Pathophysiological Link and Treatment Implication of Heart Failure and Preserved Ejection Fraction in Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. The Importance of Patient Profiling in HFpEF
3. Clinical Characteristics and Prognosis of Patients with Chronic Kidney Disease and HFpEF
4. Pathophysiology of Chronic Kidney Disease in HFpEF
5. Assessment of Renal Function: Laboratory Biomarkers of Glomerular and Tubular Renal Function
6. Therapeutic Evidence and Limitations in Patients with HFpEF and Chronic Kidney Disease
6.1. SGLT-2 Inhibitors
6.2. Mineral Receptor Antagonist
6.3. Sacubitril/Valsartan
7. Angiotensin-Converting Enzyme Inhibitors/Angiotensin II Receptor Blockers
8. Beta-Blockers
9. Hyperkalemia in HF and CKD
10. Potential Strategy for the Correct Use of Heart Failure Treatments According to Renal Function
11. Future Perspectives
12. Conclusions
Funding
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Tramonte, F.; Beltrami, M. Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules 2023, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Usman, M.S.; Anker, M.S.; Butler, J.; Böhm, M.; Abraham, W.T.; Adamo, M.; Chopra, V.K.; Cicoira, M.; Cosentino, F.; et al. Patient Phenotype Profiling in Heart Failure with Preserved Ejection Fraction to Guide Therapeutic Decision Making. A Scientific Statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. Eur. J. Heart Fail. 2023, 25, 936–955. [Google Scholar] [CrossRef]
- Lanzer, J.D.; Valdeolivas, A.; Pepin, M.; Hund, H.; Backs, J.; Frey, N.; Friederich, H.-C.; Schultz, J.-H.; Saez-Rodriguez, J.; Levinson, R.T. A Network Medicine Approach to Study Comorbidities in Heart Failure with Preserved Ejection Fraction. BMC Med. 2023, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Kottgen, A.; Russell, S.D.; Loehr, L.R.; Crainiceanu, C.M.; Rosamond, W.D.; Chang, P.P.; Chambless, L.E.; Coresh, J. Reduced Kidney Function as a Risk Factor for Incident Heart Failure: The Atherosclerosis Risk in Communities (ARIC) Study. J. Am. Soc. Nephrol. JASN 2007, 18, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Shen, L.; Jhund, P.S.; Anand, I.S.; Carson, P.E.; Desai, A.S.; Granger, C.B.; Komajda, M.; McKelvie, R.S.; Pfeffer, M.A.; et al. Age-Related Characteristics and Outcomes of Patients with Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2019, 74, 601–612. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; De Angelis, G.; Fabris, E.; Cannatà, A.; Merlo, M.; Sinagra, G. Gender-Related Differences in Heart Failure: Beyond the “One-Size-Fits-All” Paradigm. Heart Fail. Rev. 2020, 25, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, F.; Stahrenberg, R.; Gelbrich, G.; Durstewitz, K.; Angermann, C.E.; Düngen, H.-D.; Scheffold, T.; Zugck, C.; Maisch, B.; Regitz-Zagrosek, V.; et al. Contribution of Comorbidities to Functional Impairment Is Higher in Heart Failure with Preserved than with Reduced Ejection Fraction. Clin. Res. Cardiol. 2011, 100, 755–764. [Google Scholar] [CrossRef]
- Cave, A.C.; Brewer, A.C.; Narayanapanicker, A.; Ray, R.; Grieve, D.J.; Walker, S.; Shah, A.M. NADPH Oxidases in Cardiovascular Health and Disease. Antioxid. Redox Signal. 2006, 8, 691–728. [Google Scholar] [CrossRef]
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Damy, T.; Eriksson, U.; et al. Diagnosis and Treatment of Cardiac Amyloidosis. A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. J. Heart Fail. 2021, 23, 512–526. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to Diagnose Heart Failure with Preserved Ejection Fraction: The HFA-PEFF Diagnostic Algorithm: A Consensus Recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef]
- Rossi, V.A.; Gruebler, M.; Monzo, L.; Galluzzo, A.; Beltrami, M. The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 6838. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Lewis, G.D.; Shah, S.J.; Obokata, M.; Abou-Ezzedine, O.F.; Fudim, M.; Sun, J.-L.; Chakraborty, H.; McNulty, S.; LeWinter, M.M.; et al. Characterization of the Obese Phenotype of Heart Failure with Preserved Ejection Fraction: A RELAX Trial Ancillary Study. Mayo Clin. Proc. 2019, 94, 1199–1209. [Google Scholar] [CrossRef]
- Sato, Y.; Yoshihisa, A.; Oikawa, M.; Nagai, T.; Yoshikawa, T.; Saito, Y.; Yamamoto, K.; Takeishi, Y.; Anzai, T. Prognostic Impact of Chronic Obstructive Pulmonary Disease on Adverse Prognosis in Hospitalized Heart Failure Patients with Preserved Ejection Fraction—A Report from the JASPER Registry. J. Cardiol. 2019, 73, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Bairey Merz, C.N.; Beltrame, J.F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Camici, P.G. Coronary Vasomotion Disorders International Study Group (COVADIS) The Parallel Tales of Microvascular Angina and Heart Failure with Preserved Ejection Fraction: A Paradigm Shift. Eur. Heart J. 2017, 38, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.-M.; Yang, C.-W. Chronic Kidney Disease: Global Dimension and Perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Testani, J.M.; Martens, P.; Mueller, C.; Lassus, J.; Tang, W.H.W.; Skouri, H.; Verbrugge, F.H.; Orso, F.; et al. Evaluation of Kidney Function throughout the Heart Failure Trajectory—A Position Statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 584–603. [Google Scholar] [CrossRef] [PubMed]
- Löfman, I.; Szummer, K.; Evans, M.; Carrero, J.-J.; Lund, L.H.; Jernberg, T. Incidence of, Associations with and Prognostic Impact of Worsening Renal Function in Heart Failure With Different Ejection Fraction Categories. Am. J. Cardiol. 2019, 124, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, R.; Doros, G.; Shaw, P.; Liang, C.-S.; Gauthier, D.F.; Sam, F. Comparison of Characteristics and Outcomes of Patients with Heart Failure Preserved Ejection Fraction versus Reduced Left Ventricular Ejection Fraction in an Urban Cohort. Am. J. Cardiol. 2014, 113, 691–696. [Google Scholar] [CrossRef]
- Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.T.; Deswal, A. Impact of Noncardiac Comorbidities on Morbidity and Mortality in a Predominantly Male Population with Heart Failure and Preserved versus Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2012, 59, 998–1005. [Google Scholar] [CrossRef]
- Löfman, I.; Szummer, K.; Dahlström, U.; Jernberg, T.; Lund, L.H. Associations with and Prognostic Impact of Chronic Kidney Disease in Heart Failure with Preserved, Mid-Range, and Reduced Ejection Fraction. Eur. J. Heart Fail. 2017, 19, 1606–1614. [Google Scholar] [CrossRef]
- McAlister, F.A.; Ezekowitz, J.; Tarantini, L.; Squire, I.; Komajda, M.; Bayes-Genis, A.; Gotsman, I.; Whalley, G.; Earle, N.; Poppe, K.K.; et al. Renal Dysfunction in Patients with Heart Failure with Preserved versus Reduced Ejection Fraction: Impact of the New Chronic Kidney Disease-Epidemiology Collaboration Group Formula. Circ. Heart Fail. 2012, 5, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Valente, M.A.E.; Voors, A.A.; O’Connor, C.M.; van Veldhuisen, D.J.; Hillege, H.L. Renal Impairment, Worsening Renal Function, and Outcome in Patients with Heart Failure: An Updated Meta-Analysis. Eur. Heart J. 2014, 35, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The Survival of Patients with Heart Failure with Preserved or Reduced Left Ventricular Ejection Fraction: An Individual Patient Data Meta-Analysis. Eur. Heart J. 2012, 33, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, G.; Palazzuoli, A.; Ter Maaten, J.M. The Role of the Kidney in Acute and Chronic Heart Failure. Heart Fail. Rev. 2020, 25, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, M.; Ruocco, G.; Ibrahim, A.; Lucani, B.; Franci, B.; Nuti, R.; Palazzuoli, A. Different Trajectories and Significance of B-Type Natriuretic Peptide, Congestion and Acute Kidney Injury in Patients with Heart Failure. Intern. Emerg. Med. 2017, 12, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Beldhuis, I.E.; Streng, K.W.; Van Der Meer, P.; Ter Maaten, J.M.; O’Connor, C.M.; Metra, M.; Dittrich, H.C.; Ponikowski, P.; Cotter, G.; Cleland, J.G.F.; et al. Trajectories of Changes in Renal Function in Patients with Acute Heart Failure. J. Card. Fail. 2019, 25, 866–874. [Google Scholar] [CrossRef]
- Zannad, F.; Rossignol, P. Cardiorenal Syndrome Revisited. Circulation 2018, 138, 929–944. [Google Scholar] [CrossRef] [PubMed]
- Boorsma, E.M.; Ter Maaten, J.M.; Voors, A.A.; van Veldhuisen, D.J. Renal Compression in Heart Failure: The Renal Tamponade Hypothesis. JACC Heart Fail. 2022, 10, 175–183. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure with Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Tumlin, J.A.; Costanzo, M.R.; Chawla, L.S.; Herzog, C.A.; Kellum, J.A.; McCullough, P.A.; Ronco, C.; Acute Dialysis Quality Initiative (ADQI) 11 Consensus Group. Cardiorenal Syndrome Type 4: Insights on Clinical Presentation and Pathophysiology from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). In Contributions to Nephrology; McCullough, P.A., Kellum, J.A., Mehta, R.L., Murray, P.T., Ronco, C., Eds.; Karger AG: Basel, Switzerland, 2013; Volume 182, pp. 158–173. ISBN 978-3-318-02406-7. [Google Scholar]
- Petrie, M.C.; Padmanabhan, N.; McDonald, J.E.; Hillier, C.; Connell, J.M.; McMurray, J.J. Angiotensin Converting Enzyme (ACE) and Non-ACE Dependent Angiotensin II Generation in Resistance Arteries from Patients with Heart Failure and Coronary Heart Disease. J. Am. Coll. Cardiol. 2001, 37, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Collier, P.; Watson, C.J.; Voon, V.; Phelan, D.; Jan, A.; Mak, G.; Martos, R.; Baugh, J.A.; Ledwidge, M.T.; McDonald, K.M. Can Emerging Biomarkers of Myocardial Remodelling Identify Asymptomatic Hypertensive Patients at Risk for Diastolic Dysfunction and Diastolic Heart Failure? Eur. J. Heart Fail. 2011, 13, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Chiuariu, T.; Șalaru, D.; Ureche, C.; Vasiliu, L.; Lupu, A.; Lupu, V.V.; Șerban, A.M.; Zăvoi, A.; Benchea, L.C.; Clement, A.; et al. Cardiac and Renal Fibrosis, the Silent Killer in the Cardiovascular Continuum: An Up-to-Date. J. Cardiovasc. Dev. Dis. 2024, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Leifheit-Nestler, M.; Kirchhoff, F.; Nespor, J.; Richter, B.; Soetje, B.; Klintschar, M.; Heineke, J.; Haffner, D. Fibroblast Growth Factor 23 Is Induced by an Activated Renin-Angiotensin-Aldosterone System in Cardiac Myocytes and Promotes the pro-Fibrotic Crosstalk between Cardiac Myocytes and Fibroblasts. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2018, 33, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Habibi, J.; DeMarco, V.G.; Martinez-Lemus, L.A.; Ma, L.; Whaley-Connell, A.T.; Aroor, A.R.; Domeier, T.L.; Zhu, Y.; Meininger, G.A.; et al. Endothelial Mineralocorticoid Receptor Deletion Prevents Diet-Induced Cardiac Diastolic Dysfunction in Females. Hypertens. Dallas Tex. 1979 2015, 66, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Smilde, T.D.J.; van Veldhuisen, D.J.; Navis, G.; Voors, A.A.; Hillege, H.L. Drawbacks and Prognostic Value of Formulas Estimating Renal Function in Patients with Chronic Heart Failure and Systolic Dysfunction. Circulation 2006, 114, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Levey, A.S. Measured GFR as a Confirmatory Test for Estimated GFR. J. Am. Soc. Nephrol. JASN 2009, 20, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Steubl, D.; Block, M.; Herbst, V.; Nockher, W.A.; Schlumberger, W.; Satanovskij, R.; Angermann, S.; Hasenau, A.-L.; Stecher, L.; Heemann, U.; et al. Plasma Uromodulin Correlates with Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients. Medicine 2016, 95, e3011. [Google Scholar] [CrossRef]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum Creatinine as an Index of Renal Function: New Insights into Old Concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef]
- Andrassy, K.M. Comments on “KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease”. Kidney Int. 2013, 84, 622–623. [Google Scholar] [CrossRef]
- Chronic Kidney Disease Prognosis Consortium; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of Estimated Glomerular Filtration Rate and Albuminuria with All-Cause and Cardiovascular Mortality in General Population Cohorts: A Collaborative Meta-Analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Jager, K.J.; Bökenkamp, A.; Christensson, A.; Dubourg, L.; Eriksen, B.O.; Gaillard, F.; Gambaro, G.; van der Giet, M.; Glassock, R.J.; et al. CKD: A Call for an Age-Adapted Definition. J. Am. Soc. Nephrol. JASN 2019, 30, 1785–1805. [Google Scholar] [CrossRef]
- Denic, A.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes with the Aging Kidney. Adv. Chronic Kidney Dis. 2016, 23, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Fan, L.; Eckfeldt, J.H.; Inker, L.A. Cystatin C for Glomerular Filtration Rate Estimation: Coming of Age. Clin. Chem. 2014, 60, 916–919. [Google Scholar] [CrossRef]
- Björk, J.; Bäck, S.E.; Ebert, N.; Evans, M.; Grubb, A.; Hansson, M.; Jones, I.; Lamb, E.J.; Martus, P.; Schaeffner, E.; et al. GFR Estimation Based on Standardized Creatinine and Cystatin C: A European Multicenter Analysis in Older Adults. Clin. Chem. Lab. Med. 2018, 56, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults: A Systematic Review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.E.; Solomon, S.D.; Gerstein, H.C.; Zetterstrand, S.; Olofsson, B.; Michelson, E.L.; Granger, C.B.; Swedberg, K.; Pfeffer, M.A.; Yusuf, S.; et al. Albuminuria in Chronic Heart Failure: Prevalence and Prognostic Importance. Lancet 2009, 374, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Bruns, D.E.; Hortin, G.L.; Sandberg, S.; Aakre, K.M.; McQueen, M.J.; Itoh, Y.; Lieske, J.C.; Seccombe, D.W.; Jones, G.; et al. Current Issues in Measurement and Reporting of Urinary Albumin Excretion. Clin. Chem. 2009, 55, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Oshita, T.; Watanabe, S.; Toyohara, T.; Kujirai, R.; Kikuchi, K.; Suzuki, T.; Suzuki, C.; Matsumoto, Y.; Wada, J.; Tomioka, Y.; et al. Urinary Growth Differentiation Factor 15 Predicts Renal Function Decline in Diabetic Kidney Disease. Sci. Rep. 2023, 13, 12508. [Google Scholar] [CrossRef]
- Perez-Gomez, M.V.; Pizarro-Sanchez, S.; Gracia-Iguacel, C.; Cano, S.; Cannata-Ortiz, P.; Sanchez-Rodriguez, J.; Sanz, A.B.; Sanchez-Niño, M.D.; Ortiz, A. Urinary Growth Differentiation Factor-15 (GDF15) Levels as a Biomarker of Adverse Outcomes and Biopsy Findings in Chronic Kidney Disease. J. Nephrol. 2021, 34, 1819–1832. [Google Scholar] [CrossRef]
- Kanagala, P.; Arnold, J.R.; Khan, J.N.; Singh, A.; Gulsin, G.S.; Eltayeb, M.; Gupta, P.; Squire, I.B.; McCann, G.P.; Ng, L.L. Fibroblast-Growth-Factor-23 in Heart Failure with Preserved Ejection Fraction: Relation to Exercise Capacity and Outcomes. ESC Heart Fail. 2020, 7, 4089–4099. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhou, J.; Zhang, M.; Shen, C.; Jiang, Z.; Zhang, T.; Gao, F. The Diagnostic Accuracy of N-Terminal Pro-B-Type Natriuretic Peptide and Soluble ST2 for Heart Failure in Chronic Kidney Disease Patients: A Comparative Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e940641. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.J.; Ro, H.; Kim, H.; Chang, J.H.; Lee, H.H.; Chung, W.; Jung, J.Y. Soluble ST2 and Galectin-3 as Predictors of Chronic Kidney Disease Progression and Outcomes. Am. J. Nephrol. 2021, 52, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney Disease as a Risk Factor for Development of Cardiovascular Disease: A Statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertens. Dallas Tex. 1979 2003, 42, 1050–1065. [Google Scholar] [CrossRef] [PubMed]
- Kuncio, G.S.; Neilson, E.G.; Haverty, T. Mechanisms of Tubulointerstitial Fibrosis. Kidney Int. 1991, 39, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Viau, A.; El Karoui, K.; Laouari, D.; Burtin, M.; Nguyen, C.; Mori, K.; Pillebout, E.; Berger, T.; Mak, T.W.; Knebelmann, B.; et al. Lipocalin 2 Is Essential for Chronic Kidney Disease Progression in Mice and Humans. J. Clin. Investig. 2010, 120, 4065–4076. [Google Scholar] [CrossRef] [PubMed]
- Mitsnefes, M.M.; Kathman, T.S.; Mishra, J.; Kartal, J.; Khoury, P.R.; Nickolas, T.L.; Barasch, J.; Devarajan, P. Serum Neutrophil Gelatinase-Associated Lipocalin as a Marker of Renal Function in Children with Chronic Kidney Disease. Pediatr. Nephrol. Berl. Ger. 2007, 22, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Lewis, J.R.; Wong, G.; Teo, R.; Lim, E.M.; Byrnes, E.; Prince, R.L. Plasma Neutrophil Gelatinase-Associated Lipocalin and Kidney Function Decline and Kidney Disease-Related Clinical Events in Older Women. Am. J. Nephrol. 2015, 41, 156–164. [Google Scholar] [CrossRef]
- Yndestad, A.; Landrø, L.; Ueland, T.; Dahl, C.P.; Flo, T.H.; Vinge, L.E.; Espevik, T.; Frøland, S.S.; Husberg, C.; Christensen, G.; et al. Increased Systemic and Myocardial Expression of Neutrophil Gelatinase-Associated Lipocalin in Clinical and Experimental Heart Failure. Eur. Heart J. 2009, 30, 1229–1236. [Google Scholar] [CrossRef]
- Vaidya, V.S.; Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.; Collings, F.B.; Warram, J.H.; Krolewski, A.S.; Bonventre, J.V. Regression of Microalbuminuria in Type 1 Diabetes Is Associated with Lower Levels of Urinary Tubular Injury Biomarkers, Kidney Injury Molecule-1, and N-Acetyl-β-D-Glucosaminidase. Kidney Int. 2011, 79, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Lobato, G.R.; Lobato, M.R.; Thomé, F.S.; Veronese, F.V. Performance of Urinary Kidney Injury Molecule-1, Neutrophil Gelatinase-Associated Lipocalin, and N-Acetyl-β-D-Glucosaminidase to Predict Chronic Kidney Disease Progression and Adverse Outcomes. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas Biol. 2017, 50, e6106. [Google Scholar] [CrossRef]
- Jaiswal, V.; Ang, S.P.; Hameed, M.; Chia, J.; Kalra, K.; Attia, A.A.; Kanakannavar, S.S.; Roy, S.; Naz, S.; Hugo Alvarez-Aguilera, V.; et al. SGLT2 Inhibitors among Patients with Heart Failure with Preserved Ejection Fraction: A Meta Analysis of Randomised Controlled Trials. Eur. Heart J. 2023, 44, ehac779.041. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; De Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Rao, V.S.; Ivey-Miranda, J.; Fleming, J.; Mahoney, D.; Maulion, C.; Suda, N.; Siwakoti, K.; Ahmad, T.; Jacoby, D.; et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020, 142, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef] [PubMed]
- Chatur, S.; Vaduganathan, M.; Claggett, B.; Vardeny, O.; Desai, A.S.; Jhund, P.S.; De Boer, R.A.; Lam, C.S.P.; Kosiborod, M.N.; Shah, S.J.; et al. Dapagliflozin and Diuretic Utilization in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: The DELIVER Trial. Eur. Heart J. 2023, 44, 2930–2943. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 Inhibitors in Patients with Heart Failure with Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Jhund, P.S.; Solomon, S.D.; Docherty, K.F.; Heerspink, H.J.L.; Anand, I.S.; Böhm, M.; Chopra, V.; De Boer, R.A.; Desai, A.S.; Ge, J.; et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients with Heart Failure With Reduced Ejection Fraction: Results of DAPA-HF. Circulation 2021, 143, 298–309. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Clemmer, J.S.; Ward, T.J.; Lirette, S.T. Retrospective Analysis of SGLT2 Inhibitors in Heart Failure with Preserved Ejection Fraction. ESC Heart Fail. 2023, 10, 2010–2018. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Butler, J.; Zannad, F.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients with Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation 2021, 144, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Butler, J.; Zannad, F.; Pocock, S.J.; Filippatos, G.; Ferreira, J.P.; Brueckmann, M.; Jamal, W.; Zeller, C.; Wanner, C.; et al. Empagliflozin and Major Renal Outcomes in Heart Failure. N. Engl. J. Med. 2021, 385, 1531–1533. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Packer, M.; Zannad, F.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Brueckmann, M.; Zeller, C.; Hauske, S.; Anker, S.D.; et al. Influence of Endpoint Definitions on the Effect of Empagliflozin on Major Renal Outcomes in the EMPEROR-Preserved Trial. Eur. J. Heart Fail. 2021, 23, 1798–1799. [Google Scholar] [CrossRef] [PubMed]
- Barbarawi, M.; Al-abdouh, A.; Barbarawi, O.; Lakshman, H.; Al Kasasbeh, M.; Chen, K. SGLT2 Inhibitors and Cardiovascular and Renal Outcomes: A Meta-Analysis and Trial Sequential Analysis. Heart Fail. Rev. 2022, 27, 951–960. [Google Scholar] [CrossRef]
- McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; et al. Association of SGLT2 Inhibitors with Cardiovascular and Kidney Outcomes in Patients with Type 2 Diabetes: A Meta-Analysis. JAMA Cardiol. 2021, 6, 148. [Google Scholar] [CrossRef]
- Packer, M. Pitfalls in Using Estimated Glomerular Filtration Rate Slope as a Surrogate for the Effect of Drugs on the Risk of Serious Adverse Renal Outcomes in Clinical Trials of Patients with Heart Failure. Circ. Heart Fail. 2021, 14, e008537. [Google Scholar] [CrossRef]
- Chatur, S.; Cunningham, J.W.; Vaduganathan, M.; Mc Causland, F.R.; Claggett, B.L.; Desai, A.S.; Miao, Z.M.; Jhund, P.S.; De Boer, R.A.; Hernandez, A.F.; et al. Renal and Blood Pressure Effects of Dapagliflozin in Recently Hospitalized Patients with Heart Failure with Mildly Reduced or Preserved Ejection Fraction: Insights from the DELIVER Trial. Eur. J. Heart Fail. 2023, 25, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Mc Causland, F.R.; Claggett, B.L.; Vaduganathan, M.; Desai, A.S.; Jhund, P.; De Boer, R.A.; Docherty, K.; Fang, J.; Hernandez, A.F.; Inzucchi, S.E.; et al. Dapagliflozin and Kidney Outcomes in Patients with Heart Failure with Mildly Reduced or Preserved Ejection Fraction: A Prespecified Analysis of the DELIVER Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Damman, K.; Teerlink, J.R.; Angermann, C.E.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; et al. Renal Effects of Empagliflozin in Patients Hospitalized for Acute Heart Failure: From the EMPULSE Trial. Eur. J. Heart Fail. 2022, 24, 1844–1852. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Claggett, B.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; Gordeev, I.; et al. Regional Variation in Patients and Outcomes in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circulation 2015, 131, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Segar, M.W.; Patel, R.B.; Patel, K.V.; Fudim, M.; DeVore, A.D.; Martens, P.; Hedayati, S.S.; Grodin, J.L.; Tang, W.H.W.; Pandey, A. Association of Visit-to-Visit Variability in Kidney Function and Serum Electrolyte Indexes with Risk of Adverse Clinical Outcomes Among Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2020. [Google Scholar] [CrossRef]
- Filippatos, G.; Pitt, B.; Agarwal, R.; Farmakis, D.; Ruilope, L.M.; Rossing, P.; Bauersachs, J.; Mentz, R.J.; Kolkhof, P.; Scott, C.; et al. Finerenone in Patients with Chronic Kidney Disease and Type 2 Diabetes with and without Heart Failure: A Prespecified Subgroup Analysis of the FIDELIO-DKD Trial. Eur. J. Heart Fail. 2022, 24, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Vaduganathan, M.; Claggett, L.B.; Packer, M.; Zile, M.; Swedberg, K.; Rouleau, J.; Pfeffer, A.M.; Desai, A.; Lund, L.H.; et al. Sacubitril/Valsartan Across the Spectrum of Ejection Fraction in Heart Failure. Circulation 2020, 141, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- Solomon, S.D.; Zile, M.; Pieske, B.; Voors, A.; Shah, A.; Kraigher-Krainer, E.; Shi, V.; Bransford, T.; Takeuchi, M.; Gong, J.; et al. The Angiotensin Receptor Neprilysin Inhibitor LCZ696 in Heart Failure with Preserved Ejection Fraction: A Phase 2 Double-Blind Randomised Controlled Trial. Lancet 2012, 380, 1387–1395. [Google Scholar] [CrossRef]
- Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.; Michelson, E.L.; Olofsson, B.; Östergren, J. Effects of Candesartan in Patients with Chronic Heart Failure and Preserved Left-Ventricular Ejection Fraction: The CHARM-Preserved Trial. Lancet 2003, 362, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Solomon, S.D.; Pfeffer, M.A.; Swedberg, K.; Yusuf, S.; Young, J.B.; Rouleau, J.L.; Granger, C.B.; McMurray, J.J.V. Worsening Renal Function and Outcome in Heart Failure Patients with Reduced and Preserved Ejection Fraction and the Impact of Angiotensin Receptor Blocker Treatment: Data from the CHARM-study Programme. Eur. J. Heart Fail. 2016, 18, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.F.; Tendera, M.; Adamus, J.; Freemantle, N.; Polonski, L.; Taylor, J. PEP-CHF Investigators the Perindopril in Elderly People with Chronic Heart Failure (PEP-CHF) Study. Eur. Heart J. 2006, 27, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Massie, B.M.; Carson, P.E.; McMurray, J.J.; Komajda, M.; McKelvie, R.; Zile, M.R.; Anderson, S.; Donovan, M.; Iverson, E.; Staiger, C.; et al. Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. N. Engl. J. Med. 2008, 359, 2456–2467. [Google Scholar] [CrossRef] [PubMed]
- Beckett, N.S.; Peters, R.; Fletcher, A.E.; Staessen, J.A.; Liu, L.; Dumitrascu, D.; Stoyanovsky, V.; Antikainen, R.L.; Nikitin, Y.; Anderson, C.; et al. Treatment of Hypertension in Patients 80 Years of Age or Older. N. Engl. J. Med. 2008, 358, 1887–1898. [Google Scholar] [CrossRef]
- Testani, J.M.; Kimmel, S.E.; Dries, D.L.; Coca, S.G. Prognostic Importance of Early Worsening Renal Function After Initiation of Angiotensin-Converting Enzyme Inhibitor Therapy in Patients with Cardiac Dysfunction. Circ. Heart Fail. 2011, 4, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Rahman, M.; Reboussin, D.M.; Craven, T.E.; Greene, T.; Kimmel, P.L.; Cushman, W.C.; Hawfield, A.T.; Johnson, K.C.; Lewis, C.E.; et al. Effects of Intensive BP Control in CKD. J. Am. Soc. Nephrol. 2017, 28, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- Brisco, M.A.; Zile, M.R.; Hanberg, J.S.; Wilson, F.P.; Parikh, C.R.; Coca, S.G.; Tang, W.H.W.; Testani, J.M. Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights from the DOSE Trial. J. Card. Fail. 2016, 22, 753–760. [Google Scholar] [CrossRef]
- Ahmed, A.; Fonarow, G.C.; Zhang, Y.; Sanders, P.W.; Allman, R.M.; Arnett, D.K.; Feller, M.A.; Love, T.E.; Aban, I.B.; Levesque, R.; et al. Renin-Angiotensin Inhibition in Systolic Heart Failure and Chronic Kidney Disease. Am. J. Med. 2012, 125, 399–410. [Google Scholar] [CrossRef]
- Wali, R.K.; Iyengar, M.; Beck, G.J.; Chartyan, D.M.; Chonchol, M.; Lukas, M.A.; Cooper, C.; Himmelfarb, J.; Weir, M.R.; Berl, T.; et al. Efficacy and Safety of Carvedilol in Treatment of Heart Failure with Chronic Kidney Disease: A Meta-Analysis of Randomized Trials. Circ. Heart Fail. 2011, 4, 18–26. [Google Scholar] [CrossRef]
- Fu, E.L.; Uijl, A.; Dekker, F.W.; Lund, L.H.; Savarese, G.; Carrero, J.J. Association Between β-Blocker Use and Mortality/Morbidity in Patients with Heart Failure with Reduced, Midrange, and Preserved Ejection Fraction and Advanced Chronic Kidney Disease. Circ. Heart Fail. 2020, 13, e007180. [Google Scholar] [CrossRef] [PubMed]
- Van Veldhuisen, D.J.; Cohen-Solal, A.; Böhm, M.; Anker, S.D.; Babalis, D.; Roughton, M.; Coats, A.J.S.; Poole-Wilson, P.A.; Flather, M.D. Beta-Blockade with Nebivolol in Elderly Heart Failure Patients with Impaired and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2009, 53, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Solal, A.; Kotecha, D.; Van Veldhuisen, D.J.; Babalis, D.; Böhm, M.; Coats, A.J.; Roughton, M.; Poole-Wilson, P.; Tavazzi, L.; Flather, M.; et al. Efficacy and Safety of Nebivolol in Elderly Heart Failure Patients with Impaired Renal Function: Insights from the SENIORS Trial. Eur. J. Heart Fail. 2009, 11, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Conway, R.; Creagh, D.; Byrne, D.G.; O’Riordan, D.; Silke, B. Serum Potassium Levels as an Outcome Determinant in Acute Medical Admissions. Clin. Med. 2015, 15, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, M.J.; Tang, J.I.; Padfield, P.L.; Seckl, J.R. Hyperkalaemia. BMJ 2009, 339, b4114. [Google Scholar] [CrossRef] [PubMed]
- Hayslett, J.P.; Binder, H.J. Mechanism of Potassium Adaptation. Am. J. Physiol. Ren. Physiol. 1982, 243, F103–F112. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, J.M.; Balafa, O.; Ekart, R.; Ferro, C.J.; Mallamaci, F.; Mark, P.B.; Rossignol, P.; Sarafidis, P.; Del Vecchio, L.; Ortiz, A. Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies. Drugs 2021, 81, 1467–1489. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F. Regulation of Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, S.; Goecke, I.A.; Bozzo, S.; Alvo, M.; Michea, L.; Marusic, E.T. Effect of Chronic Renal Failure on Na,K-ATPase Alpha 1 and Alpha 2 mRNA Transcription in Rat Skeletal Muscle. J. Clin. Investig. 1991, 88, 2137–2141. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Appel, L.J.; Grams, M.E.; Gutekunst, L.; McCullough, P.A.; Palmer, B.F.; Pitt, B.; Sica, D.A.; Townsend, R.R. Potassium Homeostasis in Health and Disease: A Scientific Workshop Cosponsored by the National Kidney Foundation and the American Society of Hypertension. J. Am. Soc. Hypertens. 2017, 11, 783–800. [Google Scholar] [CrossRef]
- Goia-Nishide, K.; Coregliano-Ring, L.; Rangel, É.B. Hyperkalemia in Diabetes Mellitus Setting. Diseases 2022, 10, 20. [Google Scholar] [CrossRef]
- Arrizabalaga, P.; Montoliu, J.; Martinez Vea, A.; Andreu, L.; López Pedret, J.; Revert, L. Increase in Serum Potassium Caused by Beta-2 Adrenergic Blockade in Terminal Renal Failure: Absence of Mediation by Insulin or Aldosterone. Proc. Eur. Dial. Transpl. Assoc. Eur. Dial. Transpl. Assoc. 1983, 20, 572–576. [Google Scholar]
- Bandak, G.; Sang, Y.; Gasparini, A.; Chang, A.R.; Ballew, S.H.; Evans, M.; Arnlov, J.; Lund, L.H.; Inker, L.A.; Coresh, J.; et al. Hyperkalemia After Initiating Renin–Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J. Am. Heart Assoc. 2017, 6, e005428. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, F.; Lund, L.H.; Benson, L.; Hage, C.; Musella, F.; Stolfo, D.; Mol, P.G.M.; Flammer, A.J.; Ruschitzka, F.; Dahlstrom, U.; et al. Safety of Continuing Mineralocorticoid Receptor Antagonist Treatment in Patients with Heart Failure with Reduced Ejection Fraction and Severe Kidney Disease: Data from Swedish Heart Failure Registry. Eur. J. Heart Fail. 2023, 25, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.S.; Vardeny, O.; Claggett, B.; McMurray, J.J.V.; Packer, M.; Swedberg, K.; Rouleau, J.L.; Zile, M.R.; Lefkowitz, M.; Shi, V.; et al. Reduced Risk of Hyperkalemia During Treatment of Heart Failure with Mineralocorticoid Receptor Antagonists by Use of Sacubitril/Valsartan Compared with Enalapril: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol. 2017, 2, 79. [Google Scholar] [CrossRef]
- Edner, M.; Benson, L.; Dahlström, U.; Lund, L.H. Association between Renin–Angiotensin System Antagonist Use and Mortality in Heart Failure with Severe Renal Insufficiency: A Prospective Propensity Score-Matched Cohort Study. Eur. Heart J. 2015, 36, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.H.; Pitt, B. Is Hyperkalaemia in Heart Failure a Risk Factor or a Risk Marker? Implications for Renin–Angiotensin–Aldosterone System Inhibitor Use. Eur. J. Heart Fail. 2018, 20, 931–932. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Butler, J.; Rossignol, P.; Pitt, B.; Anker, S.D.; Kosiborod, M.; Lund, L.H.; Bakris, G.L.; Weir, M.R.; Zannad, F. Abnormalities of Potassium in Heart Failure. J. Am. Coll. Cardiol. 2020, 75, 2836–2850. [Google Scholar] [CrossRef]
- Lindner, G.; Burdmann, E.A.; Clase, C.M.; Hemmelgarn, B.R.; Herzog, C.A.; Małyszko, J.; Nagahama, M.; Pecoits-Filho, R.; Rafique, Z.; Rossignol, P.; et al. Acute Hyperkalemia in the Emergency Department: A Summary from a Kidney Disease: Improving Global Outcomes Conference. Eur. J. Emerg. Med. 2020, 27, 329–337. [Google Scholar] [CrossRef]
- Rosano, G.M.C.; Tamargo, J.; Kjeldsen, K.P.; Lainscak, M.; Agewall, S.; Anker, S.D.; Ceconi, C.; Coats, A.J.S.; Drexel, H.; Filippatos, G.; et al. Expert Consensus Document on the Management of Hyperkalaemia in Patients with Cardiovascular Disease Treated with Renin Angiotensin Aldosterone System Inhibitors: Coordinated by the Working Group on Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur. Heart J. Cardiovasc. Pharmacother. 2018, 4, 180–188. [Google Scholar] [CrossRef]
- Neuen, B.L.; Oshima, M.; Agarwal, R.; Arnott, C.; Cherney, D.Z.; Edwards, R.; Langkilde, A.M.; Mahaffey, K.W.; McGuire, D.K.; Neal, B.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People with Type 2 Diabetes: A Meta-Analysis of Individual Participant Data from Randomized, Controlled Trials. Circulation 2022, 145, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.A.; Bota, S.E.; Petrcich, W.; Garg, A.X.; Carrero, J.J.; Harel, Z.; Tangri, N.; Clark, E.G.; Komenda, P.; Sood, M.M. Risk of Hospitalization for Serious Adverse Gastrointestinal Events Associated with Sodium Polystyrene Sulfonate Use in Patients of Advanced Age. JAMA Intern. Med. 2019, 179, 1025. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, R.; Rengarajan, S.; Budden, J.J.; Quinn, C.M.; Kalra, P.A. Maintaining Renin-Angiotensin-Aldosterone System Inhibitor Treatment with Patiromer in Hyperkalaemic Chronic Kidney Disease Patients: Comparison of a Propensity-Matched Real-World Population with AMETHYST-DN. Am. J. Nephrol. 2023, 54, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Woods, S.D.; Alvarez, P.J.; Arthur, S.P.; Kumar, R. Hyperkalemia Management in Older Adults with Diabetic Kidney Disease Receiving Renin-Angiotensin-Aldosterone System Inhibitors: A Post Hoc Analysis of the AMETHYST-DN Clinical Trial. Kidney Med. 2021, 3, 360.e1–367.e1. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Anker, S.D.; Lund, L.H.; Coats, A.J.S.; Filippatos, G.; Siddiqi, T.J.; Friede, T.; Fabien, V.; Kosiborod, M.; Metra, M.; et al. Patiromer for the Management of Hyperkalemia in Heart Failure with Reduced Ejection Fraction: The DIAMOND Trial. Eur. Heart J. 2022, 43, 4362–4373. [Google Scholar] [CrossRef] [PubMed]
- Roger, S.D.; Spinowitz, B.S.; Lerma, E.V.; Singh, B.; Packham, D.K.; Al-Shurbaji, A.; Kosiborod, M. Efficacy and Safety of Sodium Zirconium Cyclosilicate for Treatment of Hyperkalemia: An 11-Month Open-Label Extension of HARMONIZE. Am. J. Nephrol. 2019, 50, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Fishbane, S.; Ford, M.; Fukagawa, M.; McCafferty, K.; Rastogi, A.; Spinowitz, B.; Staroselskiy, K.; Vishnevskiy, K.; Lisovskaja, V.; Al-Shurbaji, A.; et al. A Phase 3b, Randomized, Double-Blind, Placebo-Controlled Study of Sodium Zirconium Cyclosilicate for Reducing the Incidence of Predialysis Hyperkalemia. J. Am. Soc. Nephrol. 2019, 30, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Merrill, M.; Sweitzer, N.K.; Lindenfeld, J.; Kao, D.P. Sex Differences in Outcomes and Responses to Spironolactone in Heart Failure with Preserved Ejection Fraction: A Secondary Analysis of TOPCAT Trial. JACC Heart Fail. 2019, 7, 228–238. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Beltrami, M.; Milli, M.; Dei, L.L.; Palazzuoli, A. The Treatment of Heart Failure in Patients with Chronic Kidney Disease: Doubts and New Developments from the Last ESC Guidelines. J. Clin. Med. 2022, 11, 2243. [Google Scholar] [CrossRef]
- Shin, J.-I.; Fine, D.M.; Sang, Y.; Surapaneni, A.; Dunning, S.C.; Inker, L.A.; Nolin, T.D.; Chang, A.R.; Grams, M.E. Association of Rosuvastatin Use with Risk of Hematuria and Proteinuria. J. Am. Soc. Nephrol. JASN 2022, 33, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- de Zeeuw, D.; Anzalone, D.A.; Cain, V.A.; Cressman, M.D.; Heerspink, H.J.L.; Molitoris, B.A.; Monyak, J.T.; Parving, H.-H.; Remuzzi, G.; Sowers, J.R.; et al. Renal Effects of Atorvastatin and Rosuvastatin in Patients with Diabetes Who Have Progressive Renal Disease (PLANET I): A Randomised Clinical Trial. Lancet Diabetes Endocrinol. 2015, 3, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Borlaug, B.A.; Chung, E.S.; Cutlip, D.E.; Debonnaire, P.; Fail, P.S.; Gao, Q.; Hasenfuß, G.; Kahwash, R.; Kaye, D.M.; et al. Atrial Shunt Device for Heart Failure with Preserved and Mildly Reduced Ejection Fraction (REDUCE LAP-HF II): A Randomised, Multicentre, Blinded, Sham-Controlled Trial. Lancet 2022, 399, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
Renal Analysis and Endpoints | ||||||
---|---|---|---|---|---|---|
Study (Year) | Patients and Design of the Study | Primary Endopoint | Baseline eGFR | Safety Outcome | Progression of kidney Disfunction (Based on eGFR Trend) | Efficacy Outcome |
SGLT2-i | ||||||
EMPEROR-preserved (2021) [75] | Randomized with empagliflozin A total of 5988 adults (≥18 years of age), LVEF of more than 40%, and NYHA classes II, III, or IV symptoms. Median follow up of 26 months. | Composite of death from cardiovascular causes or hospitalization for HF (first or recurrent). | 60.6 ± 19.8 mL/min/1.73 m2 in the empagliflozin group and 60.6 ± 19.9 mL/min/1.73 m2 in the placebo group | NA | The rate of decline in the eGFR was slower in the empagliflozin group than in the placebo group (–1.25 vs. –2.62 mL per minute per 1.73 m2 per year; p < 0.001). | No significative difference in the composite renal outcome: 3.6%, with 2.1 events per 100 patient-year in the empagliflozin group versus 3.7% and 2.2 events per 100 patient-year in the placebo group (HR 0.95, 95% CI). |
DELIVER (2022) [65] | Randomized with dapagliflozin A total of 10,584 adults (≥18 years of age), LVEF of more than 40%, and NYHA classes II–IV, including patients with improved LVEF. | Composite of worsening HF (hospitalization or an urgent visit resulting in intravenous therapy for HF) or death from cardiovascular causes. | 61 ± 19 mL/min/1.73 m2 in both groups | Incidence of AKI and any serious renal adverse event that led to treatment discontinuation were, respectively, 1.5% and 0.3% in the dapagliflozin group vs. 1.6% and 0.2% in the placebo group. | NA | NA |
S. Chatur et al. (2023) [82] | Pre-specified analysis Same population as the DELIVER-trial. | 61 ± 19 mL/min/1.73 m2 in both groups | Already analyzed in the RCT. | Initial decline in the eGFR with dapagliflozin from baseline to 1 month of follow-up of −1.0 (−2.4, +0.4) mL/min/1.73 m2 in patients with recent HF hospitalization, and of −4.0 (−4.3, −3.6) mL/min/1.73 m2 in patients without recent HF hospitalization. Similar attenuation of eGFR decline from month 1 to 24 months in patients with (+0.03 [−0.1, +0.2] mL/min/1.73 m2) and without (+0.08 [+0.04, +0.12] mL/min/1.73 m2) recent HF hospitalization (p-interaction = 0.57). Similar effect of dapagliflozin treatment on total slope from baseline to end of follow-up in patients with (+0.02 [−0.12, +0.16] mL/min/1.73 m2) and without (+0.04 [+0.01, +0.07] mL/min/1.73 m2) recent HF hospitalization (p-interaction = 0.66). | NA | |
F.R. Mc Causlan et al. [83] | Post hoc analysis Same population as the DELIVER-trial. | 61 ± 19 mL/min/1.73 m2 in both groups | Already analyzed in the RCT. | Initial acute decline in the eGFR in the dapagliflozin group between baseline and month 1 (−3.7; 95% CI, −4.0 to −3.3 mL/min/1.73 m2), compared with those assigned to the placebo (−0.4; 95% CI, −0.8 to 0 mL/min/1.73 m2). Between month 1 and the end of the trial, the mean decline in the eGFR was 0 mL/min/1.73 m2 per year (95% CI, −0.2 to 0.3) for those assigned to dapagliflozin, compared with −1.4 mL/min/1.73 m2 per year (95% CI −1.7 to −1.1) for those assigned to the placebo, with a mean difference of 1.4 (95% CI, 1.0–1.8) mL/min/1.73 m2 per year (p < 0.001). In the LVEF 50–59% and LVEF ≥ 60% groups, the dapagliflozin arm showed a chronic eGFR slope of 0.3 (−0.1, 0.8) vs. −1.7 (−2.2, −1.2) in the placebo group (p-interaction < 0.001) and of 0.1 (−0.6, 0.4) in the dapagliflozin group vs. −1.6 (−2.0, −1.1) in the placebo group, (p-interaction < 0.001), respectively. In patients with LVEF ≤49% the difference between the two arms was less pronounced: the eGFR slope in the dapagliflozin group was −0.1 (−0.7, 0.4) vs. −0.8 (−1.3, −0.3) in the placebo group (p-interaction < 0.001). | The overall incidence rate of the post hoc kidney composite outcome was similar between the two groups (2.5% in the dapagliflozin group and 2.3% in the placebo group (HR, 1.08; 95% CI, 0.79–1.49)). | |
S. Chatur et al. (2023) [69] | Pre-specified analysis Same population as the DELIVER-trial. | 61 ± 19 mL/min/1.73 m2 in both groups | Already analyzed in the RCT. | NA | Dapagliflozin reduced new initiation of loop diuretics by 32% [hazard ratio (HR) 0.68; 95% confidence interval (CI): 0.55–0.84, p < 0.001]. First sustained loop diuretic dose increases were less frequent, and sustained dose decreases were more frequent in patients treated with dapagliflozin: net difference of −6.5% (95% CI: −9.4 to −3.6; p < 0.001). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonacchi, G.; Rossi, V.A.; Garofalo, M.; Mollace, R.; Uccello, G.; Pieragnoli, P.; Checchi, L.; Perrotta, L.; Voltolini, L.; Ricciardi, G.; et al. Pathophysiological Link and Treatment Implication of Heart Failure and Preserved Ejection Fraction in Patients with Chronic Kidney Disease. Biomedicines 2024, 12, 981. https://doi.org/10.3390/biomedicines12050981
Bonacchi G, Rossi VA, Garofalo M, Mollace R, Uccello G, Pieragnoli P, Checchi L, Perrotta L, Voltolini L, Ricciardi G, et al. Pathophysiological Link and Treatment Implication of Heart Failure and Preserved Ejection Fraction in Patients with Chronic Kidney Disease. Biomedicines. 2024; 12(5):981. https://doi.org/10.3390/biomedicines12050981
Chicago/Turabian StyleBonacchi, Giacomo, Valentina Alice Rossi, Manuel Garofalo, Rocco Mollace, Giuseppe Uccello, Paolo Pieragnoli, Luca Checchi, Laura Perrotta, Luca Voltolini, Giuseppe Ricciardi, and et al. 2024. "Pathophysiological Link and Treatment Implication of Heart Failure and Preserved Ejection Fraction in Patients with Chronic Kidney Disease" Biomedicines 12, no. 5: 981. https://doi.org/10.3390/biomedicines12050981
APA StyleBonacchi, G., Rossi, V. A., Garofalo, M., Mollace, R., Uccello, G., Pieragnoli, P., Checchi, L., Perrotta, L., Voltolini, L., Ricciardi, G., & Beltrami, M. (2024). Pathophysiological Link and Treatment Implication of Heart Failure and Preserved Ejection Fraction in Patients with Chronic Kidney Disease. Biomedicines, 12(5), 981. https://doi.org/10.3390/biomedicines12050981