousa, A.M.; Edrees, H.M. Irisin has a protective role against osteoporosis in ovariectomized rats. Biomed. Res. Int. 2021, 2021, 5570229. [Google Scholar] [CrossRef]
- Xu, L.; Shen, L.; Yu, X.; Li, P.; Wang, Q.; Li, C. Effects of irisin on osteoblast apoptosis and osteoporosis in postmenopausal osteoporosis rats through upregulating Nrf2 and inhibiting NLRP3 inflammasome. Exp. Ther. Med. 2020, 19, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Kawao, N.; Iemura, S.; Kawaguchi, M.; Mizukami, Y.; Takafuji, Y.; Kaji, H. Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. J. Bone Miner. Metab. 2021, 39, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Iemura, S.; Kawao, N.; Okumoto, K.; Akagi, M.; Kaji, H. Role of irisin in androgen-deficient muscle wasting and osteopenia in mice. J. Bone Miner. Metab. 2020, 38, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, Y.; Qiao, X.; Zeng, R.; Cheng, R.; Nie, Y.; Li, S.; Shen, X.; Yang, M.; Xu, C.C.; et al. Irisin ameliorates bone loss in ovariectomized mice. Climacteric 2020, 23, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Engin-Üstün, Y.; Çağlayan, E.K.; Göçmen, A.Y.; Polat, M.F. Postmenopausal osteoporosis is associated with serum chemerin and irisin but not with apolipoprotein m levels. J. Menopausal Med. 2016, 22, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, A.D.; Polyzos, S.A.; Makras, P.; Gkiomisi, A.; Bisbinas, I.; Katsarou, A.; Filippaios, A.; Mantzoros, C.S. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int. 2014, 25, 1633–1642. [Google Scholar] [CrossRef]
- Palermo, A.; Strollo, R.; Maddaloni, E.; Tuccinardi, D.; D’Onofrio, L.; Briganti, S.I.; Defeudis, G.; De Pascalis, M.; Lazzaro, M.C.; Colleluori, G.; et al. Irisin is associated with osteoporotic fractures independently of bone mineral density, body composition or daily physical activity. Clin. Endocrinol. 2015, 82, 615–619. [Google Scholar] [CrossRef]
- Lu, C.W.; Wang, C.H.; Lin, Y.L.; Kuo, C.H.; Lai, Y.H.; Hsu, B.G.; Tsai, J.P. Serum Irisin level is positively associated with bone mineral density in patients on maintenance hemodialysis. Int. J. Endocrinol. 2021, 2021, 8890042. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Yu, R.; Wang, Y.; Gao, C. Circulating irisin is linked to bone mineral density in geriatric Chinese men. Open Med. 2020, 15, 763–768. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.J.; Guo, W.C.; Yang, J. Low serum concentrations of Irisin are associated with increased risk of hip fracture in Chinese older women. Jt. Bone Spine 2018, 85, 353–358. [Google Scholar] [CrossRef]
- Zhou, K.; Qiao, X.; Cai, Y.; Li, A.; Shan, D. Lower circulating irisin in middle-aged and older adults with osteoporosis: A systematic review and meta-analysis. Menopause 2019, 26, 1302–1310. [Google Scholar] [CrossRef]
- Badr Roomi, A.; Nori, W.; Mokram Hamed, R. Lower serum irisin levels are associated with increased osteoporosis and oxidative stress in postmenopausal. Rep. Biochem. Mol. Biol. 2021, 10, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jing, P.; Liu, Z.; Wang, Y.; Han, Z.; Wang, Y.; Zheng, Z.; Wu, Y.; Wang, T.; Li, Y.; et al. Serum levels of irisin in postmenopausal women with osteoporotic hip fractures. Cytokine 2021, 148, 155708. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Errede, M.; Sanesi, L.; Notarnicola, A.; Celi, M.; Zerlotin, R.; Storlino, G.; Pignataro, P.; Oranger, A.; Pesce, V.; et al. Irisin correlates positively with BMD in a cohort of older adult patients and downregulates the senescent marker p21 in osteoblasts. J. Bone Miner. Res. 2021, 36, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, H.C.; Zhang, D.; Yeom, H.; Lim, S.K. The novel myokine irisin: Clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine 2019, 64, 341–348. [Google Scholar] [CrossRef]
- Yen, C.H.; Chang, P.S.; Chang, Y.H.; Lin, P.T. Identification of Coenzyme Q10 and skeletal muscle protein biomarkers as potential factors to assist in the diagnosis of sarcopenia. Antioxidants 2022, 11, 725. [Google Scholar] [CrossRef]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef]
- Alsaawi, T.A.; Aldisi, D.; Abulmeaty, M.M.A.; Khattak, M.N.K.; Alnaami, A.M.; Sabico, S.; Al-Daghri, N.M. Screening for sarcopenia among elderly arab females: Influence of body composition, lifestyle, irisin, and vitamin D. Nutrients 2022, 14, 1855. [Google Scholar] [CrossRef]
- Zhou, B.N.; Zhang, Q.; Lin, X.Y.; Hu, J.; Zhao, D.C.; Jiang, Y.; Xing, X.P.; Li, M. The roles of sclerostin and irisin on bone and muscle of orchiectomized rats. BMC Musculoskelet. Disord. 2022, 23, 1049. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Huang, J.; Wu, H.; Meng, G.; Zhang, Q.; Liu, L.; Zhang, S.; Wang, X.; Zhang, J.; et al. Serum vitamin D status and circulating irisin levels in older adults with sarcopenia. Front. Nutr. 2022, 9, 1051870. [Google Scholar] [CrossRef]
- Choi, H.Y.; Kim, S.; Park, J.W.; Lee, N.S.; Hwang, S.Y.; Huh, J.Y.; Hong, H.C.; Yoo, H.J.; Baik, S.H.; Youn, B.S.; et al. Implication of circulating irisin levels with brown adipose tissue and sarcopenia in humans. J. Clin. Endocrinol. Metab. 2014, 99, 2778–2785. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.Y.; Jang, I.Y.; Jung, H.W.; Park, S.J.; Lee, J.Y.; Choi, E.; Lee, Y.S.; Lee, E.; Kim, B.J. Serum irisin level is independent of sarcopenia and related muscle parameters in older adults. Exp. Gerontol. 2022, 162, 111744. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I.; Khan, J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci. Rep. 2021, 11, 8632. [Google Scholar] [CrossRef]
- Lage, V.K.D.S.; de Paula, F.A.; Lima, L.P.; Santos, J.N.V.; Dos Santos, J.M.; Viegas, Â.A.; da Silva, G.P.; de Almeida, H.C.; Rodrigues, A.L.d.S.N.T.; Leopoldino, A.A.O.; et al. Plasma levels of myokines and inflammatory markers are related with functional and respiratory performance in older adults with COPD and sarcopenia. Exp. Gerontol. 2022, 164, 111834. [Google Scholar] [CrossRef]
- D’Amuri, A.; Sanz, J.M.; Lazzer, S.; Pišot, R.; Šimunič, B.; Biolo, G.; Zuliani, G.; Gasparini, M.; Narici, M.; Grassi, B.; et al. Irisin attenuates muscle impairment during bed rest through muscle-adipose tissue crosstalk. Biology 2022, 11, 999. [Google Scholar] [CrossRef]
- Guo, M.; Yao, J.; Li, J.; Zhang, J.; Wang, D.; Zuo, H.; Zhang, Y.; Xu, B.; Zhong, Y.; Shen, F.; et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J. Cachexia Sarcopenia Muscle 2023, 14, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Dozio, E.; Passeri, E.; Cardani, R.; Benedini, S.; Aresta, C.; Valaperta, R.; Corsi Romanelli, M.; Meola, G.; Sansone, V.; Corbetta, S. Circulating irisin is reduced in male patients with type 1 and type 2 myotonic dystrophies. Front. Endocrinol. 2017, 8, 320. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Yu, J.; Zhang, Y.; Li, Y.; Fu, R.; Sun, Y.; Zhao, K.; Xiao, Q. Irisin ameliorates D-galactose-induced skeletal muscle fibrosis via the PI3K/Akt pathway. Eur. J. Pharmacol. 2023, 939, 175476. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.M.; Sim, C.M.; Subramaniyam, N.; Ge, X.; Sharma, M.; Kambadur, R.; McFarlane, C. Irisin treatment improves healing of dystrophic skeletal muscle. Oncotarget 2017, 8, 98553–98566. [Google Scholar] [CrossRef]
- Demir, L.; Oflazoğlu, U. The relationship between sarcopenia and serum irisin and TNF-α levels in newly diagnosed cancer patients. Support. Care Cancer 2023, 31, 586. [Google Scholar] [CrossRef]
- Oflazoglu, U.; Caglar, S.; Yılmaz, H.E.; Önal, H.T.; Varol, U.; Salman, T.; Yildiz, Y.; Unal, S.; Guc, Z.G.; Kucukzeybek, Y.; et al. The relationship between sarcopenia detected in newly diagnosed colorectal cancer patients and FGF21, irisin and CRP levels. Eur. Geriatr. Med. 2022, 13, 795–803. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, S.A.; Nam, B.Y.; Park, S.; Lee, S.H.; Ryu, H.J.; Kwon, Y.E.; Kim, Y.L.; Park, K.S.; Oh, H.J.; et al. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis 2015, 242, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lin, S.; Guan, J.; Wu, X.; Ding, M.; Shen, S. Prediction of the sarcopenia in peritoneal dialysis using simple clinical information: A machine learning-based model. Semin. Dial. 2023, 36, 390–398. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.; Primo, D.; Izaola, O.; Gómez, J.J.L. Role of irisin and myostatin on sarcopenia in malnourished patients diagnosed with GLIM criteria. Nutrition 2024, 120, 112348. [Google Scholar] [CrossRef]
- Oguz, A.; Sahin, M.; Tuzun, D.; Kurutas, E.B.; Ulgen, C.; Bozkus, O.; Gul, K. Irisin is a predictor of sarcopenic obesity in type 2 diabetes mellitus: A cross-sectional study. Medicine 2021, 100, e26529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, X.; Yuan, C.; Li, R.; Ma, Y.; Tang, X. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: A cross-sectional study. Sci. Rep. 2020, 10, 16093. [Google Scholar] [CrossRef] [PubMed]
- Boga, S.; Yildirim, A.E.; Ucbilek, E.; Koksal, A.R.; Sisman, S.T.; Durak, I.; Sen, I.; Dogu, B.; Serin, E.; Ucbilek, A.B.; et al. The effect of sarcopenia and serum myokines on prognosis and survival in cirrhotic patients: A multicenter cross-sectional study. Eur. J. Gastroenterol. Hepatol. 2022, 34, 1261–1268. [Google Scholar] [CrossRef]
- Kukla, M.; Skladany, L.; Menżyk, T.; Derra, A.; Stygar, D.; Skonieczna, M.; Hudy, D.; Nabrdalik, K.; Gumprecht, J.; Marlicz, W.; et al. Irisin in liver cirrhosis. J. Clin. Med. 2020, 9, 3158. [Google Scholar] [CrossRef]
Population | Sample Size | Age (Mean ± SD) | Induction of Osteoporosis | Condition | Effects | Reference |
---|---|---|---|---|---|---|
Rats | 45 | / | OVX | Postmenopausal osteoporosis | Improvements in BMD, trabecular thickness, trabecular number Inhibition of osteoblast apoptosis Increased expression levels of RUNX2, OCN, Bcl-2, and Nrf2 Decreased expression levels of CASP3 and NLRP3 | [31] |
Mice | 36 | Eight weeks old | OVX | Postmenopausal osteoporosis | Improvements in cortical and trabecular BMD of the femur Higher levels of irisin protein Increased Fndc5 mRNA levels | [32] |
Mice | 37 | Ten weeks old | OVX | Postmenopausal osteoporosis | Increases in BMD, bone volume to tissue ratio, connection density, and number of trabeculae Increases in the number of osteoblasts and serum levels of OC Decreases in serum levels of TRAP and the number of osteocytes on the trabecular surface | [34] |
Rats | 40 | / | OVX | Postmenopausal osteoporosis | Improvements in serum levels of OCN, BAP, TRAP, calcium, and phosphorous Improvements in bone micro-architecture | [30] |
Women | 176 | 63.96 ± 5.98 (control group); 67.92 ± 8.14 (osteoporotic group) | / | Postmenopausal osteoporosis | Lower irisin levels compared to the control group | [35] |
Women | 125 | 65.7 ± 1.3 | / | Postmenopausal with low bone mass | Inverse correlation between irisin levels and osteoporotic fractures | [36] |
Women | 72 | 64.3 ± 6.1 | / | Postmenopausal osteoporosis | Inverse correlation between irisin and vertebral fractures | [37] |
Women and men | 80 | 66.93 ± 10.27 | / | Osteoporotic and osteopenic MHD patients | Lower irisin levels compared to the control Positive correlation with lumbar BMD | [38] |
Men | 67 | 63.96 ± 5.98 (control group); 66.20 ± 6.07 (osteopenic group); 67.92 ± 8.14 (osteoporotic group) | / | Osteoporosis and osteopenia | Lower irisin levels compared to the control Positive correlation with BMD | [39] |
Women | 320 | 76 (control group); 78 (study group) | / | Minimal trauma hip fractures | Lower irisin levels compared to the control Positive correlation with BMD | [40] |
Women and men | 1018 | >40 | / | Osteoporosis | Lower irisin levels in postmenopausal women and with a history of fractures Positive correlation with BMD | [41] |
Women | 175 | 58.41±3.51 (control group); 59.73 ± 3.44 (study group) | / | Postmenopausal osteoporosis | Lower irisin levels compared to the control Positive correlation with BMD Negative correlation with T-score | [42] |
Women | 430 | 68.7 ± 11.7 | / | Hip fractures | Lower irisin levels compared to the control Positive correlation with BMD | [43] |
Women and men | 62 | 68.71 ± 12.31 | / | Osteoporosis or osteopenia | Lower irisin levels compared to the control Positive correlation with BMD Positive correlation between Fndc5 expression in muscle biopsies and OCN mRNA Increased p21 expression level | [44] |
Population | Sample Size | Age (Mean ± SD) | Induction of Sarcopenia | Condition | Effects | Reference |
---|---|---|---|---|---|---|
Women | 153 | 72.20 ± 5.96 | / | Postmenopause | Lower irisin levels compared to the control 1 ng/mL of irisin carries a 95% risk of developing sarcopenia | [45] |
Women and men | 99 | 74.8 ± 7.4 (sarcopenic group); 72.0 ± 8.4 (non-sarcopenic group) | / | Sarcopenia | Lower irisin levels compared to the control Association between low irisin levels and increased risk of developing sarcopenia | [46] |
Women | 715 | 18–90 | / | Sarcopenia | Lower irisin levels compared to the control | [47] |
Women | 131 | 65.9 ± 5.5 | / | Sarcopenia | Lower irisin levels compared to the control | [48] |
Rats | 20 | 3 months old | ORX | Androgen deficiency | Lower irisin levels compared to the control | [49] |
Women and men | 422 | 66.1-74.1 | / | Sarcopenia | A positive relationship between 25(OH)D and 25(OH)D3 levels and irisin levels in sarcopenic women | [50] |
Women and men | 80; 401 | 42 (BAT negative); 40 (BAT positive); 61 (sarcopenic group); 52 (non-sarcopenic group) | / | Sarcopenia and BAT | No difference in irisin levels | [51] |
Women and men | 143 | 71.83 ± 5.56 (sarcopenic group); 69.01 ± 6.17 (non-sarcopenic group) | / | Sarcopenia | No difference in irisin levels | [52] |
Men | 258 | 62.6 ± 5.5 (control group); 64.3 ± 3.7 (COPD group); 66.9 ± 5.4 (CHF group) | / | Sarcopenia and CHF or COPD | Lower irisin levels compared to the control | [53] |
Women and men | 86 | 72.7 (non-COPD); 73.9 (COPD group) | / | Sarcopenia and COPD | Lower irisin and BDNF levels Higher levels of soluble TNF-α receptors | [54] |
Men | 23 | 23.3 ± 2.8; 59.3 ± 3.0 | / | / | Increased irisin levels after bed rest Reduced muscle damage | [55] |
Mice | / | 14 months old; 22 months old | Ageing | Sarcopenia | Improvement of sarcopenia Decreased mRNA levels of atrophic and inflammatory genes Decreased levels of MAFbx and MURF-1 proteins | [56] |
Men | 61 | 45.6 ± 14.5 (control group); 44.7 ± 11.5 (DM1 group); 56.7 ± 9.3 (DM2 group) | / | DM1 and DM2 | Lower irisin levels compared to the control | [57] |
Skeletal muscle fibroblasts | / | / | D-galactose | Senescence, fibrosis, and redox imbalance | Inhibition of senescence and skeletal muscle fibrosis Improvement of the redox balance | [58] |
Mice | / | 6 months old | / | Duchenne muscular dystrophy | Decreased fibrosis in anterior tibial muscle and necrotic muscle fibers Increased grip strength of the forelimbs and weight of the anterior tibial skeletal muscles, soles, and gastrocnemius | [59] |
Women and men | 141 | 59.84 ± 11 (non-sarcopenic group); 61.46 ± 9.7 (sarcopenic group) | / | Sarcopenia and cancer | Lower irisin levels compared to the control Higher levels of TNF-α | [60] |
Women and men | 50 | 60 | / | Sarcopenia and cancer | Negative relationship between sarcopenia and irisin | [61] |
Women and men | 137 | 54.1 ± 11.5 (control group); 54.1 ± 11.6 (PD group) | / | Sarcopenia and CD in PDP | Lower irisin levels compared to the control | [62] |
Women and men | 105 | 53 ± 8.59 (non-sarcopenic group); 57 ± 9.04 (sarcopenic group) | / | Sarcopenia and PDP | The model could predict sarcopenia | [63] |
Women and men | 108 | 67.4±3.4 | / | Sarcopenia and DMR | Lower irisin levels compared to the control No difference in myostatin levels | [64] |
Women and men | 90 | 55.01 ± 8.81 (non-sarcopenic group); 54.17 ± 7.68 (sarcopenic group) | / | Sarcopenia and T2DM | Lower irisin levels compared to the control No difference in myostatin levels | [65] |
Women and men | 187 | 58 | / | Sarcopenia and liver cirrhosis | Lower irisin levels compared to the control | [66] |
Women and men | 145 | 53.4 ± 8.5 (control group); 55.3 ± 10.4 (cirrhosis group) | / | Sarcopenia and liver disease | Lower irisin levels compared to the control Higher levels of myostatin compared to the control | [67] |
Women and men | 88 | 57.9 | / | Sarcopenia and dACLD | No difference in levels of irisin | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsetti, I.; Palmini, G.; Donati, S.; Aurilia, C.; Iantomasi, T.; Brandi, M.L. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines 2024, 12, 928. https://doi.org/10.3390/biomedicines12040928
Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi ML. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines. 2024; 12(4):928. https://doi.org/10.3390/biomedicines12040928
Chicago/Turabian StyleFalsetti, Irene, Gaia Palmini, Simone Donati, Cinzia Aurilia, Teresa Iantomasi, and Maria Luisa Brandi. 2024. "Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia" Biomedicines 12, no. 4: 928. https://doi.org/10.3390/biomedicines12040928
APA StyleFalsetti, I., Palmini, G., Donati, S., Aurilia, C., Iantomasi, T., & Brandi, M. L. (2024). Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines, 12(4), 928. https://doi.org/10.3390/biomedicines12040928