The Impact of Disease Duration on Microcirculatory Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Evaluation of Microcirculation
2.2.1. Nailfold Capillaroscopy
2.2.2. The Transcutaneous Oxygen Pressure
- -
- TcPO2—base–the mean value of TcPO2 within 60 s before T_base;
- -
- TcPO2—zero–the mean value of TcPO2 within 60 s before the T_zero;
- -
- Slope—the ratio of TcPO2_diff and TTR:
- TcPO2—diff–the difference between TcPO2_base and TcPO2_zero;
- TTR—time to reach baseline value after occlusion (T_recovery-T_zero).
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Capillaroscopic Changes
4.1.1. Diabetes Duration
4.1.2. Subject Age and Gender
4.1.3. Metabolic Control
4.1.4. Cutaneous Microcirculation and Microangiopathies
4.2. Transcutaneous Oxygen Pressure Changes
4.3. Post Occlusive Reactive Hyperemia
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neubauer-Geryk, J.; Hoffmann, M.; Wielicka, M.; Piec, K.; Kozera, G.; Brzeziński, M.; Bieniaszewski, L. Current Methods for the Assessment of Skin Microcirculation: Part 1. Postep. Dermatol. Alergol. 2019, 36, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Dima, A.; Berza, I.; Popescu, D.N.; Parvu, M.I. Nailfold Capillaroscopy in Systemic Diseases: Short Overview for Internal Medicine. Rom. J. Intern. Med. 2021, 59, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, S.; Krishnamoorthi, N.; Periyasamy, N.; Farazullah, M.; Raj, K.; Mahadevan, S. Analysis of Microvascular Pattern in Diabetes Mellitus Condition Using the Nailfold Capillaroscopy Images. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Cisło, M.; Wąsikowa, R.; Iwanicka, Z.; Wojakiewicz, R.; Sajewicz, E. Results of Capillaroscopy of Nail Plate in Children with Diabetes. Pediatr. Pol. 1984, 59, 623–630. [Google Scholar] [PubMed]
- Kuryliszyn-Moskal, A.; Zarzycki, W.; Dubicki, A.; Zonnenberg, A.; Górska, M. A Study on Microvascular Abnormalities in Capillaroscopy in Patients with Type 1 Diabetes Mellitus. Diabetol. Doświadczalna Klin. 2006, 6, 98–103. [Google Scholar]
- Kuryliszyn-Moskal, A.; Ciołkiewicz, M.; Dubicki, A. Morphological Alterations in Nailfold Capillaroscopy and the Clinical Picture of Vascular Involvement in Autoimmune Diseases: Systemic Lupus Erythematosus and Type 1 Diabetes. Ann. Acad. Med. Stetin. 2010, 56 (Suppl. S1), 73–79. [Google Scholar] [PubMed]
- Shah, R.; Petch, J.; Nelson, W.; Roth, K.; Noseworthy, M.D.; Ghassemi, M.; Gerstein, H.C. Nailfold Capillaroscopy and Deep Learning in Diabetes. J. Diabetes 2023, 15, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Trapp, R.G.; Soler, N.G.; Spencer-Green, G. Nailfold Capillaroscopy in Type I Diabetics with Vasculopathy and Limited Joint Mobility. J. Rheumatol. 1986, 13, 917–920. [Google Scholar]
- Gallucci, F.; Russo, R.; Buono, R.; Acampora, R.; Madrid, E.; Uomo, G. Indications and Results of Videocapillaroscopy in Clinical Practice. Adv. Med. Sci. 2008, 53, 149–157. [Google Scholar] [CrossRef]
- Kuryliszyn-Moskal, A.; Zarzycki, W.; Dubicki, A.; Moskal, D.; Kosztyła-Hojna, B.; Hryniewicz, A. Clinical Usefulness of Videocapillaroscopy and Selected Endothelial Cell Activation Markers in People with Type 1 Diabetes Mellitus Complicated by Microangiopathy. Adv. Med. Sci. 2017, 62, 368–373. [Google Scholar] [CrossRef]
- Piotto, D.P.; Sekiyama, J.; Kayser, C.; Yamada, M.; Len, C.A.; Terreri, M.T. Nailfold Videocapillaroscopy in Healthy Children and Adolescents: Description of Normal Patterns. Clin. Exp. Rheumatol. 2016, 34, 193–199. [Google Scholar] [PubMed]
- Sorelli, M.; Francia, P.; Bocchi, L.; De Bellis, A.; Anichini, R. Assessment of Cutaneous Microcirculation by Laser Doppler Flowmetry in Type 1 Diabetes. Microvasc. Res. 2019, 124, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, D.; Dupon, P.P.; Schaap, L.A.; Draijer, R. The Association between Diabetes and Dermal Microvascular Dysfunction Non-Invasively Assessed by Laser Doppler with Local Thermal Hyperemia: A Systematic Review with Meta-Analysis. Cardiovasc. Diabetol. 2017, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Milman, B.; Rosen, B.; Zimlichman, R. Quantitation of Thyroid Hormone Effect on Skin Perfusion by Laser Doppler Flowmetry. J. Clin. Endocrinol. Metab. 1993, 76, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, U.; Umapathy, S.; Krishnan, P.T.; Janardanan, K. Human Tongue Thermography Could Be a Prognostic Tool for Prescreening the Type II Diabetes Mellitus. Evid.-Based Complement. Altern. Med. 2020, 2020, 3186208. [Google Scholar] [CrossRef] [PubMed]
- Wziątek-Kuczmik, D.; Świątkowski, A.; Cholewka, A.; Mrowiec, A.; Niedzielska, I.; Stanek, A. Thermal Imaging of the Tongue Surface as a Predictive Method in the Diagnosis of Type 2 Diabetes Mellitus. Sensors 2024, 24, 2447. [Google Scholar] [CrossRef] [PubMed]
- Leenstra, B.; Wijnand, J.; Verhoeven, B.; Koning, O.; Teraa, M.; Verhaar, M.C.; de Borst, G.J. Applicability of Transcutaneous Oxygen Tension Measurement in the Assessment of Chronic Limb-Threatening Ischemia. Angiology 2020, 71, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.; Claremont, D. Noninvasive Measurement Techniques for Monitoring of Microvascular Function in the Diabetic Foot. Int. J. Low. Extrem. Wounds 2002, 1, 161–169. [Google Scholar] [CrossRef]
- Deng, W.; Dong, X.; Zhang, Y.; Jiang, Y.; Lu, D.; Wu, Q.; Liang, Z.; Yang, G.; Chen, B. Transcutaneous Oxygen Pressure (TcPO2): A Novel Diagnostic Tool for Peripheral Neuropathy in Type 2 Diabetes Patients. Diabetes Res. Clin. Pract. 2014, 105, 336–343. [Google Scholar] [CrossRef]
- Fife, C.E.; Buyukcakir, C.; Otto, G.H.; Sheffield, P.J.; Warriner, R.A.; Love, T.L.; Mader, J. The Predictive Value of Transcutaneous Oxygen Tension Measurement in Diabetic Lower Extremity Ulcers Treated with Hyperbaric Oxygen Therapy: A Retrospective Analysis of 1144 Patients. Wound Repair Regen. 2002, 10, 198–207. [Google Scholar] [CrossRef]
- Fife, C.E.; Smart, D.R.; Sheffield, P.J.; Hopf, H.W.; Hawkins, G.; Clarke, D. Transcutaneous Oximetry in Clinical Practice: Consensus Statements from an Expert Panel Based on Evidence. Undersea Hyperb. Med. 2009, 36, 43–53. [Google Scholar]
- Breuer, H.-W.; Breuer, J.; Berger, M. Transcutaneous Oxygen Pressure Measurements in Type I Diabetic Patients for Early Detection of Functional Diabetic Microangiopathy. Eur. J. Clin. Investig. 1988, 18, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Neubauer-Geryk, J.; Wielicka, M.; Kozera, G.M.; Brandt-Varma, A.; Wołoszyn-Durkiewicz, A.; Myśliwiec, M.; Bieniaszewski, L. Skin Oxygenation Impairment Is Associated with Increased Total Cholesterol Level in Children with Short-Lasting Type 1 Diabetes Mellitus. Adv. Dermatol. Allergol. 2021, 38, 615–621. [Google Scholar] [CrossRef]
- Chebbi, R. Dynamics of Blood Flow: Modeling of the Fåhræus–Lindqvist Effect. J. Biol. Phys. 2015, 41, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Werner, J. Physiology of Microcirculation. In Microcirculation and Cardiovascular Disease; Struijker-Boudier, H.A.J., Ambrosio, G., Eds.; Lippincott Williams&Wilkins: London, UK, 2000; pp. 15–30. [Google Scholar]
- Wang, P.; Konja, D.; Singh, S.; Zhang, B.; Wang, Y. Endothelial Senescence: From Macro- to Micro-Vasculature and Its Implications on Cardiovascular Health. Int. J. Mol. Sci. 2024, 25, 1978. [Google Scholar] [CrossRef]
- IJzerman, R.G.; De Jongh, R.T.; Beijk, M.A.M.; Van Weissenbruch, M.M.; Delemarre-van De Waal, H.A.; Serné, E.H.; Stehouwer, C.D.A. Individuals at Increased Coronary Heart Disease Risk Are Characterized by an Impaired Microvascular Function in Skin. Eur. J. Clin. Investig. 2003, 33, 536–542. [Google Scholar] [CrossRef]
- Mengozzi, A.; de Ciuceis, C.; Dell’oro, R.; Georgiopoulos, G.; Lazaridis, A.; Nosalski, R.; Pavlidis, G.; Tual-Chalot, S.; Agabiti-Rosei, C.; Anyfanti, P.; et al. The Importance of Microvascular Inflammation in Ageing and Age-Related Diseases: A Position Paper from the ESH Working Group on Small Arteries, Section of Microvascular Inflammation. J. Hypertens. 2023, 41, 1521–1543. [Google Scholar] [CrossRef] [PubMed]
- Donaghue, K.C.; Chiarelli, F.; Trotta, D.; Allgrove, J.; Dahl-Jorgensen, K. Microvascular and Macrovascular Complications Associated with Diabetes in Children and Adolescents. Pediatr. Diabetes 2009, 10, 195–203. [Google Scholar] [CrossRef]
- Goligorsky, M.S. Glomerular Microcirculation: Implications for Diabetes, Preeclampsia, and Kidney Injury. Acta Physiol. 2023, 239, e14048. [Google Scholar] [CrossRef]
- De Backer, D.; Donadello, K.; Favory, R. Link between Coagulation Abnormalities and Microcirculatory Dysfunction in Critically Ill Patients. Curr. Opin. Anaesthesiol. 2009, 22, 150–154. [Google Scholar] [CrossRef]
- Liberale, L.; Montecucco, F.; Schwarz, L.; Lüscher, T.F.; Camici, G.G. Inflammation and Cardiovascular Diseases: Lessons from Seminal Clinical Trials. Cardiovasc. Res. 2021, 117, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cong, H.; Lu, Y.; Chen, X.; Liu, Y. Prediction of No-Reflow Phenomenon in Patients Treated with Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. Medicine 2020, 99, e20152. [Google Scholar] [CrossRef] [PubMed]
- Rizzoni, D.; Porteri, E.; Boari, G.E.M.; De Ciuceis, C.; Sleiman, I.; Muiesan, M.L.; Castellano, M.; Miclini, M.; Agabiti-Rosei, E. Prognostic Significance of Small-Artery Structure in Hypertension. Circulation 2003, 108, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Lapi, D.; Di Maro, M.; Serao, N.; Chiurazzi, M.; Varanini, M.; Sabatino, L.; Scuri, R.; Colantuoni, A.; Guida, B. Geometric Features of the Pial Arteriolar Networks in Spontaneous Hypertensive Rats: A Crucial Aspect Underlying the Blood Flow Regulation. Front. Physiol. 2021, 12, 664683. [Google Scholar] [CrossRef] [PubMed]
- Guven, G.; Hilty, M.P.; Ince, C. Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purif. 2020, 49, 143–150. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D. Novelties in the Evaluation of Microcirculation in Septic Shock. J. Intensive Med. 2023, 3, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Seal, J.B.; Gewertz, B.L. Vascular Dysfunction in Ischemia-Reperfusion Injury. Ann. Vasc. Surg. 2005, 19, 572–584. [Google Scholar] [CrossRef]
- Minson, C.T. Thermal Provocation to Evaluate Microvascular Reactivity in Human Skin. J. Appl. Physiol. 2010, 109, 1239–1246. [Google Scholar] [CrossRef]
- Moens, A.L.; Goovaerts, I.; Claeys, M.J.; Vrints, C.J. Flow-Mediated Vasodilation: A Diagnostic Instrument, or an Experimental Tool? Chest 2005, 127, 2254–2263. [Google Scholar] [CrossRef]
- Serné, E.H.; Gans, R.O.B.; Ter Maaten, J.C.; Ter Wee, P.M.; Donker, A.J.M.; Stehouwer, C.D.A. Capillary Recruitment Is Impaired in Essential Hypertension and Relates to Insulin’s Metabolic and Vascular Actions. Cardiovasc. Res. 2001, 49, 161–168. [Google Scholar] [CrossRef]
- Serné, E.H.; Stehouwer, C.D.A.; ter Maaten, J.C.; ter Wee, P.M.; Rauwerda, J.A.; Donker, A.J.M.; Gans, R.O.B. Microvascular Function Relates to Insulin Sensitivity and Blood Pressure in Normal Subjects. Circulation 1999, 99, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Mahé, G.; Humeau-Heurtier, A.; Durand, S.; Leftheriotis, G.; Abraham, P. Assessment of Skin Microvascular Function and Dysfunction with Laser Speckle Contrast Imaging. Circ. Cardiovasc. Imaging 2012, 5, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cracowski, J.; Roustit, M. Current Methods to Assess Human Cutaneous Blood Flow: An Updated Focus on Laser-Based-Techniques. Microcirculation 2016, 23, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.J.; Wilkins, B.W.; Holowatz, L.A.; Minson, C.T. Nitric Oxide Synthase Inhibition Does Not Alter the Reactive Hyperemic Response in the Cutaneous Circulation. J. Appl. Physiol. 2003, 95, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; McGarr, G.W.; Ichinose, M.; Nishiyasu, T.; Kenny, G.P. Tetraethylammonium, Glibenclamide, and 4-aminopyridine Modulate Post-occlusive Reactive Hyperemia in Non-glabrous Human Skin with No Roles of of NOS and COX. Microcirculation 2020, 27, e12586. [Google Scholar] [CrossRef] [PubMed]
- Antonios, T.F.; Rattray, F.E.; Singer, D.R.; Markandu, N.D.; Mortimer, P.S.; MacGregor, G.A. Maximization of Skin Capillaries during Intravital Video-Microscopy in Essential Hypertension: Comparison between Venous Congestion, Reactive Hyperaemia and Core Heat Load Tests. Clin. Sci. 1999, 97, 523–528. [Google Scholar] [CrossRef]
- Libman, I.; Haynes, A.; Lyons, S.; Pradeep, P.; Rwagasor, E.; Tung, J.Y.; Jefferies, C.A.; Oram, R.A.; Dabelea, D.; Craig, M.E. Clinical Practice Consensus Guidelines 2022: Definition, Epidemiology, and Classification of Diabetes in Children and Adolescents. Pediatr. Diabetes 2022, 23, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; et al. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Dyck, P.J. Detection, Characterization, and Staging of Polyneuropathy: Assessed in Diabetics. Muscle Nerve 1988, 11, 21–32. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 6. Glycemic Targets: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S97–S110. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Kozera, G.M.; Wolnik, B.; Szczyrba, S.; Nyka, W.M.; Bieniaszewski, L. Decreased Reactivity of Skin Microcirculation in Response to L-Arginine in Later-Onset Type 1 Diabetes. Diabetes Care 2013, 36, 950–956. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Wielicka, M.; Myśliwiec, M.; Zorena, K.; Bieniaszewski, L. The Relationship between TNF-a, IL-35, VEGF and Cutaneous Microvascular Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes. Biomedicines 2023, 11, 2857. [Google Scholar] [CrossRef] [PubMed]
- Lagerkvist, A.; Sten, G.; Redfors, S.; Holmgren, D. Repeated Blood Gas Monitoring in Healthy Children and Adolescents by the Transcutaneous Route. Pediatr. Pulmonol. 2003, 35, 274–279. [Google Scholar] [CrossRef]
- Kaminska-Winciorek, G.; Deja, G.; Polańska, J.; Jarosz-Chobot, P. Diabetic Microangiopathy in Capillaroscopic Examination of Juveniles with Diabetes Type 1. Postepy Hig. Med. Dosw. 2012, 30, 51–59. [Google Scholar]
- Kuryliszyn-Moskal, A.; Dubicki, A.; Zarzycki, W.; Zonnenberg, A.; Górska, M. Microvascular Abnormalities in Capillaroscopy Correlate with Higher Serum IL-18 and SE-Selectin Levels in Patients with Type 1 Diabetes Complicated by Microangiopathy. Folia Histochem. Cytobiol. 2011, 49, 104–110. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.A.; Daifallah, S.M.; Salah, N.Y.; Saber, A.S. Nail Fold Microangiopathy in Adolescents with Type 1 Diabetes: Relation to Diabetic Vascular Complications. Microcirculation 2022, 29, e12771. [Google Scholar] [CrossRef]
- Tibiriçá, E.; Rodrigues, E.; Cobas, R.A.; Gomes, M.B. Endothelial Function in Patients with Type 1 Diabetes Evaluated by Skin Capillary Recruitment. Microvasc. Res. 2007, 73, 107–112. [Google Scholar] [CrossRef]
- Tooke, J.E.; Lins, P.E.; Ostergren, J.; Fagrell, B. Skin Microvascular Autoregulatory Responses in Type I Diabetes: The Influence of Duration and Control. Int. J. Microcirc. Clin. Exp. 1985, 4, 249–256. [Google Scholar] [PubMed]
- Tibiriça, E.; Rodrigues, E.; Cobas, R.; Gomes, M.B. Impairment of Skin Capillary Recruitment Precedes Chronic Complications in Patients with Type 1 Diabetes. Rev. Diabet. Stud. 2007, 4, 85–88. [Google Scholar] [CrossRef]
- Hern, S.; Mortimer, P.S. Visualization of Dermal Blood Vessels—Capillaroscopy. Clin. Exp. Dermatol. 1999, 24, 473–478. [Google Scholar] [CrossRef]
- Kelly, R.; Pearse, R.; Bull, R.; Leveque, J.; de Rigal, J.; Mortimer, P. The Effects of Aging on the Cutaneous Microvasculature. J. Am. Acad. Dermatol. 1995, 33, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Hosking, S.P.M.; Bhatia, R.; Crock, P.A.; Wright, I.; Squance, M.L.; Reeves, G. Non-Invasive Detection of Microvascular Changes in a Paediatric and Adolescent Population with Type 1 Diabetes: A Pilot Cross-Sectional Study. BMC Endocr. Disord. 2013, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Jörneskog, G.; Brismar, K.; Fagrell, B. Pronounced Skin Capillary Ischemia in the Feet of Diabetic Patients with Bad Metabolic Control. Diabetologia 1998, 41, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Golster, H.; Hyllienmark, L.; Ledin, T.; Ludvigsson, J.; Sjöberg, F. Impaired Microvascular Function Related to Poor Metabolic Control in Young Patients with Diabetes. Clin. Physiol. Funct. Imaging 2005, 25, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Bogusz-Górna, K.; Polańska, A.; Dańczak-Pazdrowska, A.; Żaba, R.; Sumińska, M.; Fichna, P.; Kędzia, A. Non-Invasive Detection of Early Microvascular Changes in Juveniles with Type 1 Diabetes. Cardiovasc. Diabetol. 2023, 22, 285. [Google Scholar] [CrossRef]
- Khan, F.; Elhadd, T.A.; Greene, S.A.; Belch, J.J.F. Impaired Skin Microvascular Function in Children, Adolescents, and Young Adults with Type 1 Diabetes. Diabetes Care 2000, 23, 215–220. [Google Scholar] [CrossRef]
- Gasser, P.; Berger, W. Nailfold Videomicroscopy and Local Cold Test in Type I Diabetics. Angiology 1992, 43, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, S.; Bergen, K.; Azizi, L.; Jörneskog, G. Skin Microvascular Reactivity Correlates to Clinical Microangiopathy in Type 1 Diabetes: A Pilot Study. Diabetes Vasc. Dis. Res. 2020, 17, 147916412092830. [Google Scholar] [CrossRef]
- Forst, T.; Pfutzner, A.; Kunt, T.; Pohlmann, T.; Schenk, U.; Bauersachs, R.; Kustner, E.; Beyer, J. Skin Microcirculation in Patients with Type I Diabetes with and without Neuropathy after Neurovascular Stimulation. Clin. Sci. 1998, 94, 255–261. [Google Scholar] [CrossRef]
- Chojnowski, M.M.; Felis-Giemza, A. Olesińska Capillaroscopy—A Role in Modern Rheumatology. Reumatologia 2016, 54, 67–72. [Google Scholar] [CrossRef]
- Pazos-Moura, C.C.; Moura, E.G.; Bouskela, E.; Torres-Filho, I.P.; Breitenbach, M.M. Nailfold Capillaroscopy in Diabetes Mellitus: Morphological Abnormalities and Relationship with Microangiopathy. Braz. J. Med. Biol. Res. 1987, 20, 777–780. [Google Scholar] [PubMed]
- Iino, K.; Yoshinari, M.; Doi, Y.; Shinohara, N.; Iwase, M.; Fujishima, M. Reduced Tissue Oxygenation and Its Reversibility by Glycemic Control in Diabetic Patients. Diabetes Res. Clin. Pract. 1997, 34, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Fagher, K.; Katzman, P.; Löndahl, M. Transcutaneous Oxygen Pressure as a Predictor for Short-Term Survival in Patients with Type 2 Diabetes and Foot Ulcers: A Comparison with Ankle–Brachial Index and Toe Blood Pressure. Acta Diabetol. 2018, 55, 781–788. [Google Scholar] [CrossRef]
- Zimny, S.; Dessel, F.; Ehren, M.; Pfohl, M.; Schatz, H. Early Detection of Microcirculatory Impairment in Diabetic Patients With Foot at Risk. Diabetes Care 2001, 24, 1810–1814. [Google Scholar] [CrossRef] [PubMed]
- de Meijer, V.E.; van’t Sant, H.P.; Spronk, S.; Kusters, F.J.; den Hoed, P.T. Reference Value of Transcutaneous Oxygen Measurement in Diabetic Patients Compared with Nondiabetic Patients. J. Vasc. Surg. 2008, 48, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Ewald, U.; Tuvemo, T.; Rooth, G. Early Reduction of Vascular Reactivity in Diabetic Children Detected by Transcutaneous Oxygen Electrode. Lancet 1981, 317, 1287–1288. [Google Scholar] [CrossRef] [PubMed]
- Abendroth, D.; Schmand, J.; Landgraf, R.; Illner, W.-D.; Land, W. Diabetic Microangiopathy in Type 1 (Insulin-Dependent) Diabetic Patients after Successful Pancreatic and Kidney or Solitary Kidney Transplantation. Diabetologia 1991, 34, S131–S134. [Google Scholar] [CrossRef] [PubMed]
- Ewald, U.; Tuvemo, T. Reduced Vascular Reactivity in Diabetic Children and Its Relation to Diabetic Control. Acta Pædiatrica 1985, 74, 77–84. [Google Scholar] [CrossRef]
- Railton, R.; Newman, P.; Hislop, J.; Harrower, A.D.B. Reduced Transcutaneous Oxygen Tension and Impaired Vascular Response in Type 1 (Insulin-Dependent) Diabetes. Diabetologia 1983, 25, 340–342. [Google Scholar] [CrossRef]
- Jorgensen, R.G.; Russo, L.; Mattioli, L.; Moore, W.V. Early Detection of Vascular Dysfunction in Type I Diabetes. Diabetes 1988, 37, 292–296. [Google Scholar] [CrossRef]
- Orenstein, A.; Mazkereth, R.; Tsur, H. Mapping of the Human Body Skin with the Transcutaneous Oxygen Pressure Method. Ann. Plast. Surg. 1988, 20, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.M.; Contreiras Pinto, P.; Leal, A. Transcutaneous Flow Related Variables Measured in Vivo: The Effects of Gender. BMC Dermatol. 2001, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Jörneskog, G.; Brismar, K.; Fagrell, B. Skin Capillary Circulation Severely Impaired in Toes of Patients with IDDM, with and without Late Diabetic Complications. Diabetologia 1995, 38, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Neubauer-Geryk, J.; Wielicka, M.; Kowaleczko, M.; Myśliwiec, M.; Bieniaszewski, L. The Impact of Autoimmune Thyroiditis on Skin Microcirculation in Children with Non-Complicated Type 1 Diabetes Mellitus. Microvasc. Res. 2019, 123, 68–73. [Google Scholar] [CrossRef]
- Pazos-Moura, C.C.; Moura, E.G.; Breitenbach, M.M.D.; Bouskela, E. Nailfold Capillaroscopy in Hypothyroidism and Hyperthyroidism: Blood Flow Velocity during Rest and Postocclusive Reactive Hyperemia. Angiology 1998, 49, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Bajuk, N.B.; Zaletel, K.; Gaberšček, S.; Lenasi, H. Hyperthyroidism Induced by Graves’ Disease Reversibly Affects Skin Microvascular Reactivity. Clin. Hemorheol. Microcirc. 2016, 61, 459–470. [Google Scholar] [CrossRef]
- Mihor, A.; Gergar, M.; Gaberscek, S.; Lenasi, H. Skin Microvascular Reactivity in Patients with Hypothyroidism. Clin. Hemorheol. Microcirc. 2016, 64, 105–114. [Google Scholar] [CrossRef]
Characteristics | Control Group, C N = 28 | Diabetic Patients, D N = 67 | p for between Group Comparison | Diabetic Patients Subgroups According to the Median T1D Duration | p | Post Hoc Comparison | |||
---|---|---|---|---|---|---|---|---|---|
<4.65 y. | ≥4.65 y. | C vs. D1 | C vs. D2 | D1 vs. D2 | |||||
D1: (N = 33) | D2: (N = 34) | ||||||||
Males n (%) | 54% (15) | 29 (43) | 0.36 | 48/52 | 38/62 | 0.46 | |||
BMI [kg/m2] | 19.3 (14.4–24.7) | 20.2 (14.5–29.7) | 0.43 | 20 (15–29.7) | 20.8 (14.5–27.4) | 0.13 | |||
Age, [years] | 14.8 (11.3–17.7) 14.5 ± 2 | 14.6 (10.9–18) 14.9 ±1.9 | 0.49 | 14 (10.9–17.8) 14.1 ± 1.7 | 16.1 (11.7–18) 15.7 ± 1.9 | 0.003 | 1 | 0.07 | 0.003 |
Onset of diabetes [age] | 10.3 (2.1–15.0) | na | 11.6 (6.9–15) | 8.5 (2.0–12.7) | <0.001 | <0.001 | |||
T1D duration [years] | 4.65 (0.6–14.5) | na | 2.38 (0.55–4.65) | 7.3 (4.62–14.5) | <0.001 | <0.001 | |||
Insulin dose units/24 h | 41.5 (10.3–100) | na | 36 (10–57) | 47.5 (30–100) | 0.63 | ||||
Time of pump treatment in ratio to T1D duration [%] | 35 (0–97) | na | 0 (0–93) | 36 (0–97) | 0.13 | ||||
HbA1c [%] | 5.3 (4.8–5.6) | 7.6 (5.3–13.6) | 7.1 (5.3–11) | 7.6 (6.2–13.6) | <0.001 | <0.001 | <0.001 | 0.86 | |
Episodes of mild hypoglycemia [N/last Month] | 6 (0–30) | na | 4 (0–30) | 10 (0–20) | 0.02 | 0.02 | |||
Episodes of severe hypoglycemia [N/last year] | 0 (0–3) | na | 0 (0–3) | 0 (0–2) | 0.77 | ||||
Systolic blood pressure [mmHg] | 109 ± 9 | 106 ± 11 | 0.21 | 104 ± 12 | 108 ± 10 | 0.1 | |||
Diastolic blood pressure [mmHg] | 62 ± 5 | 60 ± 6 | 0.12 | 59 ± 6 | 60 ± 6 | 0.25 | |||
Heart rate [beats/min.] | 79 ± 12 | 80 ± 10 | 0.59 | 79 ± 10 | 80 ± 10 | 0.82 |
Characteristics | Control Group, C N = 28 | Diabetic Patients, D N = 67 | p for between Groups Comparison | Diabetic Patients Subgroups According to the Median T1D Duration | p | Post Hoc Comparison | |||
---|---|---|---|---|---|---|---|---|---|
<4.65 y | ≥4.65 y | C vs. D1 | C vs. D2 | D1 vs. D2 | |||||
D1: (N = 33) | D2: (N = 34) | ||||||||
Total cholesterol [mg/dL] | 163 (120–218) | 178 (119–288) | 0.004 | 169 (119–228) | 183 (125–288) | 0.007 | 0.23 | 0.005 | 0.72 |
Cholesterol LDL [mg/dL] | 95 (64–127) | 102 (61–188) | 0.11 | 90.5 (61–131) | 108 (70–188) | 0.008 | 1 | 0.03 | 0.03 |
Cholesterol HDL [mg/dL] | 51 (41–82) | 55 (33–120) | 0.21 | 58.5 (33–120) | 51 (35–95) | 0.07 | |||
Triglycerides [mg/dL] | 54 (36–117) | 70 (37–294) | 0.003 | 61.5 (37–153) | 76 (46–294) | <0.001 | 0.8 | <0.001 | 0.04 |
Serum creatinine [mg/dL] | 0.64 (0.52–0.94) | 0.69 (0.46–0.95) | 0.3 | 0.7 (0.5–0.9) | 0.7 (0.5–1) | 0.34 | |||
Albuminuria [mg/24 h] | Not tested | 6.4 (2.5–27) | n.a. | 7 (2.5–24.1) | 5 (2.5–27) | n.a | n.a. | n.a. | 0.36 |
TSH [mIU/L] | 1.2 (0.58–2.37) | 1.7 (0.6–4) | 0.001 | 1.6 (0.7–3.6) | 1.8 (0.6–4) | 0.006 | 0.04 | 0.008 | 1 |
fT4 [pmol/L] | 13.6 (11.4–16.8) | 12.4 (9–15) | 0.001 | 12.5 (10–14.7) | 12.2 (9–15) | 0.004 | 0.03 | 0.006 | 1 |
C-reactive protein [mg/L] | 0.2 (0.1–2.9) | 0.4 (0.1–8.5) | 0.14 | 0.6 (0.1–3.7) | 0.4 (0.1–8.5) | 0.33 |
Characteristics | Control Group, C N = 28 | Diabetic Patients, D N = 67 | p for between-Group Comparison | Diabetic Patients Subgroups According to the Median T1D Duration | p | Post Hoc Comparison | |||
---|---|---|---|---|---|---|---|---|---|
<4.65 y. | ≥4.65 y. | C vs. D1 | C vs. D2 | D1 vs. D2 | |||||
D1: (N = 33) | D2: (N = 34) | ||||||||
Capillaroscopy | |||||||||
coverageBASE [%] | 18.7 (14.2–6.4) | 17.5 (11.5–24.8) | 0.02 | 17.5 (11.5–22.3) | 17.3(12.9–24.8) | 0.08 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.07 | ||||||||
0.009 | 0.04 | 0.06 | 0.72 | ||||||
coveragePORH [%] | 17.9 (13.7–23.2) | 16.2 (9.8–24.4) # (p < 0.001) | <0.001 | 15.5 (9.8–22.3) # (p = 0.001) | 16.7(10.3–24.4) | 0.001 | <0.001 | 0.06 | 0.53 |
After adjustment for: age age. lipid profile and thyroid hormones | 0.004 | <0.001 | 0.04 | 0.16 | |||||
<0.001 | 0.002 | 0.03 | 0.20 | ||||||
∆CoveragePB [%] | −0.4 (−6.4–5.4) | −1.1 (−7.3–4.9) | 0.47 | −0.8 (−7.2–2.3) | −1.2(−7.3–4.9) | 0.54 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.28 | ||||||||
0.50 | |||||||||
Capillary reactivity | −2.4 (−24.2–35) | −5.5 (−35–31.3) | 0.40 | −5.3 (−35.1–14.8) | −6.5(−34–31.3) | 0.51 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.18 | ||||||||
0.37 | |||||||||
DistanceBASE [µm] | 218.3 (177.5–278) | 224.3 (165.8–377.7) | 0.35 | 220.8 (165.8–377.7) | 230.4(179.4–263.9) | 0.29 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.73 | ||||||||
0.23 | |||||||||
DistancePORH [µm] | 228.2 (167.6–294) | 232.8 (166.3–345) # (p = 0.04) | 0.19 | 232.9 (166.3–319.8) | 232.7(180.5–345.1) | 0.43 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.29 | ||||||||
0.09 | |||||||||
∆DistancePB [µm] | 6.4 (−52.3–69.2) | 9.6 (−70.4–90.5) | 0.59 | 10.8 (−59–74) | 6.9(−70.4–90.5) | 0.75 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.69 | ||||||||
0.84 | |||||||||
The transcutaneous oxygen pressure | |||||||||
TcPO2_baza [mmHg] | 56.3 (18.6–81.1) | 51.7 (27.9–80.8) | 0.16 | 54.1 (27.9–71.5) | 51.3(30–81) | 0.28 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.32 | ||||||||
0.50 | |||||||||
TcPO2_zero [mmHg] | 1.6 (0.4–12.0) | 2.3 (0.7–18.8) | 0.007 | 2.01 (0.7–18.8) | 2.7(1.0–9) | <0.001 | 0.86 | <0.001 | 0.02 |
After adjustment for: age age. lipid profile and thyroid hormones | 0.30 | ||||||||
0.30 | |||||||||
TTR [s] | 85 (41–240) | 83 (42–240) | 0.96 | 85 (42–240) | 80 (42–240) | 0.99 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.99 | ||||||||
0.83 | |||||||||
SLOPE | 0.61 (0.15–1.32) | 0.57 (0.14–1.13) | 0.36 | 0.56 (0.1–1.13) | 0.59(0.2–1.1) | 0.53 | |||
After adjustment for: age age. lipid profile and thyroid hormones | 0.22 | ||||||||
0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neubauer-Geryk, J.; Wielicka, M.; Hoffmann, M.; Myśliwiec, M.; Bieniaszewski, L. The Impact of Disease Duration on Microcirculatory Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes. Biomedicines 2024, 12, 1020. https://doi.org/10.3390/biomedicines12051020
Neubauer-Geryk J, Wielicka M, Hoffmann M, Myśliwiec M, Bieniaszewski L. The Impact of Disease Duration on Microcirculatory Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes. Biomedicines. 2024; 12(5):1020. https://doi.org/10.3390/biomedicines12051020
Chicago/Turabian StyleNeubauer-Geryk, Jolanta, Melanie Wielicka, Magdalena Hoffmann, Małgorzata Myśliwiec, and Leszek Bieniaszewski. 2024. "The Impact of Disease Duration on Microcirculatory Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes" Biomedicines 12, no. 5: 1020. https://doi.org/10.3390/biomedicines12051020
APA StyleNeubauer-Geryk, J., Wielicka, M., Hoffmann, M., Myśliwiec, M., & Bieniaszewski, L. (2024). The Impact of Disease Duration on Microcirculatory Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes. Biomedicines, 12(5), 1020. https://doi.org/10.3390/biomedicines12051020