Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity
Abstract
:1. Introduction
2. Role of Sex Differences in Cardiovascular Risk
3. Mechanisms of Sex-Specific Differences in Gut Microbiota Composition
4. Influence of Sex-Specific Environmental Factors on Gut Microbiota
4.1. Smoking and Alcohol Consumption
4.2. Diet and Exercise
4.3. Medications
5. Cardiovascular Diseases and Gut Microbiota
5.1. Cardiovascular Diseases and Gut Microbiota-Derived Metabolites
5.2. Cardiovascular Diseases and Sex Hormones
Disease | Sex | References |
---|---|---|
Heart failure | Men > women ↑ early menopause | [127,149] |
Myocardial infarction | Hypertension increases risk in women > men ↑ reparative function in women | [150,151,152] |
Atrial fibrillation | ↑ testosterone levels | [153] |
Metabolic syndrome | ↑ androgens ↓ ovarian hormones ↑ female sexual hormone-binding globulin plasma levels | [154] |
Valvular disease | ↑ mistreatment in women | [155] |
Hypertension | Men > women ↑ vasoconstrictor response from testosterone | [44,156] |
6. Therapeutic Implications and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Gaidai, O.; Cao, Y.; Loginov, S. Global Cardiovascular Diseases Death Rate Prediction. Curr. Probl. Cardiol. 2023, 48, 101622. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [PubMed]
- Cho, L.; Vest, A.R.; O’Donoghue, M.L.; Ogunniyi, M.O.; Sarma, A.A.; Denby, K.J.; Lau, E.S.; Poole, J.E.; Lindley, K.J.; Mehran, R. Increasing Participation of Women in Cardiovascular Trials: JACC Council Perspectives. J. Am. Coll. Cardiol. 2021, 78, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Maisel, A.S. Cardiovascular biomarkers and sex: The case for women. Nat. Rev. Cardiol. 2015, 12, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Shufelt, C.L.; Pacheco, C.; Tweet, M.S.; Miller, V.M. Sex-Specific Physiology and Cardiovascular Disease. Adv. Exp. Med. Biol. 2018, 1065, 433–454. [Google Scholar]
- Tsiligiannis, S.; Panay, N.; Stevenson, J.C. Premature Ovarian Insufficiency and Long-Term Health Consequences. Curr. Vasc. Pharmacol. 2019, 17, 604–609. [Google Scholar] [CrossRef]
- Sarma, A.A.; Lau, E.S.; Sharma, G.; King, L.P.; Economy, K.E.; Wood, R.; Wood, M.J.; Feinberg, L.; Isselbacher, E.M.; Hameed, A.B.; et al. Maternal Cardiovascular Health Post-Dobbs. NEJM Evid. 2024, 3, EVIDra2300273. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Zahid, S.; Minhas, A.S.; Ouyang, P.; Vaught, A.; Baker, V.L.; Michos, E.D. Polycystic ovary syndrome: A “risk-enhancing” factor for cardiovascular disease. Fertil. Steril. 2022, 117, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Vazgiourakis, V.M.; Zervou, M.I.; Papageorgiou, L.; Chaniotis, D.; Spandidos, D.A.; Vlachakis, D.; Eliopoulos, E.; Goulielmos, G.N. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int. J. Mol. Med. 2023, 51, 1–16. [Google Scholar] [CrossRef]
- Mehta, L.S.; Beckie, T.M.; DeVon, H.A.; Grines, C.L.; Krumholz, H.M.; Johnson, M.N.; Lindley, K.J.; Vaccarino, V.; Wang, T.Y.; Watson, K.E.; et al. Acute Myocardial Infarction in Women: A Scientific Statement from the American Heart Association. Circulation 2016, 133, 916–947. [Google Scholar] [CrossRef]
- Jones, S.; McNeil, M.; Koczo, A. Updates in Cardiovascular Disease Prevention, Diagnosis, and Treatment in Women. Med. Clin. N. Am. 2023, 107, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Caldarelli, M.; Franza, L.; Rio, P.; Gasbarrini, A.; Gambassi, G.; Cianci, R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Zheng, P.; Yang, J.; Wu, J.; Huang, Y.; Hu, X.; Tan, X.; Duan, J.; Chai, T.; et al. Perturbed gut microbiota is gender-segregated in unipolar and bipolar depression. J. Affect. Disord. 2022, 317, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Rossi, V.; Massini, G.; Regalbuto, C.; Hruby, C.; Panelli, S.; Bandi, C.; Zuccotti, G. Precocious puberty and microbiota: The role of the sex hormone-gut microbiome axis. Front. Endocrinol. 2022, 13, 1000919. [Google Scholar] [CrossRef] [PubMed]
- Celik, H.; Lagro-Janssen, T.A.; Widdershoven, G.G.; Abma, T.A. Bringing gender sensitivity into healthcare practice: A systematic review. Patient Educ. Couns. 2011, 84, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Idris, I.B.; Hamis, A.A.; Bukhori, A.B.M.; Hoong, D.C.C.; Yusop, H.; Shaharuddin, M.A.; Fauzi, N.; Kandayah, T. Women’s autonomy in healthcare decision making: A systematic review. BMC Women’s Health 2023, 23, 643. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; Woodward, M. Women’s reproductive factors and incident cardiovascular disease in the UK Biobank. Heart 2018, 104, 1069–1075. [Google Scholar] [CrossRef]
- Ahmad, J.; Ahmad, H.A.; Surapaneni, P.; Penagaluri, A.; Desai, S.; Dominic, P. Women are underrepresented in cardiac resynchronization therapy trials. J. Cardiovasc. Electrophysiol. 2022, 33, 2653–2657. [Google Scholar] [CrossRef]
- Cho, L.; Davis, M.; Elgendy, I.; Epps, K.; Lindley, K.J.; Mehta, P.K.; Michos, E.D.; Minissian, M.; Pepine, C.; Vaccarino, V.; et al. Summary of Updated Recommendations for Primary Prevention of Cardiovascular Disease in Women: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2602–2618. [Google Scholar] [CrossRef]
- Vaccarino, V.; Bremner, J.D. Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci. Biobehav. Rev. 2017, 74 Pt B, 297–309. [Google Scholar]
- Ji, H.; Kim, A.; Ebinger, J.E.; Niiranen, T.J.; Claggett, B.L.; Bairey Merz, C.N.; Cheng, S. Sex Differences in Blood Pressure Trajectories Over the Life Course. JAMA Cardiol. 2020, 5, 19–26. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [PubMed]
- Huebschmann, A.G.; Huxley, R.R.; Kohrt, W.M.; Zeitler, P.; Regensteiner, J.G.; Reusch, J.E.B. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019, 62, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Appelman, Y.; van Rijn, B.B.; Ten Haaf, M.E.; Boersma, E.; Peters, S.A. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis 2015, 241, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.C.; Stolfo, D.; Anderson, L.; Abdelhamid, M.; Adamo, M.; Bauersachs, J.; Bayes-Genis, A.; Böhm, M.; Chioncel, O.; Filippatos, G.; et al. Differences in presentation, diagnosis and management of heart failure in women. A scientific statement of the Heart Failure Association of the ESC. Eur. J. Heart Fail. 2024, 23. [Google Scholar] [CrossRef]
- Zilio, F.; Musella, F.; Ceriello, L.; Ciliberti, G.; Pavan, D.; Manes, M.T.; Selimi, A.; Scicchitano, P.; Iannopollo, G.; Albani, S.; et al. Sex differences in patients presenting with acute coronary syndrome: A state-of-the-art review. Curr. Probl. Cardiol. 2024, 49, 102486. [Google Scholar] [CrossRef]
- Nishimura, Y.K.; Komatsu, J.; Sugane, H.; Hosoda, H.; Imai, R.I.; Nakaoka, Y.; Nishida, K.; Seki, S.I.; Kubo, T.; Kitaoka, H.; et al. Takotsubo Syndrome in Older Men—Clinical Characteristics Differ by Sex and Age. Circ. Rep. 2024, 6, 201–208. [Google Scholar]
- Sardu, C.; Paolisso, G.; Marfella, R. Impact of Sex Differences in Incident and Recurrent Coronary Events and All-Cause Mortality. J. Am. Coll. Cardiol. 2021, 77, 829–830. [Google Scholar] [CrossRef]
- Sardu, C.; Gatta, G.; Pieretti, G.; Viola, L.; Sacra, C.; Di Grezia, G.; Musto, L.; Minelli, S.; La Forgia, D.; Capodieci, M.; et al. Pre-Menopausal Breast Fat Density Might Predict MACE during 10 Years of Follow-Up: The BRECARD Study. JACC. Cardiovasc. Imaging 2021, 14, 426–438. [Google Scholar] [CrossRef]
- Sardu, C.; Gatta, G.; Pieretti, G.; Onofrio, N.; Balestrieri, M.L.; Scisciola, L.; Cappabianca, S.; Ferraro, G.; Nicoletti, G.F.; Signoriello, G.; et al. SGLT2 breast expression could affect the cardiovascular performance in pre-menopausal women with fatty vs. non fatty breast via over-inflammation and sirtuins’ down regulation. Eur. J. Intern. Med. 2023, 113, 57–68. [Google Scholar] [CrossRef]
- Tepper, P.G.; Randolph, J.F., Jr.; McConnell, D.S.; Crawford, S.L.; El Khoudary, S.R.; Joffe, H.; Gold, E.B.; Zheng, H.; Bromberger, J.T.; Sutton-Tyrrell, K. Trajectory Clustering of Estradiol and Follicle-Stimulating Hormone during the Menopausal Transition among Women in the Study of Women’s Health across the Nation (SWAN). J. Clin. Endocrinol. Metab. 2012, 97, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Willemars, M.M.A.; Nabben, M.; Verdonschot, J.A.J.; Hoes, M.F. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr. Heart Fail. Rep. 2022, 19, 200–212. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wen, S.; Zhang, J.; Peng, J.; Shen, X.; Xu, L. Systematic Review and Meta-analysis: Changes of Gut Microbiota before and after Menopause. Dis. Markers 2022, 2022, 3767373. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Chakole, S.; Agrawal, S.; Gupta, A.; Khekade, H.; Prasad, R.; Lohakare, T.; Wanjari, M. The Impact of Menopause on Cardiovascular Aging: A Comprehensive Review of Androgen Influences. Cureus 2023, 15, e43569. [Google Scholar] [PubMed]
- Traish, A.M. Major cardiovascular disease risk in men with testosterone deficiency (hypogonadism): Appraisal of short, medium and long-term testosterone therapy—A narrative review. Sex. Med. Rev. 2023, 11, 384–394. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Bhasin, S.; Flevaris, P.; Mitchell, L.M.; Basaria, S.; Boden, W.E.; Cunningham, G.R.; Granger, C.B.; Khera, M.; Thompson, I.M., Jr.; et al. Cardiovascular Safety of Testosterone-Replacement Therapy. N. Engl. J. Med. 2023, 389, 107–117. [Google Scholar] [CrossRef]
- Kararigas, G.; Bito, V.; Tinel, H.; Becher, E.; Baczko, I.; Knosalla, C.; Albrecht-Küpper, B.; Sipido, K.R.; Regitz-Zagrosek, V. Transcriptome characterization of estrogen-treated human myocardium identifies myosin regulatory light chain interacting protein as a sex-specific element influencing contractile function. J. Am. Coll. Cardiol. 2012, 59, 410–417. [Google Scholar] [CrossRef]
- Dworatzek, E.; Mahmoodzadeh, S.; Schriever, C.; Kusumoto, K.; Kramer, L.; Santos, G.; Fliegner, D.; Leung, Y.K.; Ho, S.M.; Zimmermann, W.H.; et al. Sex-specific regulation of collagen I and III expression by 17β-Estradiol in cardiac fibroblasts: Role of estrogen receptors. Cardiovasc. Res. 2019, 115, 315–327. [Google Scholar] [CrossRef]
- Martin, T.G.; Leinwand, L.A. Hearts apart: Sex differences in cardiac remodeling in health and disease. J. Clin. Investig. 2024, 134, e180074. [Google Scholar] [CrossRef] [PubMed]
- Geske, J.B.; Ong, K.C.; Siontis, K.C.; Hebl, V.B.; Ackerman, M.J.; Hodge, D.O.; Miller, V.M.; Nishimura, R.A.; Oh, J.K.; Schaff, H.V.; et al. Women with hypertrophic cardiomyopathy have worse survival. Eur. Heart J. 2017, 38, 3434–3440. [Google Scholar] [CrossRef]
- Arimura, T.; Onoue, K.; Takahashi-Tanaka, Y.; Ishikawa, T.; Kuwahara, M.; Setou, M.; Shigenobu, S.; Yamaguchi, K.; Bertrand, A.T.; Machida, N.; et al. Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovasc. Res. 2013, 99, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Gebhard, C. Gender medicine: Effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat. Rev. Cardiol. 2023, 20, 236–247. [Google Scholar] [CrossRef]
- Winham, S.J.; de Andrade, M.; Miller, V.M. Genetics of cardiovascular disease: Importance of sex and ethnicity. Atherosclerosis 2015, 241, 219–228. [Google Scholar] [PubMed]
- Ronen, D.; Benvenisty, N. Sex-dependent gene expression in human pluripotent stem cells. Cell Rep. 2014, 8, 923–932. [Google Scholar] [CrossRef] [PubMed]
- McClain, A.K.; Monteleone, P.P.; Zoldan, J. Sex in cardiovascular disease: Why this biological variable should be considered in in vitro models. Sci. Adv. 2024, 10, eadn3510. [Google Scholar] [CrossRef]
- Higgins, C.D.; Swerdlow, A.J.; Schoemaker, M.J.; Wright, A.F.; Jacobs, P.A. Mortality and cancer incidence in males with Y polysomy in Britain: A cohort study. Hum. Genet. 2007, 121, 691–696. [Google Scholar] [CrossRef]
- Eales, J.M.; Maan, A.A.; Xu, X.; Michoel, T.; Hallast, P.; Batini, C.; Zadik, D.; Prestes, P.R.; Molina, E.; Denniff, M.; et al. Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2386–2401. [Google Scholar] [CrossRef]
- Heydari, R.; Jangravi, Z.; Maleknia, S.; Seresht-Ahmadi, M.; Bahari, Z.; Salekdeh, G.H.; Meyfour, A. Y chromosome is moving out of sex determination shadow. Cell Biosci. 2022, 12, 4. [Google Scholar]
- Heidecker, B.; Lamirault, G.; Kasper, E.K.; Wittstein, I.S.; Champion, H.C.; Breton, E.; Russell, S.D.; Hall, J.; Kittleson, M.M.; Baughman, K.L.; et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 2010, 31, 1188–1196. [Google Scholar] [CrossRef]
- Gutiérrez-Hurtado, I.A.; Sánchez-Méndez, A.D.; Becerra-Loaiza, D.S.; Rangel-Villalobos, H.; Torres-Carrillo, N.; Gallegos-Arreola, M.P.; Aguilar-Velázquez, J.A. Loss of the Y Chromosome: A Review of Molecular Mechanisms, Age Inference, and Implications for Men’s Health. Int. J. Mol. Sci. 2024, 25, 4230. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, R.; Duan, Q.; Miao, Y.; Zhang, T.; Wang, M.; Jones, O.D.; Xu, M. Circulating macrophages as the mechanistic link between mosaic loss of Y-chromosome and cardiac disease. Cell Biosci. 2023, 13, 135. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, I. Age-related loss of Y chromosome in leukocytes linked to cardiac fibrosis. Nat. Rev. Cardiol. 2022, 19, 641. [Google Scholar] [CrossRef]
- Stamova, B.; Tian, Y.; Jickling, G.; Bushnell, C.; Zhan, X.; Liu, D.; Ander, B.P.; Verro, P.; Patel, V.; Pevec, W.C.; et al. The X-chromosome has a different pattern of gene expression in women compared with men with ischemic stroke. Stroke 2012, 43, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ponnusamy, M.; Liu, C.; Gao, J.; Wang, K.; Li, P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Res. Int. 2017, 2017, 1278436. [Google Scholar] [CrossRef] [PubMed]
- Wainer Katsir, K.; Linial, M. Human genes escaping X-inactivation revealed by single cell expression data. BMC Genom. 2019, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; McClusky, R.; Ruiz-Sundstrom, M.; Itoh, Y.; Umar, S.; Arnold, A.P.; Eghbali, M. The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: One X is better than two. Cardiovasc. Res. 2014, 102, 375–384. [Google Scholar] [CrossRef]
- Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 2016, 7, 313–322. [Google Scholar] [CrossRef]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Roomruangwong, C.; Carvalho, A.F.; Geffard, M.; Maes, M. The menstrual cycle may not be limited to the endometrium but also may impact gut permeability. Acta Neuropsychiatr. 2019, 31, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, C.; Shi, Y.; Zhang, F.; Li, L.; Wang, X.; Ling, Y.; Fu, H.; Dong, W.; Shen, J.; et al. Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Front. Microbiol. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Bolnick, D.I.; Snowberg, L.K.; Hirsch, P.E.; Lauber, C.L.; Org, E.; Parks, B.; Lusis, A.J.; Knight, R.; Caporaso, J.G.; Svanbäck, R. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 2014, 5, 4500. [Google Scholar] [CrossRef]
- Pepe, R.B.; Lottenberg, A.M.; Fujiwara, C.T.H.; Beyruti, M.; Cintra, D.E.; Machado, R.M.; Rodrigues, A.; Jensen, N.S.O.; Caldas, A.P.S.; Fernandes, A.E.; et al. Position statement on nutrition therapy for overweight and obesity: Nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol. Metab. Syndr. 2023, 15, 124. [Google Scholar]
- Craft, B.B.; Carroll, H.A.; Lustyk, M.K. Gender Differences in Exercise Habits and Quality of Life Reports: Assessing the Moderating Effects of Reasons for Exercise. Int. J. Lib. Arts Soc. Sci. 2014, 2, 65–76. [Google Scholar]
- Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022, 52, 2355–2369. [Google Scholar] [PubMed]
- Lee, J.R.; Muckerman, J.E.; Wright, A.M.; Davis, D.J.; Childs, T.E.; Gillespie, C.E.; Vieira-Potter, V.J.; Booth, F.W.; Ericsson, A.C.; Will, M.J. Sex determines effect of physical activity on diet preference: Association of striatal opioids and gut microbiota composition. Behav. Brain Res. 2017, 334, 16–25. [Google Scholar] [CrossRef]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef]
- Haro, C.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Landa, B.B.; Navas-Cortés, J.A.; Tena-Sempere, M.; et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE 2016, 11, e0154090. [Google Scholar] [CrossRef]
- Kaliannan, K.; Robertson, R.C.; Murphy, K.; Stanton, C.; Kang, C.; Wang, B.; Hao, L.; Bhan, A.K.; Kang, J.X. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 2018, 6, 205. [Google Scholar]
- Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. Curr. Rev. 2015, 37, 223–236. [Google Scholar]
- Lai, T.T.; Liou, C.W.; Tsai, Y.H.; Lin, Y.Y.; Wu, W.L. Butterflies in the gut: The interplay between intestinal microbiota and stress. J. Biomed. Sci. 2023, 30, 92. [Google Scholar] [CrossRef]
- Xin, M.; Yang, C.; Zhang, L.; Gao, C.; Wang, S. The impact of perceived life stress and online social support on university students’ mental health during the post-COVID era in Northwestern China: Gender-specific analysis. BMC Public Health 2024, 24, 467. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Stefanovics, E.; Ying, S.; Gueorguieva, R.; Krishnan-Sarin, S.; Buta, E. Socioecological factors associated with multiple nicotine product use among U.S. youth: Findings from the population assessment of tobacco and health (PATH) study 2013–2018. Prev. Med. 2024, 183, 107956. [Google Scholar] [CrossRef]
- Gitelman, J.; Smith, B.; Warren, C.M.; Andreacchi, A.T.; Pabayo, R.; Hobin, E. Sexual Identity and Heavy Drinking Among Adults in Canada by Racially Minoritized Status and Income, 2015–2020. LGBT Health 2024. [Google Scholar] [CrossRef] [PubMed]
- Pauley, A.; Buono, M.; West, K.; Metcalf, M.; Rent, S.; Kilasara, J.; Sawe, Y.; Mikindo, M.; Mmbaga, B.T.; Boshe, J.; et al. A Mixed-Methods Comparison of Gender Differences in Alcohol Consumption and Drinking Characteristics among Patients in Moshi, Tanzania. PLOS Glob. Public Health 2023, 3, e0002009. [Google Scholar] [CrossRef]
- Feingold, A.; Washburn, I.J.; Tiberio, S.S.; Capaldi, D.M. Changes in the Associations of Heavy Drinking and Drug Use with Intimate Partner Violence in Early Adulthood. J. Fam. Violence 2015, 30, 27–34. [Google Scholar] [CrossRef]
- Drazdowski, T.K.; Kelly, L.M.; Kliewer, W.L. Motivations for the nonmedical use of prescription drugs in a longitudinal national sample of young adults. J. Subst. Abus. Treat. 2020, 114, 108013. [Google Scholar]
- Evans-Polce, R.J.; Schuler, M.S.; Schulenberg, J.E.; Patrick, M.E. Gender- and age-varying associations of sensation seeking and substance use across young adulthood. Addict. Behav. 2018, 84, 271–277. [Google Scholar] [CrossRef]
- Lange, S.; Probst, C.; Rehm, J.; Popova, S. National, regional, and global prevalence of smoking during pregnancy in the general population: A systematic review and meta-analysis. Lancet Glob. Health 2018, 6, e769–e776. [Google Scholar] [CrossRef]
- Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.; Bäckhed, F.; Verbeke, K.; et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [Google Scholar] [CrossRef] [PubMed]
- Lamas-Paz, A.; Mesquita, M.; Garcia-Lacarte, M.; Estévez-Vázquez, O.; Benedé-Ubieto, R.; Gutierrez, A.H.; Wu, H.; Leal Lasalle, H.; Vaquero, J.; Bañares, R.; et al. Fecal microbiota transplantation from female donors restores gut permeability and reduces liver injury and inflammation in middle-aged male mice exposed to alcohol. Front. Nutr. 2024, 11, 1393014. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, W.; Zeng, H.; Xiang, Z.; Li, M.; Yao, Y.; Li, Y.; Bortolanza, M.; Wu, J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J. Transl. Intern. Med. 2023, 11, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, L.; Brülisauer, K.; Zeitz, J.; Frei, P.; Scharl, M.; Vavricka, S.R.; Fried, M.; Loessner, M.J.; Rogler, G.; Schuppler, M. Smoking cessation alters intestinal microbiota: Insights from quantitative investigations on human fecal samples using FISH. Inflamm. Bowel Dis. 2014, 20, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhou, Y.; Meng, R.; Tang, J.; Zhu, J.; Aldrich, M.C.; Cox, N.J.; Zhu, Y.; Li, Y.; Zhou, D. Cross-talks between gut microbiota and tobacco smoking: A two-sample Mendelian randomization study. BMC Med. 2023, 21, 163. [Google Scholar] [CrossRef]
- Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.A.; Davin, S.; Stauffer, P.; Vandenbark, A.A.; Karstens, L.; Asquith, M.; et al. Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. J. Neuroimmunol. 2017, 310, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Devarakonda, S.L.S.; Superdock, D.K.; Ren, J.; Johnson, L.M.; Loinard-González, A.A.P.; Poole, A.C. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation. Gut Microbes 2024, 16, 2367301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, P.; Fang, Y.; Huang, J.; Huang, J.; Chen, L.; Hu, Q.; Zou, C.; Tao, J.; Chen, L. Joint association of sedentary time and physical activity with abnormal heart rate recovery in young and middle-aged adults. BMC Public Health 2024, 24, 1787. [Google Scholar] [CrossRef]
- Putignano, D.; Bruzzese, D.; Orlando, V.; Fiorentino, D.; Tettamanti, A.; Menditto, E. Differences in drug use between men and women: An Italian cross sectional study. BMC Women’s Health 2017, 17, 73. [Google Scholar] [CrossRef]
- Orlando, V.; Mucherino, S.; Guarino, I.; Guerriero, F.; Trama, U.; Menditto, E. Gender Differences in Medication Use: A Drug Utilization Study Based on Real World Data. Int. J. Environ. Res. Public Health 2020, 17, 3926. [Google Scholar] [CrossRef] [PubMed]
- Bots, S.H.; Peters, S.A.E.; Woodward, M. Sex differences in coronary heart disease and stroke mortality: A global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health 2017, 2, e000298. [Google Scholar] [CrossRef]
- Romanescu, M.; Buda, V.; Lombrea, A.; Andor, M.; Ledeti, I.; Suciu, M.; Danciu, C.; Dehelean, C.A.; Dehelean, L. Sex-Related Differences in Pharmacological Response to CNS Drugs: A Narrative Review. J. Pers. Med. 2022, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chen, Y.; Huang, W.; Zhou, H.; Zhang, W. Drug-microbiota interactions: An emerging priority for precision medicine. Signal Transduct. Target. Ther. 2023, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidis, I.; Briasoulis, A.; Tsougos, E. Oral Cardiac Drug–Gut Microbiota Interaction in Chronic Heart Failure Patients: An Emerging Association. Int. J. Mol. Sci. 2024, 25, 1716. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Sado, A.I.; Afzal, M.S.; Ahmed, A.; Almaalouli, B.; Waheed, T.; Abid, R.; Majumder, K.; Kumar, V.; Tejwaney, U.; et al. Role of gut microbiota in cardiovascular diseases—A comprehensive review. Ann. Med. Surg. 2024, 86, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Mobeen, F.; Sharma, V.; Tulika, P. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation 2018, 14, 560–573. [Google Scholar] [CrossRef] [PubMed]
- Luqman, A.; Hassan, A.; Ullah, M.; Naseem, S.; Ullah, M.; Zhang, L.; Din, A.U.; Ullah, K.; Ahmad, W.; Wang, G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front. Immunol. 2024, 15, 1321395. [Google Scholar] [CrossRef] [PubMed]
- Warmbrunn, M.V.; Boulund, U.; Aron-Wisnewsky, J.; de Goffau, M.C.; Abeka, R.E.; Davids, M.; Bresser, L.R.F.; Levin, E.; Clement, K.; Galenkamp, H.; et al. Networks of gut bacteria relate to cardiovascular disease in a multi-ethnic population: The HELIUS study. Cardiovasc. Res. 2024, 120, 372–384. [Google Scholar] [CrossRef]
- Liu, L.; Kaur, G.I.; Kumar, A.; Kanwal, A.; Singh, S.P. The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications. Cardiovasc. Hematol. Agents Med. Chem. 2024. [Google Scholar] [CrossRef]
- Mahenthiran, A.; Wilcox, J.; Tang, W.H.W. Heart Failure: A Punch from the Gut. Curr. Heart Fail. Rep. 2024, 21, 73–80. [Google Scholar] [CrossRef]
- Teng, D.; Jia, W.; Wang, W.; Liao, L.; Xu, B.; Gong, L.; Dong, H.; Zhong, L.; Yang, J. Causality of the gut microbiome and atherosclerosis-related lipids: A bidirectional Mendelian Randomization study. BMC Cardiovasc. Disord. 2024, 24, 138. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Xu, X.; Huang, S.; Kong, L.; He, Z.; Wang, Y.; Chen, K.; Xiao, L. The Causality between Gut Microbiota and Hypertension and Hypertension-related Complications: A Bidirectional Two-Sample Mendelian Randomization Analysis. Hell. J. Cardiol. HJC = Hell. Kardiol. Ep. 2024, in press. [CrossRef]
- Lymperopoulos, A. Gut microbiota alterations in acute myocardial infarction: (diabetic) context is everything. Ann. Transl. Med. 2023, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, P.; Liu, M.; Ye, J.; Zhu, L. Putative causal relations among gut flora, serums metabolites and arrhythmia: A Mendelian randomization study. BMC Cardiovasc. Disord. 2024, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Maryam; Varghese, T.P.; Tazneem, B. Unraveling the complex pathophysiology of heart failure: Insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). Curr. Probl. Cardiol. 2024, 49, 102411. [Google Scholar] [CrossRef]
- Cianci, R.; Franza, L.; Borriello, R.; Pagliari, D.; Gasbarrini, A.; Gambassi, G. The Role of Gut Microbiota in Heart Failure: When Friends Become Enemies. Biomedicines 2022, 10, 2712. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Han, T.; Huang, X.; Zhao, Y.; Qian, J.; Zhong, J.; Xie, P.; Liao, L. Exploring the potential causal relationship between gut microbiota and heart failure: A two-sample mendelian randomization study combined with the geo database. Curr. Probl. Cardiol. 2024, 49, 102235. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.C.; Yu, Y.; Zhou, S.Y.; Yu, S.; Xiang, M.X.; Ma, H. Assessment of the causal relationship between gut microbiota and cardiovascular diseases: A bidirectional Mendelian randomization analysis. BioData Min. 2024, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, Q.; Wang, R.; Luo, R.; Zhu, S.; Li, M.; Li, W.; Chen, C.; Zou, Y.; Huang, Z.; et al. Emerging Advances of Detection Strategies for Tumor-Derived Exosomes. Int. J. Mol. Sci. 2022, 23, 868. [Google Scholar] [CrossRef]
- Yimin, E.; Lu, C.; Zhu, K.; Li, W.; Sun, J.; Ji, P.; Meng, M.; Liu, Z.; Yu, C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024, 27, 109350. [Google Scholar] [CrossRef]
- Masenga, S.K.; Povia, J.P.; Lwiindi, P.C.; Kirabo, A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023, 11, 2313. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Ahmed, S.; Johnson, M.; Saeedullah, U.; De Leon, J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cammisotto, V.; Bartimoccia, S.; Pignatelli, P.; Carnevale, R.; Nocella, C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.; Marsool, M.D.M.; Goyal, A.; Sulaiman, S.A.; Fatima, L.; Idrees, M.; Sharma, B.; Borra, V.; Gupta, P.; Nadeem, A.; et al. Unveiling the relationship between gut microbiota and heart failure: Recent understandings and insights. Curr. Probl. Cardiol. 2024, 49 Pt C, 102179. [Google Scholar] [CrossRef]
- Bartolomaeus, H.; Balogh, A.; Yakoub, M.; Homann, S.; Markó, L.; Höges, S.; Tsvetkov, D.; Krannich, A.; Wundersitz, S.; Avery, E.G.; et al. Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation 2019, 139, 1407–1421. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Ferrari, M.W.; Lin, S.; Wang, Z.H. Recent advances on the Role of Gut Microbiota in the Development of Heart Failure by Mediating Immune Metabolism. Curr. Probl. Cardiol. 2024, 49, 102128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Ke, B.; Du, J. TMAO: How gut microbiota contributes to heart failure. Transl. Res. J. Lab. Clin. Med. 2021, 228, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Czibik, G.; Mezdari, Z.; Murat Altintas, D.; Bréhat, J.; Pini, M.; d’Humières, T.; Delmont, T.; Radu, C.; Breau, M.; Liang, H.; et al. Dysregulated Phenylalanine Catabolism Plays a Key Role in the Trajectory of Cardiac Aging. Circulation 2021, 144, 559–574. [Google Scholar] [CrossRef]
- Cui, X.; Ye, L.; Li, J.; Jin, L.; Wang, W.; Li, S.; Bao, M.; Wu, S.; Li, L.; Geng, B.; et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018, 8, 635. [Google Scholar] [CrossRef]
- Wang, L. Changes in the gut microbial profile during long-term androgen deprivation therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2023. [Google Scholar] [CrossRef]
- Traish, A.; Bolanos, J.; Nair, S.; Saad, F.; Morgentaler, A. Do Androgens Modulate the Pathophysiological Pathways of Inflammation? Appraising the Contemporary Evidence. J. Clin. Med. 2018, 7, 549. [Google Scholar] [CrossRef] [PubMed]
- Dinetz, E.; Zeballos-Palacios, C.; Martinez, C.A. Addressing the Missing Links in Cardiovascular Aging. Clin. Interv. Aging 2024, 19, 873–882. [Google Scholar] [CrossRef]
- Cross, T.-W.L.; Kasahara, K.; Rey, F.E. Sexual dimorphism of cardiometabolic dysfunction: Gut microbiome in the play? Mol. Metab. 2018, 15, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, H.; Arenas-de Larriva, A.P.; Lopez-Moreno, J.; Gutierrez-Mariscal, F.M.; Romero-Cabrera, J.L.; Molina-Abril, H.; Torres-Peña, J.D.; Rodriguez-Cano, D.; Malagon, M.M.; Ordovas, J.M.; et al. Sex-specific differences in intestinal microbiota associated with cardiovascular diseases. Biol. Sex Differ. 2024, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kararigas, G. Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Front. Cardiovasc. Med. 2021, 8, 759735. [Google Scholar] [CrossRef] [PubMed]
- Maffei, S.; Forini, F.; Canale, P.; Nicolini, G.; Guiducci, L. Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 7154. [Google Scholar] [CrossRef]
- Cross, T.L.; Simpson, A.M.R.; Lin, C.Y.; Hottmann, N.M.; Bhatt, A.P.; Pellock, S.J.; Nelson, E.R.; Loman, B.R.; Wallig, M.A.; Vivas, E.I.; et al. Gut microbiome responds to alteration in female sex hormone status and exacerbates metabolic dysfunction. Gut Microbes 2024, 16, 2295429. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2023, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Clayton, G.L.; Borges, M.C.; Lawlor, D.A. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat. Commun. 2024, 15, 1103. [Google Scholar] [CrossRef]
- Frühbeck, G.; Gómez-Ambrosi, J.; Ramírez, B.; Becerril, S.; Rodríguez, A.; Mentxaka, A.; Valentí, V.; Moncada, R.; Reina, G.; Baixauli, J.; et al. Decreased expression of the NLRP6 inflammasome is associated with increased intestinal permeability and inflammation in obesity with type 2 diabetes. Cell. Mol. Life Sci. CMLS 2024, 81, 77. [Google Scholar] [CrossRef]
- Zaimi, M.; Michalopoulou, O.; Stefanaki, K.; Kazakou, P.; Vasileiou, V.; Psaltopoulou, T.; Karagiannakis, D.S.; Paschou, S.A. Gonadal dysfunction in women with diabetes mellitus. Endocrine 2024. [Google Scholar] [CrossRef]
- Cianci, R.; Franza, L.; Massaro, M.G.; Borriello, R.; Tota, A.; Pallozzi, M.; De Vito, F.; Gambassi, G. The Crosstalk between Gut Microbiota, Intestinal Immunological Niche and Visceral Adipose Tissue as a New Model for the Pathogenesis of Metabolic and Inflammatory Diseases: The Paradigm of Type 2 Diabetes Mellitus. Curr. Med. Chem. 2022, 29, 3189–3201. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Xu, M.; Zhou, Y.; Geng, N.; Lin, N.; Song, W.; Li, S.; Piao, Y.; Han, Z.; Guo, R.; et al. Assessing Visceral Obesity and Abdominal Adipose Tissue Distribution in Healthy Populations Based on Computed Tomography: A Large Multicenter Cross-Sectional Study. Front. Nutr. 2022, 9, 871697. [Google Scholar] [CrossRef] [PubMed]
- Pace, S.; Werz, O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Front. Immunol. 2020, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, G.; Cong, Y.; Yu, Y.; Li, Y. Sex-related Differences in Inflammatory Bowel Diseases: The Potential Role of Sex Hormones. Inflamm. Bowel Dis. 2022, 28, 1766–1775. [Google Scholar] [CrossRef]
- Korczak, J.; Mardas, M.; Litwiniuk, M.; Bogdański, P.; Stelmach-Mardas, M. Androgen Deprivation Therapy for Prostate Cancer Influences Body Composition Increasing Risk of Sarcopenia. Nutrients 2023, 15, 1631. [Google Scholar] [CrossRef] [PubMed]
- Dumesic, D.A.; Turcu, A.F.; Liu, H.; Grogan, T.R.; Abbott, D.H.; Lu, G.; Dharanipragada, D.; Chazenbalk, G.D. Interplay of Cortisol, Testosterone, and Abdominal Fat Mass in Normal-weight Women with Polycystic Ovary Syndrome. J. Endocr. Soc. 2023, 7, bvad079. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Wei, H.; Chen, L.; Guan, Y.; Dong, W.; Zhao, M. The Impact of Visceral Adiposity on Testosterone Levels in American Adult Men: A Cross-Sectional Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e941394. [Google Scholar] [CrossRef]
- Yuan, C.; Hong, H.; Wang, N.; Chen, T.; Cao, M.; Zhao, Y.; Shen, C.; Chen, X.; Luo, Y.; Zhang, B.; et al. Increased oxidized low-density lipoprotein in mice exposed to a high-fat diet impaired spermatogenesis by inhibiting testosterone synthesis via the Klk1bs/Eid3 pathway. Clin. Transl. Med. 2024, 14, e1603. [Google Scholar] [CrossRef]
- Burwitz, B.J.; Yusova, S.; Robino, J.J.; Takahashi, D.; Luo, A.; Slayden, O.D.; Bishop, C.V.; Hennebold, J.D.; Roberts, C.T., Jr.; Varlamov, O. Western-style diet in the presence of elevated circulating testosterone induces adipocyte hypertrophy without proinflammatory responses in rhesus macaques. Am. J. Reprod. Immunol. 2023, 90, e13773. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, J.; Liu, C.; Le, T.N.; Lu, Y.; Feng, F.; Zhao, M. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Romano, L.; Napolitano, L.; Crocetto, F.; Sciorio, C.; Sio, M.; Miranda, A.; Romano, M.; Priadko, K. Prostate and gut: Any relationship? A narrative review on the available evidence and putative mechanisms. Prostate 2024, 84, 513–524. [Google Scholar] [CrossRef]
- Ong, C.; Liu, M.; Thermidor, S.; Eid, M.; Gianos, E. Transgender Cardiovascular Health: Practical Management for the Clinician. Curr. Atheroscler. Rep. 2022, 24, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Shawky, N.M.; Reckelhoff, J.F.; Alexander, B.T.; Yanes Cardozo, L.L. Insights Into the Cardiomodulatory Effects of Sex Hormones: Implications in Transgender Care. Hypertension 2023, 80, 1810–1820. [Google Scholar] [CrossRef] [PubMed]
- Valentine, A.; Davis, S.; Furniss, A.; Dowshen, N.; Kazak, A.E.; Lewis, C.; Loeb, D.F.; Nahata, L.; Pyle, L.; Schilling, L.M.; et al. Multicenter Analysis of Cardiometabolic-related Diagnoses in Transgender and Gender-Diverse Youth: A PEDSnet Study. J. Clin. Endocrinol. Metab. 2022, 107, e4004–e4014. [Google Scholar] [CrossRef]
- Cao, H.; Baranova, A.; Zhao, Q.; Zhang, F. Bidirectional associations between mental disorders, antidepressants and cardiovascular disease. BMJ Ment. Health 2024, 27, e300975. [Google Scholar] [CrossRef]
- O’Connell, M.A.; Pang, K.C. Cardiometabolic Outcomes in Transgender Youth. J. Clin. Endocrinol. Metab. 2022, 107, e4380–e4381. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Le Sayec, M.; Cheok, A. Dietary (poly)phenols and cardiometabolic health: From antioxidants to modulators of the gut microbiota. Proc. Nutr. Soc. 2024, 1–11. [Google Scholar] [CrossRef]
- Maffei, S.; Citti, I.; Guiducci, L. Microbiome, sex hormones and cardiovascular risk: A contribution to gender difference. Ital. J. Gend.-Specif. Med. 2021, 7, 22–33. [Google Scholar]
- Bijla, M.; Saini, S.K.; Pathak, A.K.; Bharadwaj, K.P.; Sukhavasi, K.; Patil, A.; Saini, D.; Yadav, R.; Singh, S.; Leeuwenburgh, C.; et al. Microbiome interactions with different risk factors in development of myocardial infarction. Exp. Gerontol. 2024, 189, 112409. [Google Scholar] [CrossRef]
- Thej, C.; Roy, R.; Cheng, Z.; Garikipati, V.N.S.; Truongcao, M.M.; Joladarashi, D.; Mallaredy, V.; Cimini, M.; Gonzalez, C.; Magadum, A.; et al. Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells. NPJ Regen. Med. 2024, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Sparano, C.; Carinci, V.; Casella, G.; Vignozzi, L.; Sforza, A.; Maggi, M. Cardiovascular safety of testosterone replacement therapy in men: An updated systematic review and meta-analysis. Expert Opin. Drug Saf. 2024, 23, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Cadeddu, C.; Cugusi, L.; Donataccio, M.P.; Deidda, M.; Sciomer, S.; Gallina, S.; Vassalle, C.; Moscucci, F.; Mercuro, G.; et al. Gender Differences and Cardiometabolic Risk: The Importance of the Risk Factors. Int. J. Mol. Sci. 2023, 24, 1588. [Google Scholar] [CrossRef]
- Youssef, G. Valvular heart diseases in women. Egypt. Heart J. 2021, 73, 58. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F. Mechanisms of sex and gender differences in hypertension. J. Hum. Hypertens. 2023, 37, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, X.J.; Xie, W.; Su, Z.A.; Qin, G.M.; Yu, C.H. Postbiotics: Emerging therapeutic approach in diabetic retinopathy. Front. Microbiol. 2024, 15, 1359949. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Hsu, C.N. Nutritional Approaches Targeting Gut Microbiota in Oxidative-Stress-Associated Metabolic Syndrome: Focus on Early Life Programming. Nutrients 2024, 16, 683. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Yadav, R.; Sharma, V.; Dutta, U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J. Gastroenterol. Off. J. Indian Soc. Gastroenterol. 2024, 43, 112–128. [Google Scholar] [CrossRef]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef]
- Imdad, S.; So, B.; Jang, J.; Park, J.; Lee, S.J.; Kim, J.H.; Kang, C. Temporal variations in the gut microbial diversity in response to high-fat diet and exercise. Sci. Rep. 2024, 14, 3282. [Google Scholar] [CrossRef]
- García-Gavilán, J.F.; Atzeni, A.; Babio, N.; Liang, L.; Belzer, C.; Vioque, J.; Corella, D.; Fitó, M.; Vidal, J.; Moreno-Indias, I.; et al. Effect of 1-year lifestyle intervention with energy-reduced Mediterranean diet and physical activity promotion on the gut metabolome and microbiota: A randomized clinical trial. Am. J. Clin. Nutr. 2024, 119, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Li, H.; He, X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024, 16, 2323237. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Liang, J.; Li, C. Effects of fecal microbiota transplantation in metabolic syndrome: A meta-analysis of randomized controlled trials. PLoS ONE 2023, 18, e0288718. [Google Scholar] [CrossRef]
- Pakmehr, A.; Mousavi, S.M.; Ejtahed, H.S.; Hoseini-Tavassol, Z.; Siadat, S.D.; Hasani-Ranjbar, S.; Larijani, B. The Effect of Fecal Microbiota Transplantation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Clin. Ther. 2024, 46, e87–e100. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, J.R.; Mullish, B.H.; Kelly, C.; Fischer, M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019, 394, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wei, X.; Wang, T.; Zhang, M.; Gao, Y.; Cheng, Y.; Chi, L. Intestinal mucosal barrier: A potential target for traditional Chinese medicine in the treatment of cardiovascular diseases. Front. Pharmacol. 2024, 15, 1372766. [Google Scholar] [CrossRef]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
Gut Bacteria and Their Compounds | Associated Cardiovascular Diseases | References |
---|---|---|
Christensenellaceae, Methanobrevibacter, Ruminococcaceae | Higher lipidaemia and increased CVD risk | [84] |
Campylobacter spp., Salmonella spp., Shigella spp., Yersinia enterocolitica, Candida spp., Chlamydia pneumoniae | Heart failure | [119] |
Lipopolysaccharide | Atherosclerosis | [114] |
Low levels of Prevotella, Bifidobacterium, and Lactobacillus | Stroke | [1] |
TMAO | Heart failure | [121] |
Low levels of ricinoleic acid | Heart failure | [122] |
Phenylacetylglutamine | Potential thrombosis exacerbating heart failure | [2,3] |
P-cresol, Indole, and Trimethylamine | Pathophysiological effects on the blood vessels, heart, and kidneys | [4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franza, L.; Caldarelli, M.; Villani, E.R.; Cianci, R. Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity. Biomedicines 2024, 12, 1645. https://doi.org/10.3390/biomedicines12081645
Franza L, Caldarelli M, Villani ER, Cianci R. Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity. Biomedicines. 2024; 12(8):1645. https://doi.org/10.3390/biomedicines12081645
Chicago/Turabian StyleFranza, Laura, Mario Caldarelli, Emanuele Rocco Villani, and Rossella Cianci. 2024. "Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity" Biomedicines 12, no. 8: 1645. https://doi.org/10.3390/biomedicines12081645
APA StyleFranza, L., Caldarelli, M., Villani, E. R., & Cianci, R. (2024). Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity. Biomedicines, 12(8), 1645. https://doi.org/10.3390/biomedicines12081645