The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Specimen Collection
2.2. RNA Sequencing and Gene Expression Analysis
2.3. Immunohistochemistry
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. RNA Expression Analysis of ESCC Recurrence Genes
3.3. Keratinocyte Proliferation Was More Activated in Non-Recurrent ESCC
3.4. High TP63 Expression Is Related to Early ESCC Recurrence and Poor Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devesa, S.S.; Blot, W.J.; Fraumeni, J.F., Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998, 83, 2049–2053. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, I.C.; Chen, Y.H.; Chen, C.C.; Chuang, C.Y.; Lin, C.H. The influence of socioeconomic status on esophageal cancer in Taiwan: A population-based study. J. Pers. Med. 2022, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Kamangar, F.; Chow, W.H.; Abnet, C.C.; Dawsey, S.M. Environmental Causes of Esophageal Cancer. Gastroenterol. Clin. N. Am. 2009, 38, 27–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.W.; Lin, M.C.; Huang, P.M.; Wang, C.P.; Chen, T.C.; Chen, C.N.; Tsai, M.H.; Cheng, J.C.; Chuang, E.Y.; Hsieh, M.S.; et al. Risk Factors and Genetic Biomarkers of Multiple Primary Cancers in Esophageal Cancer Patients. Front. Oncol. 2020, 10, 585621. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.D.; Cassano, A.D.; Neifeld, J.P. Neoadjuvant therapy for esophageal cancer. World J. Gastrointest. Oncol. 2014, 6, 403–406. [Google Scholar] [CrossRef]
- van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Liu, H.; Li, J. Pattern of recurrence and prognostic factors in patients with pT1-3 N0 esophageal squamous cell carcinoma after surgery: Analysis of a single center experience. J. Cardiothorac. Surg. 2019, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Merkow, R.P.; Bilimoria, K.Y.; McCarter, M.D.; Chow, W.B.; Ko, C.Y.; Bentrem, D.J. Use of multimodality neoadjuvant therapy for esophageal cancer in the United States: Assessment of 987 Hospitals. Ann. Surg. Oncol. 2012, 19, 357–364. [Google Scholar] [CrossRef]
- Chen, C.Y.; Li, C.C.; Chien, C.R. Neoadjuvant vs. definitive concurrent chemoradiotherapy in locally advanced esophageal squamous cell carcinoma patients. World J. Surg. Oncol. 2018, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Huang, P.M.; Chu, P.Y.; Chen, P.M.; Lin, M.W.; Kuo, S.W.; Lee, J.M. Predictors of Survival in Esophageal Squamous Cell Carcinoma with Pathologic Major Response after Neoadjuvant Chemoradiation Therapy and Surgery: The Impact of Chemotherapy Protocols. BioMed Res. Int. 2016, 2016, 6423297. [Google Scholar] [CrossRef]
- Schuring, N.; Stam, W.T.; Plat, V.D.; Kalff, M.C.; Hulshof, M.; van Laarhoven, H.W.M.; Derks, S.; van der Peet, D.L.; van Berge Henegouwen, M.I.; Daams, F.; et al. Patterns of recurrent disease after neoadjuvant chemoradiotherapy and esophageal cancer surgery with curative intent in a tertiary referral center. Eur. J. Surg. Oncol. 2023, 49, 106947. [Google Scholar] [CrossRef] [PubMed]
- Kunisaki, C.; Makino, H.; Takagawa, R.; Yamamoto, N.; Nagano, Y.; Fujii, S.; Kosaka, T.; Ono, H.A.; Otsuka, Y.; Akiyama, H.; et al. Surgical outcomes in esophageal cancer patients with tumor recurrence after curative esophagectomy. J. Gastrointest. Surg. 2008, 12, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Li, H.Y.; Liu, Y.P.; Kuo, P.F.; Wang, W.C.; Lin, F.C.; Chang, W.L.; Sheu, B.S.; Wang, Y.C.; Hung, W.C.; et al. High-CLDN4 ESCC cells harbor stem-like properties and indicate for poor concurrent chemoradiation therapy response in esophageal squamous cell carcinoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875324. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Y.; Huang, X.; Chen, L. Analysis of the RUNX3 gene methylation in serum DNA from esophagus squamous cell carcinoma, gastric and colorectal adenocarcinoma patients. Hepatogastroenterology 2011, 58, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Lee, B.B.; Han, J.; Cho, E.Y.; Shim, Y.M.; Park, J.; Kim, D.H. CpG island hypermethylation of E-cadherin (CDH1) and integrin α4 is associated with recurrence of early stage esophageal squamous cell carcinoma. Int. J. Cancer 2008, 123, 2073–2079. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chuang, H.N.; Hsiao, T.H.; Kumar, V.B.; Hsu, C.H.; Huang, C.Y.; Lee, L.W.; Mao, C.L.; Ko, J.L.; Hsu, C.P. AGR2 expression as a predictive biomarker for therapy response in esophageal squamous cell carcinoma. PLoS ONE 2022, 17, e0276990. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Y.; Jiang, Y.; Li, C.Q.; Zhang, Y.; Dakle, P.; Kaur, H.; Deng, J.W.; Lin, R.Y.; Han, L.; Xie, J.J.; et al. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology 2020, 159, 1311–1327.e1319. [Google Scholar] [CrossRef] [PubMed]
- Moses, M.A.; George, A.L.; Sakakibara, N.; Mahmood, K.; Ponnamperuma, R.M.; King, K.E.; Weinberg, W.C. Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int. J. Mol. Sci. 2019, 20, 3590. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Lee, K.B.; Park, M.H.; Lee, J.S.; Kim, S.M. p63 regulates growth of esophageal squamous carcinoma cells via the Akt signaling pathway. Int. J. Oncol. 2014, 44, 2153–2159. [Google Scholar] [CrossRef]
- Lee, K.B.; Ye, S.; Park, M.H.; Park, B.H.; Lee, J.S.; Kim, S.M. P63-Mediated activation of the β-catenin/c-Myc signaling pathway stimulates esophageal squamous carcinoma cell invasion and metastasis. Cancer Lett. 2014, 353, 124–132. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.W.; Patil, D.T.; Blackstone, E.H. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: Application to clinical practice. Ann. Cardiothorac. Surg. 2017, 6, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Robb, W.B.; Messager, M.; Dahan, L.; Mornex, F.; Maillard, E.; D’Journo, X.B.; Triboulet, J.P.; Bedenne, L.; Seitz, J.F.; Mariette, C.; et al. Patterns of recurrence in early-stage oesophageal cancer after chemoradiotherapy and surgery compared with surgery alone. Br. J. Surg. 2016, 103, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Barbetta, A.; Sihag, S.; Nobel, T.; Hsu, M.; Tan, K.S.; Bains, M.; Jones, D.R.; Molena, D. Patterns and risk of recurrence in patients with esophageal cancer with a pathologic complete response after chemoradiotherapy followed by surgery. J. Thorac. Cardiovasc. Surg. 2019, 157, 1249–1259.e1245. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Urooj, N.; Syed, A.A.; Khattak, S.; Kazmi, A.; Ashraf, M.I.; Batool, S. Prognostic Factors for Recurrence in Esophageal Cancer Patients Treated With Neoadjuvant Therapy and Surgery: A Single-institution Analysis. Cureus 2020, 12, e8108. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; He, Y.; Yang, Y.; Li, S.; An, W.; Li, Z.; Wang, X.; Han, Z.; Qin, L. ALDH3A1 acts as a prognostic biomarker and inhibits the epithelial mesenchymal transition of oral squamous cell carcinoma through IL-6/STAT3 signaling pathway. J. Cancer 2020, 11, 2621–2631. [Google Scholar] [CrossRef]
- Terzuoli, E.; Bellan, C.; Aversa, S.; Ciccone, V.; Morbidelli, L.; Giachetti, A.; Donnini, S.; Ziche, M. ALDH3A1 Overexpression in Melanoma and Lung Tumors Drives Cancer Stem Cell Expansion, Impairing Immune Surveillance through Enhanced PD-L1 Output. Cancers 2019, 11, 1963. [Google Scholar] [CrossRef]
- Han, W.; Hu, C.; Fan, Z.J.; Shen, G.L. Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci. Rep. 2021, 11, 1023. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, S.; Ye, S.; Shen, Z.; Gao, L.; Han, Z.; Zhang, P.; Luo, F.; Chen, S.; Kang, M. Keratin 17 activates AKT signalling and induces epithelial-mesenchymal transition in oesophageal squamous cell carcinoma. J. Proteom. 2020, 211, 103557. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zheng, S.; Liu, C.; Wang, X.; Zhang, G.; Wang, F.; Wang, S.; Huang, J.; Mao, S.; Lei, Y.; et al. S100A7 as a potential diagnostic and prognostic biomarker of esophageal squamous cell carcinoma promotes M2 macrophage infiltration and angiogenesis. Clin. Transl. Med. 2021, 11, e459. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Y.; Fan, S.; Li, Y.; Xiao, Z.X.; Li, C. A double dealing tale of p63: An oncogene or a tumor suppressor. Cell. Mol. Life Sci. 2018, 75, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Eckert, R.L.; Efimova, T.; Dashti, S.R.; Balasubramanian, S.; Deucher, A.; Crish, J.F.; Sturniolo, M.; Bone, F. Keratinocyte survival, differentiation, and death: Many roads lead to mitogen-activated protein kinase. In Journal of Investigative Dermatology Symposium Proceedings; Elsevier: Amsterdam, The Netherlands, 2002; Volume 7. [Google Scholar]
- Chen, R.; Yang, X.; Ding, Z.; Zhu, L.; Lu, S.; Yu, Y. Lung squamous cell carcinoma: A postoperative recurrence analysis of keratinizing and nonkeratinizing subtypes. Eur. J. Surg. Oncol. 2019, 45, P838–P844. [Google Scholar] [CrossRef] [PubMed]
- Wolfer, S.; Elstner, S.; Schultze-Mosgau, S. Degree of Keratinization Is an Independent Prognostic Factor in Oral Squamous Cell Carcinoma. J. Oral. Maxillofac. Surg. 2018, 76, P444–P454. [Google Scholar] [CrossRef]
- Vanbokhoven, H.; Melino, G.; Candi, E.; Declercq, W. P63, a story of mice and men. J. Investig. Dermatol. 2011, 131, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Giovannini, S.; Wang, T.; Fang, J.; Li, P.; Shao, C.; Wang, Y.; TOR Centre; Shi, Y.; Candi, E.; et al. p63: A crucial player in epithelial stemness regulation. Oncogene 2023, 42, 3371–3384. [Google Scholar] [CrossRef] [PubMed]
- Yoh, K.; Prywes, R. Pathway regulation of p63, a director of epithelial cell fate. Front. Endocrinol. 2015, 6, 143040. [Google Scholar] [CrossRef] [PubMed]
- King, K.E.; George, A.L.; Sakakibara, N.; Mahmood, K.; Moses, M.A.; Weinberg, W.C. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol. Carcinog. 2019, 58, 1571–1580. [Google Scholar] [CrossRef]
Characteristics | Total | Recurrence | Non-Recurrence | p |
---|---|---|---|---|
No. of patients | N = 15 | N = 8 | N = 7 | |
Age (year, mean) | 56.60 ± 6.68 | 56.25 ± 6.90 | 57.00 ± 7.34 | 0.84 a |
Gender | ||||
Male | 15 (100.0%) | 8 (100.0%) | 7 (100.0%) | |
Female | 0 (0%) | 0 (0%) | 0 (0%) | |
Pathologic stage | ||||
IA | 3 (20.0%) | 2 (25.0%) | 1 (14.3%) | 0.20 b |
IB | 0 (0%) | 0 (0%) | 0 (0%) | |
IIA | 0 (0%) | 0 (0%) | 0 (0%) | |
IIB | 6 (40.0%) | 1 (12.5%) | 5 (71.4%) | |
IIIA | 4 (26.6%) | 3 (37.5%) | 1 (14.3%) | |
IIIB | 0 (0%) | 0 (0%) | 0 (0%) | |
IIIC | 1 (6.7%) | 1 (12.5%) | 0 (0%) | |
IV | 1 (6.7%) | 1 (12.5%) | 0 (0%) |
Gene | Base Mean | p Value | padj | log2FC | Description |
---|---|---|---|---|---|
SOST | 122.0422 | 7.55 × 10−7 | 4.01 × 10−5 | 9.820963 | Sclerostin |
LINC02582 | 87.1705 | 1.58 × 10−5 | 5.28 × 10−4 | 9.74846 | Long Intergenic Non-Protein Coding RNA 2582 |
AL033397.1 | 85.11985 | 1.12 × 10−5 | 4.01 × 10−4 | 9.714346 | Novel transcript |
DSG1 | 632.4087 | 1.01 × 10−12 | 4.19 × 10−10 | 9.408987 | Desmoglein |
FLG | 210.4592 | 4.43 × 10−11 | 1.01 × 10−8 | 9.261304 | Filaggrin |
SLC47A2 | 148.4492 | 5.27 × 10−7 | 2.95 × 10−5 | 9.163991 | Solute Carrier Family 47 Member 2 |
ZIC2 | 60.1167 | 5.26 × 10−5 | 1.44 × 10−3 | 8.798748 | Zic Family Member 2 |
ALDH3A1 | 7252.081 | 1.72 × 10−23 | 2.08 × 10−19 | 8.665461 | Aldehyde Dehydrogenase 3 Family Member A1 |
KRT1 | 1000.965 | 4.73 × 10−10 | 7.32 × 10−8 | 8.440137 | Keratin 1 |
AC005336.1 | 89.69816 | 1.15 × 10−8 | 1.15 × 10−6 | 8.028038 | Inositol polyphosphate multikinase (IPMK) pseudogene |
S100A7 A | 173.8399 | 2.56 × 10−8 | 2.27 × 10−6 | 7.808537 | S100 calcium binding protein A7 |
AC245041.2 | 116.7946 | 8.20 × 10−18 | 1.52 × 10−14 | 7.658909 | Novel transcript |
TP63 | 3486.077 | 7.02 × 10−19 | 1.88 × 10−15 | 7.549191 | Tumor protein P63 |
AKR1B10 | 3507.269 | 8.13 × 10−22 | 4.90 × 10−18 | 7.488848 | aldo-keto reductase family 1 member B10 |
FAM83B | 263.4565 | 4.26 × 10−17 | 5.41 × 10−14 | 7.379748 | Family With Sequence Similarity 83 Member B |
ALOX12P2 | 132.6558 | 3.52 × 10−15 | 2.83 × 10−12 | 7.347922 | arachidonate 12-lipoxygenase pseudogene 2 |
KRT17 | 52,363.25 | 1.96 × 10−14 | 1.31 × 10−11 | 7.333984 | Keratin 17 |
FOXE1 | 268.5709 | 1.54 × 10−13 | 8.87 × 10−11 | 7.32836 | Forkhead Box E1 |
CCDC190 | 203.4276 | 7.11 × 10−13 | 3.18 × 10−10 | 7.308247 | Coiled-Coil Domain Containing 190 |
CYP4F11 | 1048.794 | 2.05 × 10−11 | 5.44 × 10−9 | 7.271066 | Cytochrome P450 Family 4 Subfamily F Member 11 |
Total (N = 50) | Non-Recurrence (N = 25) | Recurrence (N = 25) | p Value a | |
---|---|---|---|---|
Strong expression | 16 | 04 (25.0%) | 12 (75.0%) | 0.01 * |
Medium expression | 18 | 07 (38.9%) | 11 (61.1%) | |
No expression | 16 | 14 (12.5%) | 02 (87.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-H.; Cheng, P.-L.; Chuang, C.-Y.; Kang, Y.-T.; Lee, L.-W.; Hsiao, T.-H.; Hsu, C.-P. The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy. Biomedicines 2024, 12, 1101. https://doi.org/10.3390/biomedicines12051101
Lin C-H, Cheng P-L, Chuang C-Y, Kang Y-T, Lee L-W, Hsiao T-H, Hsu C-P. The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy. Biomedicines. 2024; 12(5):1101. https://doi.org/10.3390/biomedicines12051101
Chicago/Turabian StyleLin, Chih-Hung, Po-Liang Cheng, Cheng-Yeh Chuang, Yu-Ting Kang, Li-Wen Lee, Tzu-Hung Hsiao, and Chung-Ping Hsu. 2024. "The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy" Biomedicines 12, no. 5: 1101. https://doi.org/10.3390/biomedicines12051101
APA StyleLin, C.-H., Cheng, P.-L., Chuang, C.-Y., Kang, Y.-T., Lee, L.-W., Hsiao, T.-H., & Hsu, C.-P. (2024). The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy. Biomedicines, 12(5), 1101. https://doi.org/10.3390/biomedicines12051101