Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Diabetes Definition
2.3. PPG4–7.9h
2.4. Potential PPG4–7.9h Predictors
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Factors Associated with PPG4–7.9h in Group 1 of 4420 Participants, Assessed by Simple Linear Regression
3.3. Predictive Model for PPG4–7.9h Using Multiple Linear Regression in Group 1 of 4420 Participants
3.4. Predicted PPG4–7.9h for Diabetes Diagnosis in Group 2 of 8422 Participants
3.5. Power and Sample Size Estimation for Predicted PPG4–7.9h to Diagnose Diabetes in Group 2 of 8422 Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Diabetes Overview. 2024. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 3 April 2024).
- Centers for Disease Control and Prevention (CDC). Prevent Diabetes Complications. 2022. Available online: https://www.cdc.gov/diabetes/managing/problems.html (accessed on 4 April 2024).
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108072. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.-D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, S. Preventing diabetes-related morbidity and mortality in the primary care setting. J. Natl. Med. Assoc. 2002, 94, 549–560. [Google Scholar] [PubMed]
- Ceriello, A.; Colagiuri, S.; Gerich, J.; Tuomilehto, J. Guideline for management of postmeal glucose. Nutr. Metab. Cardiovasc. Dis. 2008, 18, S17–S33. [Google Scholar] [CrossRef] [PubMed]
- Peter, R.; Okoseime, O.E.; Rees, A.; Owens, D.R. Postprandial glucose—A potential therapeutic target to reduce cardiovascular mortality. Curr. Vasc. Pharmacol. 2009, 7, 68–74. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Postprandial Blood Glucose. Diabetes Care 2001, 24, 775–778. [Google Scholar] [CrossRef]
- Bell, D.S. Importance of postprandial glucose control. South. Med. J. 2001, 94, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Colette, C.; Owens, D. Postprandial and basal glucose in type 2 diabetes: Assessment and respective impacts. Diabetes Technol. Ther. 2011, 13 (Suppl. S1), S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Veciana, M.d.; Major, C.A.; Morgan, M.A.; Asrat, T.; Toohey, J.S.; Lien, J.M.; Evans, A.T. Postprandial versus Preprandial Blood Glucose Monitoring in Women with Gestational Diabetes Mellitus Requiring Insulin Therapy. N. Engl. J. Med. 1995, 333, 1237–1241. [Google Scholar] [CrossRef]
- Hanefeld, M.; Fischer, S.; Julius, U.; Schulze, J.; Schwanebeck, U.; Schmechel, H.; Ziegelasch, H.J.; Lindner, J. Risk factors for myocardial infarction and death in newly detected NIDDM: The Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996, 39, 1577–1583. [Google Scholar] [CrossRef]
- Takao, T.; Suka, M.; Yanagisawa, H.; Iwamoto, Y. Impact of postprandial hyperglycemia at clinic visits on the incidence of cardiovascular events and all-cause mortality in patients with type 2 diabetes. J. Diabetes Investig. 2017, 8, 600–608. [Google Scholar] [CrossRef]
- Cavalot, F.; Pagliarino, A.; Valle, M.; Di Martino, L.; Bonomo, K.; Massucco, P.; Anfossi, G.; Trovati, M. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: Lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care 2011, 34, 2237–2243. [Google Scholar] [CrossRef]
- Cavalot, F.; Petrelli, A.; Traversa, M.; Bonomo, K.; Fiora, E.; Conti, M.; Anfossi, G.; Costa, G.; Trovati, M. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: Lessons from the San Luigi Gonzaga Diabetes Study. J. Clin. Endocrinol. Metab. 2006, 91, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y. Late non-fasting plasma glucose predicts cardiovascular mortality independent of hemoglobin A1c. Sci. Rep. 2022, 12, 7778. [Google Scholar] [CrossRef] [PubMed]
- Takao, T.; Takahashi, K.; Suka, M.; Suzuki, N.; Yanagisawa, H. Association between postprandial hyperglycemia at clinic visits and all-cause and cancer mortality in patients with type 2 diabetes: A long-term historical cohort study in Japan. Diabetes Res. Clin. Pract. 2019, 148, 152–159. [Google Scholar] [CrossRef]
- Abe, H.; Aida, Y.; Ishiguro, H.; Yoshizawa, K.; Miyazaki, T.; Itagaki, M.; Sutoh, S.; Aizawa, Y. Alcohol, postprandial plasma glucose, and prognosis of hepatocellular carcinoma. World J. Gastroenterol. 2013, 19, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Takao, T.; Suka, M.; Yanagisawa, H.; Kasuga, M. Thresholds for postprandial hyperglycemia and hypertriglyceridemia associated with increased mortality risk in type 2 diabetes patients: A real-world longitudinal study. J. Diabetes Investig. 2021, 12, 886–893. [Google Scholar] [CrossRef]
- Eichenlaub, M.M.; Khovanova, N.A.; Gannon, M.C.; Nuttall, F.Q.; Hattersley, J.G. A Glucose-Only Model to Extract Physiological Information from Postprandial Glucose Profiles in Subjects with Normal Glucose Tolerance. J. Diabetes Sci. Technol. 2022, 16, 1532–1540. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.; Habenicht, A.; Golledge, J.; Giovannucci, E.; Ceriello, A. Postprandial Plasma Glucose and Associated Cancer Mortality. Preprints 2024, 2024011578. [Google Scholar] [CrossRef]
- Wang, Y. Postprandial Plasma Glucose Measured from Blood Taken between 4 and 7.9 h Is Positively Associated with Mortality from Hypertension and Cardiovascular Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 53. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef]
- Darras, P.; Mattman, A.; Francis, G.A. Nonfasting lipid testing: The new standard for cardiovascular risk assessment. Can. Med. Assoc. J. 2018, 190, E1317–E1318. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Tuomilehto, J. The Pros and Cons of Diagnosing Diabetes with A1C. Diabetes Care 2011, 34, S184–S190. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Phillips, P.J. Oral glucose tolerance testing. Aust. Fam. Physician 2012, 41, 391–393. [Google Scholar]
- Christensen, D.L.; Witte, D.R.; Kaduka, L.; Jørgensen, M.E.; Borch-Johnsen, K.; Mohan, V.; Shaw, J.E.; Tabák, A.G.; Vistisen, D. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 2010, 33, 580–582. [Google Scholar] [CrossRef]
- Zhou, X.; Pang, Z.; Gao, W.; Wang, S.; Zhang, L.; Ning, F.; Qiao, Q. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China. Diabetes Care 2010, 33, 545–550. [Google Scholar] [CrossRef]
- Tonelli, M.; Pottie, K. Diabetes guidelines. Can. Med. Assoc. J. 2013, 185, 238. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.A.; Sohal, P. Diabetes guidelines. Can. Med. Assoc. J. 2013, 185, 237–238. [Google Scholar] [CrossRef]
- Luna, B.; Feinglos, M.N. Oral agents in the management of type 2 diabetes mellitus. Am. Fam. Physician 2001, 63, 1747–1756. [Google Scholar]
- von Nicolai, H.; Brickl, R.; Eschey, H.; Greischel, A.; Heinzel, G.; König, E.; Limmer, J.; Rupprecht, E. Duration of action and pharmacokinetics of the oral antidiabetic drug gliquidone in patients with non-insulin-dependent (type 2) diabetes mellitus. Arzneimittelforschung 1997, 47, 247–252. [Google Scholar] [PubMed]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Higher fasting triglyceride predicts higher risks of diabetes mortality in US adults. Lipids Health Dis. 2021, 20, 181. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef]
- NHANES. Hexokinase-Mediated Reaction Roche/Hitachi Cobas C Chemistry Analyzer. Laboratory Procedure Manual 2014. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/GLU_H_MET.pdf (accessed on 15 January 2024).
- Jungo, K.T.; Meier, R.; Valeri, F.; Schwab, N.; Schneider, C.; Reeve, E.; Spruit, M.; Schwenkglenks, M.; Rodondi, N.; Streit, S. Baseline characteristics and comparability of older multimorbid patients with polypharmacy and general practitioners participating in a randomized controlled primary care trial. BMC Fam. Pract. 2021, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Stage 1 hypertension and risk of cardiovascular disease mortality in United States adults with or without diabetes. J. Hypertens. 2022, 40, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Sun, H.; Xu, Q.; Hou, X.; Hu, W.; Zhang, G.; Drummond, G.R.; Sobey, C.G.; Charchar, F.J.; Golledge, J.; et al. Hyperuricemia is independently associated with hypertension in men under 60 years in a general Chinese population. J. Hum. Hypertens. 2021, 35, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, W.; Qian, T.; Sun, H.; Xu, Q.; Hou, X.; Hu, W.; Zhang, G.; Drummond, G.R.; Sobey, C.G.; et al. Reduced renal function may explain the higher prevalence of hyperuricemia in older people. Sci. Rep. 2021, 11, 1302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Definition, prevalence, and risk factors of low sex hormone-binding globulin in US adults. J. Clin. Endocrinol. Metab. 2021, 106, e3946–e3956. [Google Scholar] [CrossRef]
- Brancato, D.; Saura, G.; Fleres, M.; Ferrara, L.; Scorsone, A.; Aiello, V.; Di Noto, A.; Spano, L.; Provenzano, V. Prognostic accuracy of continuous glucose monitoring in the prediction of diabetes mellitus in children with incidental hyperglycemia: Receiver operating characteristic analysis. Diabetes Technol. Ther. 2013, 15, 580–585. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y. Postabsorptive homeostasis model assessment for insulin resistance is a reliable biomarker for cardiovascular disease mortality and all-cause mortality. Diabetes Epidemiol. Manag. 2021, 6, 100045. [Google Scholar] [CrossRef]
- Perkins, N.J.; Schisterman, E.F. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am. J. Epidemiol. 2006, 163, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Arnold, B.F.; Hogan, D.R.; Colford, J.M.; Hubbard, A.E. Simulation methods to estimate design power: An overview for applied research. BMC Med. Res. Methodol. 2011, 11, 94. [Google Scholar] [CrossRef]
- Wilson, D.T.; Hooper, R.; Brown, J.; Farrin, A.J.; Walwyn, R.E. Efficient and flexible simulation-based sample size determination for clinical trials with multiple design parameters. Stat. Methods Med. Res. 2021, 30, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Šimundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. J. Int. Fed. Clin. Chem. Lab. Med. 2009, 19, 203–211. [Google Scholar]
- Shreffler, J.; Huecker, M. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557491/ (accessed on 5 April 2024).
- Eusebi, P. Diagnostic Accuracy Measures. Cerebrovasc. Dis. 2013, 36, 267–272. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Ialongo, C. Confidence interval for quantiles and percentiles. Biochem. Med. 2019, 29, 010101. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Peltonen, M.; Eriksson, J.G.; Ilanne-Parikka, P.; Aunola, S.; Keinänen-Kiukaanniemi, S.; Uusitupa, M.; Tuomilehto, J.; Lindström, J. HbA(1c) in diagnosing and predicting Type 2 diabetes in impaired glucose tolerance: The Finnish Diabetes Prevention Study. Diabet. Med. 2011, 28, 36–42. [Google Scholar] [CrossRef]
- Sato, Y.; Ohfusa, H.; Katakura, M.; Komatsu, M.; Yamada, S.; Yamauchi, K.; Ichikawa, K.; Aizawa, T.; Hashizume, K. A problem with the diagnosis of diabetes mellitus based on fasting plasma glucose. Diabet. Med. 2002, 19, 82–83. [Google Scholar] [CrossRef]
- Gatling, W.; Begley, J.P. Diagnosing diabetes mellitus in clinical practice: Is fasting plasma glucose a good initial test?*. Pract. Diabetes Int. 2001, 18, 89–93. [Google Scholar] [CrossRef]
- Huang, J.; Ou, H.Y.; Karnchanasorn, R.; Samoa, R.; Chuang, L.M.; Chiu, K.C.; Feng, W. Clinical implication of fasting and post-challenged plasma glucose in diagnosis of diabetes mellitus. Endocrine 2015, 48, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Avignon, A.; Radauceanu, A.; Monnier, L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 1997, 20, 1822–1826. [Google Scholar] [CrossRef] [PubMed]
- Peter, R.; Dunseath, G.; Luzio, S.D.; Chudleigh, R.; Roy Choudhury, S.; Owens, D.R. Daytime variability of postprandial glucose tolerance and pancreatic B-cell function using 12-h profiles in persons with Type 2 diabetes. Diabet. Med. 2010, 27, 266–273. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, T.B.; Luther, E.E. Dawn Phenomenon. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430893/ (accessed on 5 April 2024).
- Monnier, L.; Colette, C.; Dejager, S.; Owens, D. The dawn phenomenon in type 2 diabetes: How to assess it in clinical practice? Diabetes Metab. 2015, 41, 132–137. [Google Scholar] [CrossRef]
Variables | Group 1 (Postprandial Group) | Group 2 (Fasting Group) |
---|---|---|
Sample size | 4420 | 8422 |
PPG4–7.9h, mg/dL, median (IQR) | 92 (87–98) | N/A |
FPG, mg/dL, median (IQR) | N/A | 99 (92–106) |
2 h PG during OGTT, mg/dL, median (IQR) | N/A | 109 (88–138) |
Age, year, mean (SD) | 49 (19) | 48 (17) |
Sex (male), n (%) | 2042 (46) | 4240 (50) |
BMI, kg/m2, median (IQR) | 26 (23–30) | 28 (24–32) |
Ethnicity, n (%) | ||
Non-Hispanic white | 2104 (48) | 4061 (48) |
Non-Hispanic black | 1033 (23) | 1498 (18) |
Hispanic | 1220 (28) | 2148 (26) |
Other | 63 (1) | 715 (9) |
Education, n (%) | ||
<High School | 1679 (38) | 1985 (24) |
High School | 1375 (31) | 1928 (23) |
>High School | 1366 (31) | 4509 (54) |
Poverty/income ratio, n (%) | ||
<130% | 1176 (27) | 2367 (28) |
130–349% | 1822 (41) | 2888 (34) |
≥350% | 1081 (25) | 2591 (31) |
Unknown | 341 (8) | 576 (7) |
Physical activity, n (%) | ||
Active | 1594 (36) | 2108 (25) |
Insufficiently active | 1890 (43) | 2464 (29) |
Inactive | 936 (21) | 3850 (46) |
Alcohol consumption, n (%) | ||
0 drinks/week | 755 (17) | 1379 (16) |
<1 drink/week | 532 (12) | 2459 (29) |
1–6 drinks/week | 870 (20) | 2032 (24) |
≥7 drinks/week | 578 (13) | 1241 (15) |
Unknown | 1685 (38) | 1311 (16) |
Smoking status, n (%) | ||
Current smoker | 1094 (25) | 1773 (21) |
Past smoker | 1127 (26) | 2018 (24) |
Non-smoker | 2199 (50) | 4631 (55) |
Dietary carbohydrate intake, g/day, median (IQR) | 235 (171–313) | 239 (182–311) |
Dietary protein intake, g/day, median (IQR) | 71 (51–97) | 76 (57–99) |
Dietary fat intake, g/day, median (IQR) | 68 (45–101) | 71 (51–97) |
Dietary caloric intake, kcal/day, median (IQR) | 1899 (1392–2525) | 1969 (1507–2513) |
SBP, mm Hg, median (IQR) | 123 (112–138) | 119 (110–131) |
TC, mg/dL, median (IQR) | 204 (177–235) | 193 (167–220) |
HDL-C, mg/dL, median (IQR) | 50 (41–60) | 52 (43–63) |
Use of antihypertensive medication | ||
No | 3384 (77) | 6053 (72) |
Yes | 693 (16) | 1916 (23) |
Unknown | 343 (8) | 453 (5) |
Use of cholesterol-lowering medication | ||
No | 1655 (37) | 4617 (55) |
Yes | 134 (3) | 1202 (14) |
Unknown | 2631 (60) | 2603 (31) |
Cancer diagnosis, n (%) | ||
No | 4029 (91) | 7694 (91) |
Yes | 391 (9) | 728 (9) |
Family history of diabetes, n (%) | ||
No | 2424 (55) | 5178 (62) |
Yes | 1918 (43) | 3082 (37) |
Unknown | 78 (2) | 162 (2) |
Serum potassium, mM, mean (SD) | 4.0 (0.3) | 4.0 (0.3) |
Serum calcium, mM, mean (SD) | 2.3 (0.1) | 2.3 (0.1) |
Serum sodium, mM, mean (SD) | 141.3 (2.5) | 139.4 (2.2) |
Serum phosphorus, mM, mean (SD) | 1.2 (0.2) | 1.2 (0.2) |
Serum bicarbonate, mM, mean (SD) | 27.8 (3.9) | 25.2 (2.2) |
Serum chloride, mM, mean (SD) | 104 (3) | 104 (3) |
ALT, U/L, median (IQR) | 14 (10–20) | 21 (16–29) |
AST, U/L, median (IQR) | 20 (17–24) | 23 (20–28) |
Bilirubin, μM, median (IQR) | 8.6 (6.8–10.3) | 12.0 (10.3–15.4) |
Blood urea nitrogen, mM, median (IQR) | 5.0 (3.9–6.1) | 4.3 (3.6–5.4) |
Creatinine, μM, median (IQR) | 85 (76–102) | 75 (64–88) |
Uric acid, μM, mean (SD) | 311 (88) | 326 (82) |
Serum protein, g/L, mean (SD) | 74 (5) | 72 (5) |
Serum albumin, g/L, mean (SD) | 41.8 (3.7) | 42.4 (3.1) |
Serum insulin, μU/mL, median (IQR) | 8.5 (5.9–12.7) | 9.5 (6.1–15.4) |
HbA1c, %, median (IQR) | 5.3 (5.0–5.7) | 5.4 (5.2–5.7) |
Fasting time, h, mean (SD) | 6.6 (0.8) | 12.1 (1.9) |
Variables | B (Coefficient) | p Value | Variables | B (Coefficient) | p Value |
---|---|---|---|---|---|
Age | 0.002 | <0.001 | HDL cholesterol | −0.050 | <0.001 |
Sex | Family diabetes history | ||||
Male | 0 (ref.) | No | 0 (ref.) | ||
Female | −0.029 | <0.001 | Yes | 0.003 | 0.50 |
Ethnicity | Cancer | ||||
Non-Hispanic white | 0 (ref.) | No | 0 (ref.) | ||
Non-Hispanic black | −0.028 | <0.001 | Yes | 0.021 | 0.01 |
Hispanic | 0.022 | <0.001 | Antihypertension medicative | ||
Other | 0.012 | 0.53 | No | 0 (ref.) | |
Body mass index | 0.098 | <0.001 | Yes | 0.052 | <0.001 |
Education | Cholesterol-lowering medication | ||||
<12 years | 0 (ref.) | No | 0 (ref.) | ||
12 years | −0.039 | <0.001 | Yes | 0.021 | 0.12 |
>12 years | −0.047 | <0.001 | Dietary carbohydrate intake | −0.019 | <0.001 |
Income | Dietary protein intake | −0.007 | 0.07 | ||
<130% | 0 (ref.) | Dietary fat intake | −0.013 | <0.001 | |
130%–349% | −0.003 | 0.59 | Dietary caloric intake | −0.018 | <0.001 |
≥350% | −0.015 | 0.02 | Serum potassium | 0.026 | <0.001 |
Unknown | 0.025 | 0.01 | Serum calcium | 0.157 | <0.001 |
Physical activity | Serum sodium | −0.001 | 0.16 | ||
Inactive | 0 (ref.) | Serum phosphorus | −0.05 | <0.001 | |
Active | −0.023 | <0.001 | Serum bicarbonate | 0.002 | 0.002 |
Insufficiently active | −0.017 | 0.005 | Serum chloride | −0.004 | <0.001 |
Alcohol consumption | Alanine aminotransferase | 0.028 | <0.001 | ||
0 drinks/week | 0 (ref.) | Aspartate aminotransferase | 0.02 | <0.001 | |
<1 drink/week | −0.023 | 0.006 | Bilirubin | 0.019 | <0.001 |
1–6 drinks/week | −0.028 | <0.001 | Blood urea nitrogen | 0.052 | <0.001 |
≥7 drinks/week | −0.012 | 0.15 | Creatinine | 0.026 | 0.01 |
Unknown | −0.016 | 0.01 | Uric acid | 0.0002 | <0.001 |
Smoking status | Serum protein | 0.001 | 0.14 | ||
Nonsmoker | 0 (ref.) | Serum albumin | −0.0002 | 0.75 | |
Current smoker | −0.005 | 0.36 | Serum insulin | 0.070 | <0.001 |
Past smoker | 0.024 | <0.001 | Hemoglobin A1c | 0.705 | <0.001 |
SBP | 0.235 | <0.001 | Fasting time | −0.002 | 0.70 |
Total cholesterol | 0.075 | <0.001 |
Models | R Square | R Square Change | Significance of R Square Change |
---|---|---|---|
1 | 0.095 | 0.095 | <0.001 |
2 | 0.118 | 0.023 | <0.001 |
3 | 0.123 | 0.005 | <0.001 |
4 | 0.14 | 0.017 | <0.001 |
5 | 0.16 | 0.02 | <0.001 |
6 | 0.203 | 0.042 | <0.001 |
7 | 0.429 | 0.226 | <0.001 |
Variables | B (Coefficient) | Variables | B (Coefficient) |
---|---|---|---|
Age | 0.001 | Smoking status | |
Sex | Nonsmoker | 0 (reference) | |
Male | 0 (reference) | Current smoker | −0.006 |
Female | −0.021 | Past smoker | −0.003 |
Ethnicity | Systolic blood pressure | 0.048 | |
Non-Hispanic white | 0 (reference) | Total cholesterol | −0.042 |
Non-Hispanic black | −0.05 | HDL cholesterol | 0.015 |
Hispanic | 0.001 | Cancer | |
Other | −0.008 | No | 0 (reference) |
Body mass index | −0.042 | Yes | −0.012 |
Education | Antihypertensive medication | ||
<12 years | 0 (reference) | No | 0 (reference) |
12 years | −0.003 | Yes | −0.002 |
>12 years | −0.0001 | Dietary carbohydrate intake | −0.02 |
Income | Dietary fat intake | 0.031 | |
<130% | 0 (reference) | Dietary caloric intake | −0.017 |
130%–349% | 0.001 | Serum potassium | −0.004 |
≥350% | −0.009 | Serum calcium | 0.081 |
Unknown | 0.005 | Serum phosphorus | −0.03 |
Physical activity | Serum bicarbonate | 0.001 | |
Inactive | 0 (reference) | Serum chloride | −0.001 |
Active | −0.002 | Alanine aminotransferase | 0.014 |
Insufficiently active | 0.001 | Aspartate aminotransferase | −0.024 |
Alcohol consumption | Bilirubin | 0.032 | |
0 drinks/week | 0 (reference) | Blood urea nitrogen | 0.004 |
<1 drink/week | 0.001 | Creatinine | −0.038 |
1–6 drinks/week | −0.002 | Uric acid | −0.0001 |
≥7 drinks/week | 0.015 | Serum insulin | 0.052 |
Unknown | −0.013 | Hemoglobin A1c | 0.661 |
Percentiles | Delta PPG4–7.9h (mg/dL) |
---|---|
10 | −11.1 |
20 | −6.5 |
30 | −3.8 |
40 | −1.6 |
50 | 0.6 |
60 | 2.7 |
70 | 4.7 |
80 | 7.2 |
90 | 10.9 |
Sample Size | n = 50 | n = 100 | n = 170 | n = 175 | n = 200 | n = 300 |
---|---|---|---|---|---|---|
Power for 80% accuracy | 79.9% | 84.2% | 89.3% | 89.9 | 91.2% | 94.5% |
Power for 81% accuracy | 68.7% | 77.8% | 79.7% | 81.0% | 82.9% | 87.6% |
Sensitivity (95% CI) | 75.2% (25.0%–100%) | 75.4% (42.7%–100%) | 75.0% (50.0%–94.4%) | 75.4% (52.9%–94.4%) | 75.1% (53.9%–93.8%) | 75.1% (57.7%–90.5) |
Specificity (95% CI) | 84.2% (72.9%–93.6%) | 84.1% (76.3%–91.2%) | 84.1% (78.3%–89.6%) | 84.1% (78.3%–89.4%) | 84.1% (78.8%–89.1%) | 84.1% (79.8%–88.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fang, Y.; Aberson, C.L.; Charchar, F.J.; Ceriello, A. Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes. Biomedicines 2024, 12, 1313. https://doi.org/10.3390/biomedicines12061313
Wang Y, Fang Y, Aberson CL, Charchar FJ, Ceriello A. Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes. Biomedicines. 2024; 12(6):1313. https://doi.org/10.3390/biomedicines12061313
Chicago/Turabian StyleWang, Yutang, Yan Fang, Christopher L. Aberson, Fadi J. Charchar, and Antonio Ceriello. 2024. "Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes" Biomedicines 12, no. 6: 1313. https://doi.org/10.3390/biomedicines12061313
APA StyleWang, Y., Fang, Y., Aberson, C. L., Charchar, F. J., & Ceriello, A. (2024). Postprandial Plasma Glucose between 4 and 7.9 h May Be a Potential Diagnostic Marker for Diabetes. Biomedicines, 12(6), 1313. https://doi.org/10.3390/biomedicines12061313