Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Polygraphic Parameters
2.3. Laboratory Parameters
2.4. Echocardiographic Parameters
2.5. Ethics Committee
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEi | angiotensin-converting enzyme inhibitors |
AHI | apnea hypopnea index |
ARBs | Angiotensin II receptor blockers |
BMI | body mass index |
CKD | Chronic Kidney Disease |
COPD | Chronic Obstructive Pulmonary Disease; Broncopneumopatia cronica ostruttiva |
CPAP | Continuous Positive Air Pressure |
CSA | Central Sleep Apneas |
DBP | diastolic blood pressure |
E/A | ratio between wave E (the wave of rapid filling in early diastole) and wave A (the wave of atrial contraction) |
E/e’ | ratio between wave E and wave e’ (reliable estimate of changes in end-diastolic blood pressure) |
GLS | global longitudinal strain |
e-GFR | estimate glomerular filtration rate |
Hb | Haemoglobin |
HbA1c | glycated haemoglobin |
HF | Heart Failure |
HFrEF | Heart Failure with reduced ejection fraction |
HFmrEF | Heart Failure with mildly reduced ejection fraction |
HFpEF | Heart Failure with preserved ejection fraction |
HOMA-IR | Homeostasis Model Assessment Insulin Resistance |
HR | heart rate |
hs-CRP | high sensitive C-reactive protein |
HTC | Hematocrit |
IHD | ischemic heart disease |
IVC | inferior vena cava |
K | Potassium |
LAVi | left atrial volume index |
LVEDV/BSA | left ventricular end-diastolic volume index/body surface area |
LVEF | left ventricular ejection fraction |
LVESV/BSA | left ventricular end-systolic volume index/body surface area |
MLHFQ | Minnesota living with heart failure questionnaire |
MRAs | mineral receptor antagonists |
Na | Sodium |
NIV | Non Invasive Ventilation |
NTpro-BNP | N-terminal pro-B-type Natriuretic Peptide |
OAC | oral anticoagulant |
ODI | oxygen desaturation index |
OSA | obstructive sleep apneas |
RAA | Right Atrium Area |
RR | respiratory rate |
RVOTp | Right Ventricular Outflow Tract proximal |
SA | Sleep Apnea |
SBP | systolic blood pressure |
SGLT2i | sodium-glucose cotransporter type 2 inhibitor |
s-PAP | systolic pulmonary arterial pressure |
SpO2 | peripheral arterial oxyhemoglobin saturation |
T2DM | type 2 diabetes mellitus |
TAPSE | tricuspid annular plane systolic excursion |
TC90 | percentage time of saturation below 90% |
VHD | valvular heart disease |
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Gill, G.S.; Lodhi, F.K.; Tummala, L.S.; Singh, S.N.; Morgan, C.J.; Allman, R.M.; Fonarow, G.C.; Ahmed, A. Prior heart failure hospitalization and outcomes in patients with heart failure with preserved and reduced ejection fraction. Am. J. Med. 2020, 133, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Stolfo, D.; Sinagra, G.; Lund, L.H. Heart failure with mid-range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 2022, 19, 100–116. [Google Scholar] [CrossRef]
- Lévy, P.; Naughton, M.T.; Tamisier, R.; Cowie, M.R.; Bradley, T.D. Sleep apnoea and heart failure. Eur. Respir. J. 2022, 59, 2101640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Schöbel, C.; Penzel, T. Management of Obstructive Sleep Apnea in Patients with Heart Failure. Front. Med. 2022, 9, 803388. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Lombardi, C.; Castagna, F.; Mattaliano, P.; Filardi, P.P.; Agostoni, P. Heart failure and sleep disorders. Nat. Rev. Cardiol. 2016, 13, 389–403. [Google Scholar] [CrossRef]
- Zhai, A.B.; Yip, A.; Haddad, H. Heart failure and sleep-disordered breathing. Curr. Opin. Cardiol. 2016, 31, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhang, H.L.; Tao, X.C.; Zhao, Z.H.; Yang, Y.J.; Liu, Z.H. Impact of untreated sleep apnea on prognosis of patients with congestive heart failure. Int. J. Cardiol. 2010, 144, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Shahid, I.; Emani, S.; Klein, L.; Dupuy-McCauley, K.L.; Zieroth, S.; Mentz, R.J. Evaluation and Treatment of Central Sleep Apnea in Patients with Heart Failure. Curr. Probl. Cardiol. 2022, 47, 101364. [Google Scholar] [CrossRef] [PubMed]
- Dharia, S.M.; Brown, L.K. Epidemiology of Sleep-Disordered Breathing and Heart Failure: What Drives What. Curr. Heart Fail. Rep. 2017, 14, 351–364. [Google Scholar] [CrossRef]
- Deep Singh, T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep. Med. Clin. 2022, 17, 87–98. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Greenlund, I.M.; Carter, J.R. Sympathetic neural responses to sleep disorders and insufficiencies. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H337–H349. [Google Scholar] [CrossRef] [PubMed]
- Abboud, F.; Kumar, R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J. Clin. Investig. 2014, 124, 1454–1457. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Hsu, T.W.; Lu, C.H.; Chen, H.L. Alterations in sympathetic and parasympathetic brain networks in obstructive sleep apnea. Sleep. Med. 2020, 73, 135–142. [Google Scholar] [CrossRef]
- Piccirillo, F.; Crispino, S.P.; Buzzelli, L.; Segreti, A.; Incalzi, R.A.; Grigioni, F. A State-of-the-Art Review on Sleep Apnea Syndrome and Heart Failure. Am. J. Cardiol. 2023, 195, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Armentaro, G.; Miceli, S.; Perticone, M.; Toscani, A.F.; Condoleo, V.; Spinali, M.; Cassano, V.; Maio, R.; Caroleo, B.; et al. Association between sleep apnea and valvular heart diseases. Front. Med. 2021, 8, 667522. [Google Scholar] [CrossRef]
- Holfinger, S.; Chan, L.; Donald, R. All You Need Is Sleep: The Effects of Sleep Apnea and Treatment Benefits in the Heart Failure Patient. Curr. Heart Fail. Rep. 2021, 18, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Oates, C.P.; Ananthram, M.; Gottlieb, S.S. Management of sleep disordered breathing in patients with heart failure. Curr. Heart Fail. Rep. 2018, 15, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Naughton, M.T.; Kee, K. Sleep apnoea in heart failure: To treat or not to treat? Respirology 2017, 22, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; d’Ortho, M.P.; Erdmann, E.; Levy, P.; Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N. Engl. J. Med. 2015, 373, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Lyons, O.D.; Floras, J.S.; Logan, A.G.; Beanlands, R.; Cantolla, J.D.; Fitzpatrick, M.; Fleetham, J.; John Kimoff, R.; Leung, R.S.; Lorenzi Filho, G.; et al. Design of the effect of adaptive servo-ventilation on survival and cardiovascular hospital admissions in patients with heart failure and sleep apnoea: The ADVENT-HF trial. Eur. J. Heart Fail. 2017, 19, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Theodorakis, M.J. Sodium-glucose Cotransporter 2 Inhibitors (SGLT2i): Their Role in Cardiometabolic Risk Management. Curr. Pharm. Des. 2017, 23, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y. SGLT2 Inhibitors: The Star in the Treatment of Type 2 Diabetes? Diseases 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jin, P.; Zhang, Y.; Hu, X.; Tian, C.; Liu, D. SGLT2 Inhibitors in Diabetic Patients with Cardiovascular Disease or at High Cardiovascular Risk: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Cardiovasc. Med. 2022, 9, 826684. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; DeMets, D.L.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Langkilde, A.M.; Martinez, F.A.; Bengtsson, O.; Ponikowski, P.; Sabatine, M.S.; et al. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur. J. Heart Fail. 2019, 21, 665–675. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on the Clinical Stability of Patients with Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021, 143, 326–336. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.; Claggett, B.; De Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. DELIVER Trial Committees and Investigators. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Pelaia, C.; Armentaro, G.; Volpentesta, M.; Mancuso, L.; Miceli, S.; Caroleo, B.; Perticone, M.; Maio, R.; Arturi, F.; Imbalzano, E.; et al. Effects of Sacubitril-Valsartan on Clinical, Echocardiographic, and Polygraphic Parameters in Patients Affected by Heart Failure with Reduced Ejection Fraction and Sleep Apnea. Front. Cardiovasc. Med. 2022, 9, 861663. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sun, Q.; Bai, X.Y.; Zhou, Y.F.; Zhou, Q.L.; Zhang, M. Effect of dapagliflozin on obstructive sleep apnea in patients with type 2 diabetes: A preliminary study. Nutr. Diabetes 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Miyake, T.; Senba, H.; Sakai, T.; Furukawa, E.; Yamamoto, S.; Niiya, T.; Matsuura, B.; Hiasa, Y. The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr. J. 2018, 65, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014, 100, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Lauritsen, K.M.; Voigt, J.H.; Pedersen, S.B.; Hansen, T.K.; Møller, N.; Jessen, N.; Gormsen, L.C.; Søndergaard, E. Effects of SGLT2 inhibition on lipid transport in adipose tissue in type 2 diabetes. Endocr. Connect. 2022, 11, e210558. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.C.; Zheng, C.M.; Yen, T.H.; Lu, K.C. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int. J. Mol. Sci. 2020, 21, 7833. [Google Scholar] [CrossRef] [PubMed]
- Papaetis, G.S. GLP-1 receptor agonists, SGLT-2 inhibitors, and obstructive sleep apnoea: Can new allies face an old enemy? Arch. Med. Sci. Atheroscler. Dis. 2023, 8, e19–e34. [Google Scholar] [CrossRef] [PubMed]
- Revol, B.; Jullian-Desayes, I.; Bailly, S.; Tamisier, R.; Grillet, Y.; Sapène, M.; Joyeux-Faure, M.; Pépin, J.L. Who May Benefit from Diuretics in OSA?: A Propensity Score-Match Observational Study. Chest 2020, 158, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Logan, A.G.; Kimoff, R.J.; Sériès, F.; Morrison, D.; Ferguson, K.; Belenkie, I.; Pfeifer, M.; Fleetham, J.; Hanly, P.; et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 2005, 353, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Requena-Ibanez, J.A.; San Antonio, R.; Ishikawa, K.; Watanabe, S.; Picatoste, B.; Flores, E.; Garcia-Ropero, A.; Sanz, J.; Hajjar, R.J.; et al. Empagliflozin Amelio-rates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. J. Am. Coll. Cardiol. 2019, 73, 1931–1944. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, C.; Ucku, D.; Akyol, M.; Cevik, E.; Kanbay, A.; Sridhar, V.S.; Cherney, D.Z.; Kanbay, M. Potential Use of SGLT-2 Inhibitors in Obstructive Sleep Apnea: A new treatment on the horizon. Sleep. Breath. 2023, 27, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Sawada, K.; Karashima, S.; Kometani, M.; Oka, R.; Takeda, Y.; Sawamura, T.; Fujimoto, A.; Demura, M.; Wakayama, A.; Usukura, M.; et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr. J. 2018, 65, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Eliasson, B.; Kasai, T.; Marx, N.; Zinman, B.; Inzucchi, S.E.; Wanner, C.; Zwiener, I.; Wojeck, B.S.; Yaggi, H.K.; et al. The Impact of Empagliflozin on Obstructive Sleep Apnea and Cardiovascular and Renal Outcomes: An Exploratory Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2020, 43, 3007–3015. [Google Scholar] [CrossRef]
All Population (n. 514) | Without SGLT2i (n. 228) | With SGLT2i (n. 286) | p | |
---|---|---|---|---|
Age, years | 76.3 ± 7.1 | 76.4 ± 6.8 | 76.2 ± 7.2 | 0.702 |
MLHFQ, pt | 83.8 ± 3.7 | 83.9 ± 3.7 | 83.7 ± 7.7 | 0.509 |
BMI, Kg/m2 | 31.6 ± 4.8 | 31.3 ± 3.9 | 31.8 ± 5.5 | 0.177 |
SBP, mmHg | 121.9 ± 14.5 | 120.2 ± 14.7 | 123.3 ± 14.2 | 0.017 |
DBP, mmHg | 72.3 ± 9.0 | 71.0 ± 9.2 | 73.4 ± 8.8 | 0.004 |
HR, bpm | 68.3 ± 12.2 | 68.8 ± 9.9 | 67.8 ± 13.7 | 0.372 |
RR, afm | 16.3 ± 1.8 | 16.3 ± 1.8 | 16.3 ± 1.7 | 0.864 |
eGFR, mL/min/1.73 m2 | 65.8 ± 15.7 | 67.7 ± 17.1 | 64.4 ± 14.3 | 0.018 |
Uric acid, mg/dL | 6.7 ± 0.4 | 6.7 ± 0.4 | 6.6 ± 0.4 | 0.587 |
Hb, g/dL | 11.8 ± 1.9 | 11.6 ± 1.8 | 12.0 ± 1.9 | 0.018 |
HTC, % | 33.5 ± 6.6 | 32.8 ± 6.5 | 34.0 ± 6.6 | 0.032 |
Na+, mmmol/L | 140.1 ± 3.4 | 140.1 ± 3.9 | 140.2 ± 3.0 | 0.721 |
K+, mmol/L | 4.6 ± 0.4 | 4.6 ± 0.4 | 4.6 ± 0.4 | 0.821 |
NTpro-BNP, pg/mL | 1539.8 ± 647.7 | 1558.1 ± 732.5 | 1525.2 ± 572.1 | 0.567 |
HOMA-IR, pt | 8.8 ± 2.5 | 8.4 ± 2.0 | 9.1 ± 2.8 | 0.004 |
HbA1c, % | 7.5 ± 0.5 | 7.5 ± 0.4 | 7.5 ± 0.5 | 0.726 |
hs-CRP, mg/L | 5.3 ± 0.3 | 5.3 ± 0.3 | 5.3 ± 0.3 | 0.205 |
All Population (n. 514) | Without SGLT2i (n. 228) | With SGLT2i (n. 286) | p | |
---|---|---|---|---|
IHD, n (%) | 320 (62.3) | 138 (60.5) | 182 (63.6) | 0.469 |
Atrial Fibrillation, n (%) | 156 (30.4) | 68 (29.8) | 88 (30.8) | 0.816 |
HFrEF, n (%) | 182 (35.4) | 90 (39.5) | 92 (32.2) | 0.085 |
HFmrEF-HFpEF, n (%) | 332 (64.6) | 138 (60.5) | 194 (67.8) | 0.085 |
Arterial Hypertension, n (%) | 360 (70) | 154 (67.5) | 206 (72.0) | 0.270 |
COPD, n (%) | 136 (26.5) | 58 (25.4) | 78 (27.3) | 0.639 |
Dislipidemia, n (%) | 294 (57.2) | 124 (54.3) | 170 (59.4) | 0.249 |
CKD, n (%) | 166 (32.3) | 72 (31.6) | 94 (32.9) | 0.756 |
ICD-CRTd, n (%) | 312 (60.7) | 144 (63.1) | 168 (58.7) | 0.308 |
ACEi/ARBs, n (%) | 204 (39.7) | 80 (35.0) | 124 (43.4) | 0.056 |
Sacubitril-Valsartan, n (%) | 182 (35.4) | 90 (39.5) | 92 (32.2) | 0.085 |
Loop-Diuretics, n (%) | 450 (87.5) | 192 (84.2) | 258 (90.2) | 0.040 |
MRAs, n (%) | 260 (50.6) | 116 (50.1) | 144 (50.3) | 0.905 |
β-blockers, n (%) | 352 (68.5) | 166 (72.8) | 186 (65.0) | 0.059 |
OAC, n (%) | 156 (30.4) | 68 (29.8) | 88 (30.8) | 0.816 |
Antiplatelet, n (%) | 316 (61.5) | 148 (64.9) | 168 (58.7) | 0.153 |
Statins, n (%) | 342 (66.5) | 164 (71.9) | 178 (62.2) | 0.020 |
All Population (n. 514) | Without SGLT2i (n. 228) | With SGLT2i (n. 286) | p | |
---|---|---|---|---|
LAVi, mL/m2 | 46.5 ± 10.5 | 46.8 ± 10.1 | 46.2 ± 10.8 | 0.571 |
LVEDV/BSA, mL/m2 | 87.3 ± 7 | 87.7 ± 6.6 | 86.9 ± 7.3 | 0.237 |
LVESV/BSA, mL/m2 | 52.3 ± 6.2 | 52.8 ± 5.9 | 51.8 ± 6.4 | 0.090 |
LVEF, % | 40.2 ± 4.6 | 39.8 ± 4.6 | 40.4 ± 4.6 | 0.126 |
Cardiac Index, L/min/m2 | 1978.4 ± 193.6 | 1963.9 ± 194.3 | 1990.1 ± 192.7 | 0.128 |
E/A | 0.83 ± 0.4 | 0.81 ± 0.4 | 0.85 ± 0.5 | 0.241 |
E/e’, pt | 17.2 ± 3.5 | 17.5 ± 3.6 | 17.0 ± 3.5 | 0.092 |
GLS, % | −11.3 ± 3.6 | −10.9 ± 4.1 | −11.6 ± 3.2 | 0.031 |
RVOTp, cm | 2.5 ± 0.5 | 2.5 ± 0.4 | 2.5 ± 0.5 | 0.747 |
RAA, cm2 | 18.9 ± 4.5 | 18.9 ± 3.8 | 19.0 ± 4.9 | 0.812 |
TAPSE, mm | 18.5 ± 1.8 | 18.4 ± 1.8 | 18.7 ± 1.9 | 0.047 |
s-PAP, mmHg | 41.0 ± 5.0 | 41.0 ± 4.6 | 41.1 ± 5.3 | 0.947 |
TAPSE/s-PAP, mm/mmHg | 0.46 ± 0.07 | 0.45 ± 0.07 | 0.46 ± 0.06 | 0.262 |
IVC, mm | 19.4 ± 2.6 | 19.3 ± 2.3 | 19.5 ± 2.8 | 0.375 |
AHI, n/h | 27.4 ± 13.3 | 26.0 ± 13.6 | 28.4 ± 12.9 | 0.041 |
ODI, n/h | 15.3 ± 3.4 | 15.1 ± 3.4 | 15.4 ± 3.3 | 0.484 |
SpO2, % | 91.3 ± 2.3 | 91.2 ± 2.2 | 91.3 ± 2.3 | 0.537 |
TC90, % | 13.6 ± 4.1 | 13.1 ± 4.0 | 14.1 ± 4.2 | 0.009 |
OR | CI 95% | p | |
---|---|---|---|
IHD, yes/no | 0.41 | 0.26–0.63 | <0.0001 |
Female gender, yes/no | 0.51 | 0.32–0.80 | 0.004 |
HbA1c, 1% | 0.76 | 0.50–1.18 | 0.226 |
Uric acid, 1 mg/dL | 0.77 | 0.47–1.26 | 0.297 |
Sac/Val, yes/no | 0.82 | 0.29–2.25 | 0.703 |
Arterial Hypertension, yes/no | 0.83 | 0.53–1.31 | 0.433 |
E/A | 0.85 | 0.52–1.39 | 0.522 |
Hb, 1 g/dL | 0.88 | 0.68–1.12 | 0.374 |
HOMA-IR, 1 pt | 0.90 | 0.83–0.98 | 0.016 |
IVC, 1 mm | 0.91 | 0.82–0.98 | 0.019 |
GLS, 1% | 0.93 | 0.87–0.99 | 0.030 |
β-blockers, yes/no | 0.95 | 0.57–1.56 | 0.827 |
E/e’, 1 pt | 0.98 | 0.92–1.05 | 0.569 |
Loop Diuretics, yes/no | 0.98 | 0.52–1.84 | 0.955 |
SGLT2i, yes/no | 1.52 | 1.01–2.29 | 0.044 |
Age, 10 years | 0.65 | 0.35–0.92 | 0.029 |
CKD, yes/no | 1.20 | 0.75–1.91 | 0.445 |
ACEi/ARB, yes/no | 1.19 | 0.69–2.08 | 0.525 |
BMI, 1 Kg/m2 | 1.05 | 1.01–1.10 | 0.029 |
HCT, 1% | 1.05 | 0.96–1.15 | 0.282 |
DBP, 1 mmHg | 1.03 | 1.01–1.05 | 0.034 |
LVEDV/BSA, 1 mL/m2 | 1.03 | 0.99–1.08 | 0.130 |
HR, 1 bfm | 1.01 | 0.99–1.02 | 0.171 |
SBP, 1 mmHg | 1.00 | 0.98–1.01 | 1.000 |
OR | CI 95% | p | |
---|---|---|---|
SGLT2i, yes/no | 1.60 | 1.08–2.35 | 0.004 |
BMI, 1 kg/m2 | 1.05 | 1.01–1.09 | 0.022 |
IHD, yes/no | 0.44 | 0.29–0.67 | <0.0001 |
Female gender, yes/no | 0.51 | 0.34–0.78 | 0.002 |
Age, 10 years | 0.61 | 0.32–0.85 | 0.023 |
HOMA-IR, 1 pt | 0.90 | 0.83–0.98 | 0.020 |
IVC, 1 mm | 0.91 | 0.84–0.98 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armentaro, G.; Pelaia, C.; Condoleo, V.; Severini, G.; Crudo, G.; De Marco, M.; Pastura, C.A.; Tallarico, V.; Pezzella, R.; Aiello, D.; et al. Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea. Biomedicines 2024, 12, 937. https://doi.org/10.3390/biomedicines12050937
Armentaro G, Pelaia C, Condoleo V, Severini G, Crudo G, De Marco M, Pastura CA, Tallarico V, Pezzella R, Aiello D, et al. Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea. Biomedicines. 2024; 12(5):937. https://doi.org/10.3390/biomedicines12050937
Chicago/Turabian StyleArmentaro, Giuseppe, Corrado Pelaia, Valentino Condoleo, Giandomenico Severini, Giulia Crudo, Mario De Marco, Carlo Alberto Pastura, Valeria Tallarico, Rita Pezzella, Domenico Aiello, and et al. 2024. "Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea" Biomedicines 12, no. 5: 937. https://doi.org/10.3390/biomedicines12050937
APA StyleArmentaro, G., Pelaia, C., Condoleo, V., Severini, G., Crudo, G., De Marco, M., Pastura, C. A., Tallarico, V., Pezzella, R., Aiello, D., Miceli, S., Maio, R., Savarese, G., Rosano, G. M. C., & Sciacqua, A. (2024). Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea. Biomedicines, 12(5), 937. https://doi.org/10.3390/biomedicines12050937