Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis
Abstract
:1. Introduction
Category | Material | Nanoparticles | Medical Application | References | |
---|---|---|---|---|---|
Shape | Synthesis Method | ||||
Polymer | PCL, PLA, PEG, PLGA, chitosan, alginate, gelatin, and albumin, etc. | Spheres, rectangular disks, rods, worms, oblate ellipses, elliptical disks, and circular disks, etc. | Solvent evaporation, salting-out, micro-emulsion, mini-emulsion, dialysis, surfactant-free emulsion, supercritical fluid technology, and interfacial polymerization. | Drug delivery; wound healing; antibacterial agents. | [25,37] |
Liposomes | Lipid | Spherical or ellipsoid | Thin-film hydration, ethanol injection, reverse phase evaporation, detergent depletion, etc. | Drug delivery; vaccines; imaging agents; gene delivery. | [38,39] |
Non-metal | Carbon, SiO2, etc. | Fullerenes, quantum dot, tubes, etc. | Photolithographic techniques, grinding, sputtering, and milling, etc. | Fluorescent probes | [40,41] |
Metals and oxides | Iron-oxide, gold, silver, and TiO2, etc. | Spherical, rod-like, cage-like, etc. | Chemical reduction, green chemistry, sonochemistry, electrochemistry. | Drug delivery; anemia; imaging agents; gene delivery; molecular diagnosis; bone cements, antibacterial, antiviral, and antifungal agents. | [38,42,43] |
NCT Number | Study Title | Study Status | Enroll Number | Interventions | Study Results | Applications | |
---|---|---|---|---|---|---|---|
TAV (Mean ± Standard Deviation, mm3) | MACE-Free Survival (%) | ||||||
NCT01270139 [44] | Plasmonic Nanophotothermal Therapy of Atherosclerosis | Completed | 180 | Intervention 1 (procedure): transplantation of NP; Intervention 2 (procedure): transplantation of iron-bearing NP; Intervention 3 (device): stenting | Nano group: 108.2 ± 42.2; Ferro Group: 115.6 ± 64; Stenting Control: 178 ± 52.6 | Nano group: 94.3; Ferro Group: 91.4; Stenting Control: 90.5 | Stable angina; heart failure; atherosclerosis; multivessel coronary artery disease |
NCT00518284 [45] | Prevention of Restenosis Following Revascularization | Terminated | 6 | Intervention (drug): paclitaxel NP | NA | Vascular disease; peripheral vascular disease | |
NCT04616872 [46] | Treatment of Patients With Atherosclerotic Disease With Methotrexate-associated with LDL Like Nanoparticles | Unknown | 40 | Intervention 1 (drug): LDE-methotrexate; Intervention 2 (drug): LDE-placebo | NA | Atherosclerosis; coronary artery disease | |
NCT04148833 [47] | Treatment of Patients With Atherosclerotic Disease With Paclitaxel-associated with LDL Like Nanoparticles | Unknown | 40 | Intervention 1 (drug): LDE-paclitaxel; Intervention 2 (drug): LDE-placebo | NA | Atherosclerosis; coronary artery disease | |
NCT01436123 [48] | Plasmonic Photothermal and Stem Cell Therapy of Atherosclerosis Versus Stenting | Terminated | 62 | Intervention 1 (device and drug): stenting and micro-infusion of NP; Intervention 2 (device): implantation of everolimus-eluting stent | NA | Atherosclerosis; coronary artery disease | |
NCT06399328 [49] | Cardiovascular Risk Stratification on the Basis of Surface Enhanced Raman Spectroscopy | Recruiting | 220 | Intervention (diagnostic test): surface enhanced Raman spectroscopy | NA | Coronary atherosclerosis of native coronary artery |
2. Systemic Delivery of Drug-Loaded Nanoparticles
2.1. Targeted Nanoparticle Delivery Based on Physicochemical Properties
2.2. Targeted Drug Delivery Based on Specific Markers
2.2.1. Targeting Damaged or Immature ECs
2.2.2. Targeting Exposed Collagen
2.2.3. Targeting Aggregated Macrophages in Plaques
2.2.4. Other Targeting Strategies
3. Localized Direct Delivery of Drug-Loaded Nanoparticles in the Vessel Wall
3.1. Intimal Route Delivery
3.2. Tunica Media and Adventitial Route Delivery
4. Discussion and Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, D. Epidemiological Features of Cardiovascular Disease in Asia. JACC Asia 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Townsend, N.; Kazakiewicz, D.; Lucy Wright, F.; Timmis, A.; Huculeci, R.; Torbica, A.; Gale, C.P.; Achenbach, S.; Weidinger, F.; Vardas, P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022, 19, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Guo, L.; Gao, W.; Tang, T.-L.; Yan, M. Interaction between macrophages and ferroptosis. Cell Death Dis. 2022, 13, 355. [Google Scholar] [CrossRef]
- Wilson, H.M. Macrophages heterogeneity in atherosclerosis—Implications for therapy. J. Cell. Mol. Med. 2010, 14, 2055–2065. [Google Scholar] [CrossRef] [PubMed]
- Falk, E. Pathogenesis of Atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar] [CrossRef]
- Nie, J.; Yang, J.; Wei, Y.; Wei, X. The role of oxidized phospholipids in the development of disease. Mol. Asp. Med. 2020, 76, 100909. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Sugiyama, T.; Araki, M.; Seegers, L.M.; Dey, D.; McNulty, I.; Lee, H.; Yonetsu, T.; Yasui, Y.; Teng, Y.; et al. Plaque Rupture, Compared with Plaque Erosion, Is Associated with a Higher Level of Pancoronary Inflammation. JACC Cardiovasc. Imaging 2022, 15, 828–839. [Google Scholar] [CrossRef]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Finn, A.V.; Gold, H.K.; Tulenko, T.N.; Wrenn, S.P.; Narula, J. Atherosclerotic Plaque Progression and Vulnerability to Rupture. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2054–2061. [Google Scholar] [CrossRef]
- Khan, R.; Spagnoli, V.; Tardif, J.-C.; L’Allier, P.L. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis 2015, 240, 497–509. [Google Scholar] [CrossRef]
- Bäck, M.; Hansson, G.K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211. [Google Scholar] [CrossRef]
- Eeckhout, E.; Wijns, W.; Meier, B.; Goy, J.J. Indications for intracoronary stent placement: The European view. Eur. Heart J. 1999, 20, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R.W.; Mackey, W.C.; Ascher, E.; Murad, M.H.; Calligaro, K.D.; Comerota, A.J.; Montori, V.M.; Eskandari, M.K.; Massop, D.W.; Bush, R.L.; et al. Management of atherosclerotic carotid artery disease: Clinical practice guidelines of the Society for Vascular Surgery. J. Vasc. Surg. 2008, 48, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, F.; Byrne Robert, A.; Rivero, F.; Kastrati, A. Current Treatment of In-Stent Restenosis. J. Am. Coll. Cardiol. 2014, 63, 2659–2673. [Google Scholar] [CrossRef]
- Spadaccio, C.; Antoniades, C.; Nenna, A.; Chung, C.; Will, R.; Chello, M.; Gaudino, M.F.L. Preventing treatment failures in coronary artery disease: What can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries? Cardiovasc. Res. 2020, 116, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, T.; Xiong, X.; Yang, Q.; Su, Z.; Zheng, M.; Chen, Q. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-kappaB/NLRP3 pathways in inflammatory endothelial cells. J. Nanobiotechnol. 2023, 21, 460. [Google Scholar] [CrossRef] [PubMed]
- Barwari, T.; Rienks, M.; Mayr, M. MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Mol. Ther. 2018, 26, 938–940. [Google Scholar] [CrossRef]
- Li, Y.; Che, J.; Chang, L.; Guo, M.; Bao, X.; Mu, D.; Sun, X.; Zhang, X.; Lu, W.; Xie, J. CD47- and Integrin alpha4/beta1-Comodified-Macrophage-Membrane-Coated Nanoparticles Enable Delivery of Colchicine to Atherosclerotic Plaque. Adv. Health Mater. 2022, 11, e2101788. [Google Scholar] [CrossRef]
- Kreuter, J. Nanoparticles—A historical perspective. Int. J. Pharm. 2007, 331, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007, 65, 259–269. [Google Scholar] [CrossRef]
- Commission, T. Commission reccomendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union 2011, 3. [Google Scholar]
- Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822. [Google Scholar] [CrossRef] [PubMed]
- van der Meel, R.; Vehmeijer, L.J.C.; Kok, R.J.; Storm, G.; van Gaal, E.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Adv. Drug Deliv. Rev. 2013, 65, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, L.; Kwok, H.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist. Updates 2023, 66, 100904. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Park, J.H.; Dehaini, D.; Zhou, J.; Holay, M.; Fang, R.H.; Zhang, L. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horiz. 2020, 5, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Aldarondo, D.; Wayne, E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv. Drug Deliv. Rev. 2022, 182, 114116. [Google Scholar] [CrossRef] [PubMed]
- McDowell, G.; Slevin, M.; Krupinski, J. Nanotechnology for the treatment of coronary in stent restenosis: A clinical perspective. Vasc. Cell 2011, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Uwatoku, T.; Shimokawa, H.; Abe, K.; Matsumoto, Y.; Hattori, T.; Oi, K.; Matsuda, T.; Kataoka, K.; Takeshita, A. Application of Nanoparticle Technology for the Prevention of Restenosis After Balloon Injury in Rats. Circ. Res. 2003, 92, e62–e69. [Google Scholar] [CrossRef]
- Li, F.; Rong, Z.; Liu, C. Glycosylation Engineered Platelet Membrane Coated Nanoparticle For Targeted Inhibition of Vascular Restenosis. Arterioscler. Thromb. Vasc. Biol. 2023, 43, A246. [Google Scholar] [CrossRef]
- Verma, J.; Warsame, C.; Seenivasagam, R.K.; Katiyar, N.K.; Aleem, E.; Goel, S. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev. 2023, 42, 601–627. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, R.; Li, C.; Tao, H.; Dou, Y.; Wang, Y.; Hu, H.; Zhang, J. A Targeting Nanotherapy for Abdominal Aortic Aneurysms. J. Am. Coll. Cardiol. 2018, 72, 2591–2605. [Google Scholar] [CrossRef]
- Cai, C.; Kilari, S.; Zhao, C.; Singh, A.K.; Simeon, M.L.; Misra, A.; Li, Y.; Takahashi, E.; Kumar, R.; Misra, S. Adventitial delivery of nanoparticles encapsulated with 1α, 25-dihydroxyvitamin D3 attenuates restenosis in a murine angioplasty model. Sci. Rep. 2021, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Cai, C.; Kilari, S.; Zhao, C.; Simeon, M.L.; Takahashi, E.; Edelman, E.R.; Kong, H.J.; Macedo, T.; Singh, R.J.; et al. 1α,25-Dihydroxyvitamin D3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and Stenosis in Porcine Arteriovenous Fistulas. J. Am. Soc. Nephrol. JASN 2021, 32, 866–885. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Hsu, H.L.; Chen, J.P.; Wu, T.; Ma, Y.H. Thrombolysis induced by intravenous administration of plasminogen activator in magnetoliposomes: Dual targeting by magnetic and thermal manipulation. Nanomedicine 2019, 20, 101992. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 2014, 190, 15–28. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. WIREs Nanomed. Nanobiotechnol. 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf. B Biointerfaces 2022, 218, 112737. [Google Scholar] [CrossRef]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef]
- Krishnani, K.K.; Boddu, V.M.; Chadha, N.K.; Chakraborty, P.; Kumar, J.; Krishna, G.; Pathak, H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: Potential and valorization for application in agriculture. Environ. Sci. Pollut. Res. 2022, 29, 81130–81165. [Google Scholar] [CrossRef] [PubMed]
- Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int. J. Mol. Sci. 2018, 19, 4031. [Google Scholar] [CrossRef] [PubMed]
- Schröfel, A.; Kratošová, G.; Šafařík, I.; Šafaříková, M.; Raška, I.; Shor, L.M. Applications of biosynthesized metallic nanoparticles—A review. Acta Biomater. 2014, 10, 4023–4042. [Google Scholar] [CrossRef] [PubMed]
- Plasmonic Photothermal Therapy of Flow-Limiting Atherosclerotic Lesions with Silica-Gold Nanoparticles: A First-in-Man Study. 2010. Available online: https://clinicaltrials.gov/study/NCT01270139 (accessed on 24 April 2024).
- A Phase II Trial of ABI-007 (Paclitaxel Albumin-Bound Particles) for the Prevention of Restenosis Following Revascularization of the Superficial Femoral Artery (SFA). 2007. Available online: https://clinicaltrials.gov/study/NCT00518284 (accessed on 24 April 2024).
- Treatment of Patients with Coronary and Aortic Atherosclerotic Disease with Methotrexate-Associated to LDL Like Nanoparticles. A Randomized, Double-blind, Placebo-Control Trial. 2020. Available online: https://clinicaltrials.gov/study/NCT04616872 (accessed on 24 April 2024).
- Treatment of Patients with Coronary and Aortic Atherosclerotic Disease with Paclitaxel-Associated to LDL Like Nanoparticles. A Randomized, Double-Blind, Placebo-Control Trial. 2019. Available online: https://clinicaltrials.gov/study/NCT04148833 (accessed on 24 April 2024).
- Plasmonic Photothermal and Stem Cell Therapy of Atherosclerosis with The Use of Gold Nanoparticles with Iron Oxide-Silica Shells Versus Stenting. 2011. Available online: https://clinicaltrials.gov/study/NCT01436123 (accessed on 24 April 2024).
- Cardiovascular Risk Stratification on the Basis of Surface Enhanced Raman Spectroscopy. Assessment of Technology for Early Subclinical Detection of Coronary Heart Disease Based on Serum Metabolic Shifts. 2024. Available online: https://clinicaltrials.gov/study/NCT06399328 (accessed on 24 April 2024).
- Yu, M.; Zheng, J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano 2015, 9, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.C.; Dhanaliwala, A.H.; Klibanov, A.L.; Hossack, J.A.; Wamhoff, B.R. Focused ultrasound-mediated drug delivery from microbubbles reduces drug dose necessary for therapeutic effect on neointima formation--brief report. Arter. Thromb. Vasc. Biol. 2011, 31, 2853–2855. [Google Scholar] [CrossRef]
- Vosen, S.; Rieck, S.; Heidsieck, A.; Mykhaylyk, O.; Zimmermann, K.; Bloch, W.; Eberbeck, D.; Plank, C.; Gleich, B.; Pfeifer, A.; et al. Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets. ACS Nano 2016, 10, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Adamo, R.F.; Fishbein, I.; Zhang, K.; Wen, J.; Levy, R.J.; Alferiev, I.S.; Chorny, M. Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J. Control. Release 2016, 222, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Polyak, B.; Medved, M.; Lazareva, N.; Steele, L.; Patel, T.; Rai, A.; Rotenberg, M.Y.; Wasko, K.; Kohut, A.R.; Sensenig, R.; et al. Magnetic Nanoparticle-Mediated Targeting of Cell Therapy Reduces In-Stent Stenosis in Injured Arteries. ACS Nano 2016, 10, 9559–9569. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Y.; Peng, S.; Han, S.; Tao, H.; Zhang, Q.; Xu, X.; Zhang, J.; Hu, H. Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials 2016, 105, 167–184. [Google Scholar] [CrossRef]
- Shen, M.; Jiang, H.; Zhao, Y.; Wu, L.; Yang, H.; Yao, Y.; Meng, H.; Yang, Q.; Liu, L.; Li, Y. Shear Stress and ROS Dual-Responsive RBC-Hitchhiking Nanoparticles for Atherosclerosis Therapy. ACS Appl. Mater. Interfaces 2023, 15, 43374–43386. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef] [PubMed]
- Beldman, T.J.; Malinova, T.S.; Desclos, E.; Grootemaat, A.E.; Misiak, A.L.S.; van der Velden, S.; van Roomen, C.; Beckers, L.; van Veen, H.A.; Krawczyk, P.M.; et al. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS Nano 2019, 13, 13759–13774. [Google Scholar] [CrossRef] [PubMed]
- Mause Sebastian, F.; Weber, C. Intrusion through the Fragile Back Door. J. Am. Coll. Cardiol. 2009, 53, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Tubbs, R.S. Histological verification of atherosclerosis due to bends and bifurcations in carotid arteries predicted by hemodynamic model. J. Vasc. Bras. 2018, 17, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.; Novakova, L.; Valerianova, A.; Chytilova, E.; Lejsek, V.; Buryskova Salajova, K.; Lambert, L.; Grus, T.; Porizka, M.; Michalek, P. Wall shear stress alteration: A local risk factor of atherosclerosis. Curr. Atheroscler. Rep. 2022, 24, 143–151. [Google Scholar] [CrossRef]
- Juni, R.P.; Duckers, H.J.; Vanhoutte, P.M.; Virmani, R.; Moens, A.L. Oxidative stress and pathological changes after coronary artery interventions. J. Am. Coll. Cardiol. 2013, 61, 1471–1481. [Google Scholar] [CrossRef]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Barry-Lane, P.A.; Patterson, C.; van der Merwe, M.; Hu, Z.; Holland, S.M.; Yeh, E.T.H.; Runge, M.S. p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J. Clin. Investig. 2001, 108, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Cyrus, T.; Abendschein, D.R.; Caruthers, S.D.; Harris, T.D.; Glattauer, V.; Werkmeister, J.A.; Ramshaw, J.A.; Wickline, S.A.; Lanza, G.M. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J. Cardiovasc. Magn. Reson. 2006, 8, 535–541. [Google Scholar] [CrossRef]
- Winter, P.M.; Morawski, A.M.; Caruthers, S.D.; Fuhrhop, R.W.; Zhang, H.; Williams, T.A.; Allen, J.S.; Lacy, E.K.; Robertson, J.D.; Lanza, G.M.; et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003, 108, 2270–2274. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, W.; Zhang, L.; Zhang, C.; Zhou, C.; Wei, W.; Li, Y.; Zhou, Q.; Chen, W.; Tang, Y. Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics 2022, 14, 1083. [Google Scholar] [CrossRef] [PubMed]
- Homem de Bittencourt, P.I.; Lagranha, D.J.; Maslinkiewicz, A.; Senna, S.M.; Tavares, A.M.V.; Baldissera, L.P.; Janner, D.R.; Peralta, J.S.; Bock, P.M.; Gutierrez, L.L.P.; et al. LipoCardium: Endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis 2007, 193, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Winter Patrick, M.; Caruthers Shelton, D.; Zhang, H.; Williams Todd, A.; Wickline Samuel, A.; Lanza Gregory, M. Antiangiogenic Synergism of Integrin-Targeted Fumagillin Nanoparticles and Atorvastatin in Atherosclerosis. JACC Cardiovasc. Imaging 2008, 1, 624–634. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Jing, H.; Luo, X.; Du, L.; Duan, Y. cRGD Peptide-Modified Nanocarriers for Targeted Delivery of Angiogenesis Inhibitors to Attenuate Advanced Atherosclerosis. ACS Appl. Nano Mater. 2021, 4, 11554–11562. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, M.; Wu, Y.; Gong, F.; Wang, Z.; Xue, L.; Su, Z. An elastase-inhibiting, plaque-targeting and neutrophil-hitchhiking liposome against atherosclerosis. Acta Biomater. 2024, 173, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Fredman, G.; Kamaly, N.; Spolitu, S.; Milton, J.; Ghorpade, D.; Chiasson, R.; Kuriakose, G.; Perretti, M.; Farokhzad, O.; Tabas, I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 2015, 7, 275ra220. [Google Scholar] [CrossRef] [PubMed]
- McMasters, J.; Panitch, A. Collagen-binding nanoparticles for extracellular anti-inflammatory peptide delivery decrease platelet activation, promote endothelial migration, and suppress inflammation. Acta Biomater. 2017, 49, 78–88. [Google Scholar] [CrossRef]
- Dhanasekara, C.S.; Zhang, J.; Nie, S.; Li, G.; Fan, Z.; Wang, S. Nanoparticles target intimal macrophages in atherosclerotic lesions. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102346. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Kong, N.; Xiao, Y.; Yurdagul, A.; Tabas, I.; Tao, W. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 2022, 17, 748–780. [Google Scholar] [CrossRef]
- Bai, Q.; Xiao, Y.; Hong, H.; Cao, X.; Zhang, L.; Han, R.; Lee, L.K.C.; Xue, E.Y.; Tian, X.Y.; Choi, C.H.J. Scavenger receptor-targeted plaque delivery of microRNA-coated nanoparticles for alleviating atherosclerosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2201443119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, H.; He, J.; Jiang, C.; Lu, J.; Zhang, W.; Yang, H.; Liu, J. Co-delivery of LOX-1 siRNA and statin to endothelial cells and macrophages in the atherosclerotic lesions by a dual-targeting core-shell nanoplatform: A dual cell therapy to regress plaques. J. Control. Release 2018, 283, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, J.; Ning, R.; Du, Z.; Liu, J.; Batibawa, J.W.; Duan, J.; Sun, Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part. Fibre Toxicol. 2020, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Murata, K.; Motayama, T.; Kotake, C. Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 1986, 60, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Sahu, A.; Kim, G.B.; Nam, G.H.; Um, W.; Shin, S.J.; Jeong, Y.Y.; Kim, I.-S.; Kim, K.; Kwon, I.C.; et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J. Control. Release 2018, 269, 337–346. [Google Scholar] [CrossRef]
- Francone, O.L.; Royer, L.; Boucher, G.; Haghpassand, M.; Freeman, A.; Brees, D.; Aiello, R.J. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arter. Thromb. Vasc. Biol. 2005, 25, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.L.; Singh, V.; Barthwal, M.K. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med. Res. Rev. 2008, 28, 483–544. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.-C.; Zhong, S.; Ou, J.-S.; Tian, J.-W. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol. Sin. 2021, 42, 10–17. [Google Scholar] [CrossRef]
- Li, A.C.; Glass, C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 2002, 8, 1235–1242. [Google Scholar] [CrossRef]
- Fang, R.H.; Gao, W.; Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 2023, 20, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.H.; Kroll, A.V.; Gao, W.; Zhang, L. Cell Membrane Coating Nanotechnology. Adv. Mater. 2018, 30, 1706759. [Google Scholar] [CrossRef]
- Song, Y.; Huang, Z.; Liu, X.; Pang, Z.; Chen, J.; Yang, H.; Zhang, N.; Cao, Z.; Liu, M.; Cao, J.; et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomedicine 2019, 15, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Z.; Hu, C.; Maitz, M.F.; Yang, L.; Luo, R.; Wang, Y. Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. Research 2022, 2022, 9845459. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Ying, M.; Dehaini, D.; Su, Y.; Kroll, A.V.; Zhou, J.; Gao, W.; Fang, R.H.; Chien, S.; Zhang, L. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano 2017, 12, 109–116. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Li, T.; Maruf, A.; Qin, X.; Luo, L.; Zhong, Y.; Qiu, J.; McGinty, S.; Pontrelli, G.; et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 2021, 11, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Huang, Q.; Liu, C.; Kwong, C.H.T.; Yue, L.; Wan, J.B.; Lee, S.M.Y.; Wang, R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020, 11, 2622. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Holmes, D.R.; Topol, E.J. The restenosis paradigm revisited: An alternative proposal for cellular mechanisms. J. Am. Coll. Cardiol. 1992, 20, 1284–1293. [Google Scholar] [CrossRef]
- Khan, W.; Farah, S.; Domb, A.J. Drug eluting stents: Developments and current status. J. Control. Release 2012, 161, 703–712. [Google Scholar] [CrossRef]
- Mercado, N.; Boersma, E.; Wijns, W.; Gersh, B.J.; Morillo, C.A.; de Valk, V.; van Es, G.-A.; Grobbee, D.E.; Serruys, P.W. Clinical and quantitative coronary angiographic predictors of coronary restenosis: A comparative analysis from the balloon-to-stent era. J. Am. Coll. Cardiol. 2001, 38, 645–652. [Google Scholar] [CrossRef]
- Yin, R.X.; Yang, D.Z.; Wu, J.Z. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014, 4, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Arsiwala, A.; Desai, P.; Patravale, V. Recent advances in micro/nanoscale biomedical implants. J. Control. Release 2014, 189, 25–45. [Google Scholar] [CrossRef]
- Tucker, W.D.; Arora, Y.; Mahajan, K. Anatomy, Blood Vessels; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Nakano, K.; Egashira, K.; Masuda, S.; Funakoshi, K.; Zhao, G.; Kimura, S.; Matoba, T.; Sueishi, K.; Endo, Y.; Kawashima, Y.; et al. Formulation of Nanoparticle-Eluting Stents by a Cationic Electrodeposition Coating Technology. JACC Cardiovasc. Interv. 2009, 2, 277–283. [Google Scholar] [CrossRef]
- Granada, J.F.; Tellez, A.; Baumbach, W.R.; Bingham, B.; Keng, Y.-F.; Wessler, J.; Conditt, G.B.; McGregor, J.C.; Stone, G.W.; Kaluza, G.L.; et al. In vivo delivery and long-term tissue retention of nano-encapsulated sirolimus using a novel porous balloon angioplasty system. EuroIntervention 2016, 12, 740–747. [Google Scholar] [CrossRef]
- Sojitra, P.; Yazdani, S.; Otsuka, F.; Doshi, M.; Kolodgie, F.; Virmani, R. CRT-123 A Novel Nano Particle Sirolimus Delivery Via Coated Balloon. JACC Cardiovasc. Interv. 2013, 6, S40. [Google Scholar] [CrossRef]
- Izuhara, M.; Kuwabara, Y.; Saito, N.; Yamamoto, E.; Hakuno, D.; Nakashima, Y.; Horie, T.; Baba, O.; Nishiga, M.; Nakao, T.; et al. Prevention of neointimal formation using miRNA-126-containing nanoparticle-conjugated stents in a rabbit model. PLoS ONE 2017, 12, e0172798. [Google Scholar] [CrossRef] [PubMed]
- Nuhn, H.; Blanco, C.E.; Desai, T.A. Nanoengineered Stent Surface to Reduce In-Stent Restenosis in Vivo. ACS Appl. Mater. Interfaces 2017, 9, 19677–19686. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Jiang, L.; Liu, L.; Chen, J.; Liao, Y.; He, S.; Cui, J.; Liu, X.; Zhao, A.; Yang, P.; et al. Photofunctionalized and Drug-Loaded TiO2 Nanotubes with Improved Vascular Biocompatibility as a Potential Material for Polymer-Free Drug-Eluting Stents. ACS Biomater. Sci. Eng. 2020, 6, 2038–2049. [Google Scholar] [CrossRef]
- Chen, J.; Dai, S.; Liu, L.; Maitz, M.F.; Liao, Y.; Cui, J.; Zhao, A.; Yang, P.; Huang, N.; Wang, Y. Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioact. Mater. 2021, 6, 45–54. [Google Scholar] [CrossRef]
- Du, R.; Wang, Y.; Huang, Y.; Zhao, Y.; Zhang, D.; Du, D.; Zhang, Y.; Li, Z.; McGinty, S.; Pontrelli, G.; et al. Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating. NPG Asia Mater. 2018, 10, 642–658. [Google Scholar] [CrossRef]
- Iyer, R.; Kuriakose, A.E.; Yaman, S.; Su, L.-C.; Shan, D.; Yang, J.; Liao, J.; Tang, L.; Banerjee, S.; Xu, H.; et al. Nanoparticle eluting-angioplasty balloons to treat cardiovascular diseases. Int. J. Pharm. 2019, 554, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Siow, R.C.M.; Mallawaarachchi, C.M.; Weissberg, P.L. Migration of adventitial myofibroblasts following vascular balloon injury: Insights from in vivo gene transfer to rat carotid arteries. Cardiovasc. Res. 2003, 59, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Siow, R.C.M.; Churchman, A.T. Adventitial growth factor signalling and vascular remodelling: Potential of perivascular gene transfer from the outside-in. Cardiovasc. Res. 2007, 75, 659–668. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Lee, S.G.; Park, S.; Yang, D.S.; Lee, J.J.; Khademhosseini, A.; Kim, J.S.; Ryu, W. Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J. Control. Release 2020, 321, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Razavi, M.K.; Donohoe, D.; D’Agostino, R.B.; Jaff, M.R.; Adams, G. Adventitial Drug Delivery of Dexamethasone to Improve Primary Patency in the Treatment of Superficial Femoral and Popliteal Artery Disease. JACC Cardiovasc. Interv. 2018, 11, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.Y.; Xiong, G.M.; Chaw, S.Y.; Phua, J.L.; Ng, J.C.K.; Wong, P.E.H.; Venkatraman, S.; Chong, T.T.; Huang, Y. Adventitial injection delivery of nano-encapsulated sirolimus (Nanolimus) to injury-induced porcine femoral vessels to reduce luminal restenosis. J. Control. Release 2020, 319, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wu, H.; Zhang, L.; Sun, P.; Liu, Y.; Xie, B.; Zhang, C.; Wei, S.; Wang, W.; Li, J. Adventitial injection of HA/SA hydrogel loaded with PLGA rapamycin nanoparticle inhibits neointimal hyperplasia in a rat aortic wire injury model. Drug Deliv. Transl. Res. 2022, 12, 2950–2959. [Google Scholar] [CrossRef]
- He, X.; Shi, X.; Chen, G.; Guo, L.-W.; Si, Y.; Zhu, M.; Pilla, S.; Liu, B.; Gong, S.; Kent, K.C. Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis. PLoS ONE 2014, 9, e89227. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Pelucelli, A.; Zoroddu, M.A. An updated overview on metal nanoparticles toxicity. Semin. Cancer Biol. 2021, 76, 17–26. [Google Scholar] [CrossRef]
- Revell, P. The biological effects of nanoparticles. Nanotechnol. Percept. 2006, 2, 283–298. [Google Scholar]
- Kermanizadeh, A.; Balharry, D.; Wallin, H.; Loft, S.; Møller, P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs—A review. Crit. Rev. Toxicol. 2015, 45, 837–872. [Google Scholar] [CrossRef] [PubMed]
- Yildirimer, L.; Thanh, N.T.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607. [Google Scholar] [CrossRef] [PubMed]
- Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013, 166, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.A.; Yazdani, M.; Lohse, S.E.; Bakhtiary, Z.; Serpooshan, V.; Ghavami, M.; Asadian, M.; Mashaghi, S.; Dreaden, E.C.; Mashaghi, A.; et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chem. Mater. 2017, 29, 6578–6595. [Google Scholar] [CrossRef]
- Kumar, M.; Kulkarni, P.; Liu, S.; Chemuturi, N.; Shah, D.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv. Drug Deliv. Rev. 2023, 194, 114708. [Google Scholar] [CrossRef] [PubMed]
- Nistor, M.T.; Rusu, A.G. Nanorobots with applications in medicine. In Polymeric Nanomaterials in Nanotherapeutics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–149. [Google Scholar]
- Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/nanorobots at work in active drug delivery. Adv. Funct. Mater. 2018, 28, 1706100. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S.; Sun, J.; Wang, Y.; Song, S.; Zhang, H. Targeting the microenvironment of vulnerable atherosclerotic plaques: An emerging diagnosis and therapy strategy for atherosclerosis. Adv. Mater. 2022, 34, 2110660. [Google Scholar] [CrossRef]
- Zhong, Y.; Zeng, X.; Zeng, Y.; Yang, L.; Peng, J.; Zhao, L.; Chang, Y.-T. Nanomaterials-based imaging diagnosis and therapy of cardiovascular diseases. Nano Today 2022, 45, 101554. [Google Scholar] [CrossRef]
- Perera, B.; Wu, Y.; Nguyen, N.-T.; Ta, H.T. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater. Today Bio 2023, 22, 100767. [Google Scholar] [CrossRef]
Nanocarrier | Cargo | Accumulation or Response Strategy | Half-Life (h) | Experiments | References | ||
---|---|---|---|---|---|---|---|
Models | Sample Size * | Outcomes | |||||
Iron | eNOS-overexpressing cells | magnetism | NA | eNOS-/- mice; bovine artery ECs | n = 3 | At least half of the lumen is covered with ECs | [53] |
PLA/magnetite | MNPs functionalized ECs | magnetism | NA | Lewis rats; rat aortic ECs | n = 10 | The fastest rapid proliferation and functionalization of ECs | [54] |
PLA/magnetite | MNPs functionalized ECs | magnetism | NA | Rat carotid artery stent angioplasty model; rat aortic endothelial cell | n = 26 | 1.7-fold less reduction in lumen diameter | [55] |
β-cyclodextrin | Sirolimus | ROS or pH | NA | Rat carotid artery balloon injury model; rat VSMCs | n = 12 | Decrease artery intima–media ratio | [56] |
Polyethyleneimine | Simvastatin acid | Shear stress and ROS | 11.7 ± 1.2 | Rabbit FeCl3 thrombosis model | n = 12 | The lowest amount of thrombosis | [57] |
Nanocarrier | Cargo | Target | Ligand | Half-Life (h) | Experiments | Reference | ||
---|---|---|---|---|---|---|---|---|
Models | Sample Size * | Outcomes | ||||||
Lipid/iron oxide | Sirolimus | VCAM-1 (ECs) | VHPKQHR peptide | 13.84 | Apoe-/- mouse atherosclerotic model; MAECs | n = 30 | T2 relaxation time reduced by 2.7 times | [68] |
Lipid | Cyclopentenone prostaglandins | VCAM-1 (ECs) | Anti-VCAM-1 antibody | NA | LDLr-/- mouse atherosclerotic model; rat peritoneal macrophages; U937 | n = 6 | Reduced the thickness of aortas by 32% | [69] |
Lipid | Fumagillin | ανβ3-integrin (ECs) | ανβ3-integrin antagonist | NA | Hyperlipidemic rabbits | n = 71 | Reduced the neovascular signal by 50% to 75% | [70] |
PEG, PCL | Pigment epithelium-derived factor | ανβ3-integrin (ECs) | cRGD peptide | NA | Apoe-/- mouse atherosclerotic model; HUVECs | n = 18 | Inhibit intimal thickening and reduce plaque area | [71] |
Lipid | Sivelestat | ανβ3-integrin (neutrophils) | cRGD peptide | NA | Apoe-/- mouse atherosclerotic model; HUVECs; neutrophils | NA | Reduce plaque area and stabilize plaque | [72] |
PLGA, PEG | Ac2-26 (N-formyl peptide receptor 2 agonist) | Collagen IV | Collagen IV-binding peptide | NA | LDLr-/- mouse atherosclerotic model | NA | Inhibit inflammation and stabilize plaque | [73] |
pNIPAM | anti-inflammatory peptide | Collagen I | Collagen I-binding peptide | NA | Human aortic ECs; human coronary artery smooth muscle cells | NA | No animal experiments | [74] |
Hyaluronan | 3PO (glycolysis inhibitor) | CD44 (macrophage) | Hyaluronan | 0.5 and 9 | Apoe-/- mouse atherosclerotic model; HUVECs | n = 10 | Improves endothelial continuity and inhibit inflammation | [59] |
Soy PC | NA | CD36 receptor (macrophage) | oxPCs | NA | LDLr-/- mouse atherosclerotic model; primary mouse and THP-1 derived macrophages | n = 6 | 1.4-fold higher accumulation in aortic lesion areas | [75] |
Lipid, PEG | CaMKIIγ siRNA | Stabilin-2 (macrophage) | S2P peptide | NA | LDLr-/- mouse atherosclerotic model; HeLa-Luc, RAW 264.7 and HEK-293 cells | n = 7–9 per group, 2 groups | Stabilize plaque | [76] |
PEG, superparamagnetic iron oxide | microRNA-146a | Class A scavenger receptors (macrophages and ECs) | microRNA-146a | 1.89 | Apoe-/- mouse atherosclerotic model | n = 54 | Reduce and stabilize plaques | [77] |
Lipid, PLGA | LOX-1 siRNA, atorvastatin | CD44 (ECs); apolipoprotein A-I (macrophage) | apolipoprotein A-I, hyaluronic acid | NA | HUVECs; THP-1 derived macrophages | n = 66 | Reduce 39% plaque size, 63% lipid accumulation, and 68% CD68+ macrophage content | [78] |
Nanocarrier | Cargo | Delivery Method | Device Material | Coating Technology | Experiments | References | ||
---|---|---|---|---|---|---|---|---|
Models | Sample Size * | Outcomes | ||||||
Chitosan, PLGA | NA | Stent | Stainless-steel | Cationic electrodeposition | Porcine coronary artery model; human coronary artery SMCs | n = 43 | Comparable levels of injury, inflammation, and neointimal formation | [100] |
Polyester-based polymers | Sirolimus | Balloon | NA | Drug priming after laser drills | Porcine coronary artery model | n = 130 | Reduce stenosis in formulation-treated sites | [101] |
Phospholipid | Sirolimus | Balloon | NA | NA | Rabbit iliac arteries model | NA | Diffusion from intima to adventitia | [102] |
PLGA | miRNA-126 | Stent/Balloon | NA | Electrostatic coating | Rabbit iliac arteries model; HUVECs | 10 arteries per group, 2 groups | Inhibit neointimal formation | [103] |
TiO2 nanotubular | NA | Stent | Titanium | NA | Rabbit restenosis model | n = 14 | Accelerate restoration of a functional endothelium and reduce 30% stenosis | [104] |
TiO2 nanotubular | Ag | Stent | Titanium | Electrochemical anodization and UV irradiation | Rabbit extracorporeal circulation model; rat abdominal aorta model | NA | 33% decrease in the cross-sectional area of the hyperplastic tissue | [105,106] |
PLGA | Docetaxel; SZ-21 (platelet IIb/IIIa receptor antibody) | Stent | Stainless-steel | Coaxial electrospray process | Bama minipigs; HUVECs and HUASMCs | n = 20 | Inhibit thrombosis and in-stent restenosis | [107] |
Nanocarrier | Cargo | Delivery Method | Device Material | Coating Technology | Experiments | Reference | ||
---|---|---|---|---|---|---|---|---|
Models | Sample Size * | Outcomes | ||||||
PDMS | Paclitaxel | Microneedle balloon | NA | UV cured bonding | Rabbit iliac arteries atherosclerosis model | n = 12 | Greater patency and inhibit immunity | [111] |
NA | Dexamethasone | Bullfrog Micro-Infusion Device | NA | NA | Patients with symptomatic peripheral artery disease receiving PTA or ATX | n = 262 | Prevent restenosis | [112] |
Lipid | Sirolimus | Bullfrog Micro-Infusion Device | NA | NA | Mixed breed pigs | n = 16 | Reduce neointima area and neointima area | [113] |
PLGA | Sirolimus | Hydrogel adventitial injection | HA/SA | NA | Rat aortic wire injury model | NA | Inhibit intimal hyperplasia and immunity | [114] |
PLGA | Sirolimus | Pluronic gel periadventitial application | Kolliphor P407 | NA | Rat balloon injury model; SMCs | NA | Inhibit intimal hyperplasia | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Q.; He, C.; Long, B.; Huang, Q.; Chen, Y.; Li, Y.; Dang, Y.; Cai, C. Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis. Biomedicines 2024, 12, 1504. https://doi.org/10.3390/biomedicines12071504
Zong Q, He C, Long B, Huang Q, Chen Y, Li Y, Dang Y, Cai C. Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis. Biomedicines. 2024; 12(7):1504. https://doi.org/10.3390/biomedicines12071504
Chicago/Turabian StyleZong, Qiushuo, Chengyi He, Binbin Long, Qingyun Huang, Yunfei Chen, Yiqing Li, Yiping Dang, and Chuanqi Cai. 2024. "Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis" Biomedicines 12, no. 7: 1504. https://doi.org/10.3390/biomedicines12071504
APA StyleZong, Q., He, C., Long, B., Huang, Q., Chen, Y., Li, Y., Dang, Y., & Cai, C. (2024). Targeted Delivery of Nanoparticles to Blood Vessels for the Treatment of Atherosclerosis. Biomedicines, 12(7), 1504. https://doi.org/10.3390/biomedicines12071504