The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Experimental Procedures
2.2.1. Stimulation with NaF
2.2.2. Cytokine Array
2.2.3. Real-Time Reverse Transcription (RT)-Polymerase Chain Reaction (PCR)
2.2.4. ELISA
2.2.5. Staining of Collagen and Non-Collagen Proteins
2.3. Statistical Analysis
3. Results
3.1. Effect of NaF Stimulation on Cytokine Expression in HGnFs
3.2. Effect of NaF Stimulation on FGF-2 and TGF-β Expression in HGnFs
3.3. Effect of NaF Stimulation on Collagen and Non-Collagen Expression in HGnFs
3.4. Effect of NaF and/or KN93 on the Phosphorylation of ERK1/2
3.5. Effect of NK93 on the Expression of FGF-2 and TGF-β Induced by NaF
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Twetman, S.; Petersson, L.; Axelsson, S.; Dahlgren, H.; Holm, A.K.; Källestål, C.; Lagerlöf, F.; Lingström, P.; Mejàre, I.; Nordenram, G.; et al. Caries-preventive effect of sodium fluoride Mouthrinses: A systematic review of controlled clinical trials. Acta Odontol. Scand. 2004, 62, 223–230. [Google Scholar] [CrossRef]
- Twetman, S.; Keller, M.K. Fluoride rinses, gels and foams: An update of controlled clinical trials. Caries Res. 2016, 50 (Suppl. 1), 38–44. [Google Scholar] [CrossRef] [PubMed]
- Stephen, K.W. Fluoride toothpastes, rinses, and tablets. Adv. Dent. Res. 1994, 8, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Marinho, V.C.C.; Higgins, J.P.T.; Sheiham, A.; Logan, S. One topical fluoride (toothpastes, or Mouthrinses, or gels, or varnishes) versus another for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2004, 2004, CD002780. [Google Scholar] [CrossRef]
- Torell, P. Two-year clinical tests with different methods of local caries-preventive fluorine application in Swedish SCHOOL-children. Acta Odontol. Scand. 1965, 23, 287–322. [Google Scholar] [CrossRef]
- Hirokawa, K. Supervised daily mouth-rinsing with a 0.023% weak acid NaF solution. Results of a school-based program started at the age of four. Kanagawa Shigaku J. Kanagawa Odontol. Soc. 1990, 25, 221–235. [Google Scholar]
- Ripa, L.W.; Leske, G.S.; Sposato, A.L.; Rebich, T. Supervised weekly rinsing with a 0.2% neutral NaF solution: Results after 5 years. Community Dent. Oral Epidemiol. 1983, 11, 1–6. [Google Scholar] [CrossRef]
- Forsman, B. The caries preventing effect of mouthrinsing with 0.025 percent sodium fluoride solution in Swedish children. Community Dent. Oral Epidemiol. 1974, 2, 58–65. [Google Scholar] [CrossRef]
- Ohara, S.; Kawaguchi, Y.; Shinada, K.; Sasaki, Y. Evaluation of school-based Dental Health activities including fluoride mouth-rinsing in Hiraizumi, Japan. J. Med. Dent. Sci. 2000, 47, 133–141. [Google Scholar]
- Aloufi, F.F.; Alabdulkarim, F.M.; Alshahrani, M.A. The focal hepatic hot spot (‘Hot Quadrate’) sign. Abdom. Radiol. (NY) 2017, 42, 1289–1290. [Google Scholar] [CrossRef]
- Bayat, A.; McGrouther, D.A.; Ferguson, M.W.J. Skin scarring. BMJ 2003, 326, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Hormia, M.; Owaribe, K.; Virtanen, I. The Dento-epithelial junction: Cell adhesion by Type I hemidesmosomes in the absence of a true basal lamina. J. Periodontol. 2001, 72, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Pitaru, S.; McCulloch, C.A.; Narayanan, S.A. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J. Periodontal. Res. 1994, 29, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Vijayashree, R.J.; Sivapathasundharam, B. The diverse role of oral fibroblasts in normal and disease. J. Oral. Maxillofac. Pathol. 2022, 26, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Imamura, K.; Seshima, F.; Nakazaki, T.; Tomita, S.; Saito, A. Periodontal regenerative therapy with recombinant human fibroblast growth factor (rhFGF) -2 for stage III grade C periodontitis: A case report with 6-month follow-up. Bull. Tokyo Dent. Coll. 2023, 64, 135–144. [Google Scholar] [CrossRef]
- Kitamura, M.; Akamatsu, M.; Kawanami, M.; Furuichi, Y.; Fujii, T.; Mori, M.; Kunimatsu, K.; Shimauchi, H.; Ogata, Y.; Yamamoto, M.; et al. Randomized placebo-controlled and controlled non-inferiority phase III trials comparing trafermin, a recombinant human fibroblast growth factor 2, and enamel matrix derivative in periodontal regeneration in intrabony defects. J. Bone Miner. Res. 2016, 31, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Teymoorian, S.K.; Nouri, H.; Moghimi, H. In-vivo and in-vitro wound healing and tissue repair effect of Trametes versicolor polysaccharide extract. Sci. Rep. 2024, 14, 3796. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jiang, K.; Si, H.; McBride, R.; Kisiday, J.; Oakey, J. One step encapsulation of mesenchymal stromal cells in PEG norbornene microgels for therapeutic actions. ACS Biomater. Sci. Eng. 2023, 9, 6322–6332. [Google Scholar] [CrossRef]
- Lieberman, J.R.; Daluiski, A.; Einhorn, T.A. The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Jt. Surg. Am. 2002, 84, 1032–1044. [Google Scholar] [CrossRef]
- Koike, Y.; Yozaki, M.; Utani, A.; Murota, H. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process. Sci. Rep. 2020, 10, 18545. [Google Scholar] [CrossRef]
- Nakai, K.; Tanaka, H.; Fukuzawa, K.; Nakajima, J.; Ozaki, M.; Kato, N.; Kawato, T. Effects of electric-toothbrush vibrations on the expression of collagen and non-collagen proteins through the focal adhesion kinase signaling pathway in gingival fibroblasts. Biomolecules 2022, 12, 771. [Google Scholar] [CrossRef]
- Naumova, E.A.; Kuehnl, P.; Hertenstein, P.; Markovic, L.; Jordan, R.A.; Gaengler, P.; Arnold, W.H. Fluoride bioavailability in saliva and plaque. BMC Oral Health. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, J.; Nakai, K.; Tanaka, H.; Ozaki, M.; Fukuzawa, K.; Kawato, T.; Yonehara, Y. Effects of high glucose concentrations on HMGB1 expression in MG-63 cells. J. Hard Tissue Biol. 2024, 33, 23–30. [Google Scholar] [CrossRef]
- Kleinsasser, N.H.; Weissacher, H.; Wallner, B.C.; Kastenbauer, E.R.; Harréus, U.A. Cytotoxicity and genotoxicity of fluorides in human mucosa and lymphocytes. Laryngorhinootologie 2001, 80, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Puizina Mladinic, E.; Puizina, J.; Gavic, L.; Tadin, A. Clinical prospective assessment of genotoxic and cytotoxic effects of fluoride toothpaste and mouthwash in buccal mucosal cells. Biomedicines 2022, 10, 2206. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tewari, N.; Sato, F.; Tanimoto, K.; Thangavelu, L.; Makishima, M.; Bhawal, U.K. Biphasic Functions of sodium fluoride (NaF) in soft and in hard periodontal tissues. Int. J. Mol. Sci. 2022, 23, 962. [Google Scholar] [CrossRef] [PubMed]
- Bhawal, U.K.; Li, X.; Suzuki, M.; Taguchi, C.; Oka, S.; Arikawa, K.; Tewari, N.; Liu, Y. Treatment with low-level sodium fluoride on wound healing and the osteogenic differentiation of bone marrow mesenchymal stem cells. Dent. Traumatol. 2020, 36, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.P.; Griffiths, G.D.; Schor, A.M.; Leese, G.P.; Schor, S.L. Growth factors in the treatment of diabetic foot ulcers. Br. J. Surg. 2003, 90, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Pierce, G.F.; Galiano, R.D.; Mustoe, T.A. Keratinocyte growth factor induces granulation tissue in ischemic dermal wounds. Importance of epithelial-mesenchymal cell interactions. Arch. Surg. 1996, 131, 660–666. [Google Scholar] [CrossRef]
- Sato, M.; Sawamura, D.; Ina, S.; Yaguchi, T.; Hanada, K.; Hashimoto, I. In vivo introduction of the interleukin 6 Gene into human keratinocytes: Induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch. Dermatol. Res. 1999, 291, 400–404. [Google Scholar] [CrossRef]
- Gallucci, R.M.; Sloan, D.K.; Heck, J.M.; Murray, A.R.; O’Dell, S.J. Interleukin 6 indirectly induces keratinocyte migration. J. Investig. Dermatol. 2004, 122, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Grellner, W.; Georg, T.; Wilske, J. Quantitative analysis of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Sci. Int. 2000, 113, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Sogabe, Y.; Abe, M.; Yokoyama, Y.; Ishikawa, O. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen. 2006, 14, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Di Vita, G.; Patti, R.; D’Agostino, P.; Caruso, G.; Arcara, M.; Buscemi, S.; Bonventre, S.; Ferlazzo, V.; Arcoleo, F.; Cillari, E. Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Repair Regen. 2006, 14, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T. The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts: Relevance to wound healing. J. Dermatol. 1992, 19, 664–666. [Google Scholar] [CrossRef]
- Lee, H.S.; Kooshesh, F.; Sauder, D.N.; Kondo, S. Modulation of TGF-beta 1 production from human keratinocytes by UVB. Exp. Dermatol. 1997, 6, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Eppley, B.L.; Woodell, J.E.; Higgins, J. Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing. Plast. Reconstr. Surg. 2004, 114, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yu, Y.L.; Galiano, R.D.; Roth, S.I.; Mustoe, T.A. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages. J. Surg. Res. 1997, 72, 162–169. [Google Scholar] [CrossRef]
- Rolfe, K.J.; Richardson, J.; Vigor, C.; Irvine, L.M.; Grobbelaar, A.O.; Linge, C. A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus? J. Investig. Dermatol. 2007, 127, 2656–2667. [Google Scholar] [CrossRef]
- Kopecki, Z.; Luchetti, M.M.; Adams, D.H.; Strudwick, X.; Mantamadiotis, T.; Stoppacciaro, A.; Gabrielli, A.; Ramsay, R.G.; Cowin, A.J. Collagen loss and impaired wound healing is associated with c-Myb deficiency. J. Pathol. 2007, 211, 351–361. [Google Scholar] [CrossRef]
- Kane, C.J.; Hebda, P.A.; Mansbridge, J.N.; Hanawalt, P.C. Direct evidence for spatial and temporal regulation of transforming growth factor Beta 1 expression during cutaneous wound healing. J. Cell. Physiol. 1991, 148, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.T.; Han, Y.-P.; Yan, C.; Shaw, M.C.; Garner, W.L. TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: An implication for abnormal wound healing. J. Investig. Dermatol. 2007, 127, 2645–2655. [Google Scholar] [CrossRef] [PubMed]
- White, L.A.; Mitchell, T.I.; Brinckerhoff, C.E. Transforming growth factor Beta Inhibitory Element in the Rabbit matrix metalloproteinase-1 (collagenase-1) Gene Functions as a Repressor of Constitutive Transcription. Biochim. Biophys. Acta. 2000, 1490, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Mauviel, A.; Chung, K.Y.; Agarwal, A.; Tamai, K.; Uitto, J. Cell-specific induction of distinct oncogenes of the jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-Beta in fibroblasts and keratinocytes. J. Biol. Chem. 1996, 271, 10917–10923. [Google Scholar] [CrossRef]
- Zeng, G.; McCue, H.M.; Mastrangelo, L.; Millis, A.J. Endogenous TGF-beta activity is modified during cellular aging: Effects on metalloproteinase and TIMP-1 expression. Exp. Cell Res. 1996, 228, 271–276. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.A.; Kelley, D.G.; Broekelmann, T.J. Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J. Cell Biol. 1982, 92, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 2008, 20, 495–501. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.A.; Quade, B.J.; Broekelmann, T.J.; LaChance, R.; Forsman, K.; Hasegawa, E.; Akiyama, S. Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J. Biol. Chem. 1987, 262, 2957–2967. [Google Scholar] [CrossRef]
- Marcelin, G.; Silveira, A.L.M.; Martins, L.B.; Ferreira, A.V.; Clément, K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J. Clin. Investig. 2019, 129, 4032–4040. [Google Scholar] [CrossRef]
- Lee, M.-J. Transforming growth factor Beta superfamily regulation of adipose tissue biology in obesity. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1160–1171. [Google Scholar] [CrossRef]
- Eisinger, K.; Girke, P.; Buechler, C.; Krautbauer, S. Adipose tissue depot specific expression and regulation of fibrosis-related genes and proteins in experimental obesity. Mamm. Genome. 2024, 35, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Little, K.; Llorián-Salvador, M.; Tang, M.; Du, X.; Marry, S.; Chen, M.; Xu, H. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration. J. Neuroinflammation. 2020, 17, 355. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.K.; Sivamani, K.; Garcia, M.S.; Isseroff, R.R. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front. Biosci. 2007, 12, 2849–2868. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Verin, A.D.; Birukova, A.; Gilbert-McClain, L.I.; Jacobs, K.; Garcia, J.G. Mechanisms of sodium fluoride-induced endothelial cell barrier dysfunction: Role of MLC phosphorylation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281, L1472–L1483. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.R.; Joiner, M.L.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; Aykin-Burns, N.; et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Katada, T.; Ui, M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 1982, 257, 7210–7216. [Google Scholar] [CrossRef] [PubMed]
- Bogatcheva, N.V.; Wang, P.; Birukova, A.A.; Verin, A.D.; Garcia, J.G.N. Mechanism of fluoride-induced MAP kinase activation in pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L1139–L1145. [Google Scholar] [CrossRef] [PubMed]
- Ikushima, H.; Miyazono, K. TGFbeta signalling: A complex web in cancer progression. Nat. Rev. Cancer. 2010, 10, 415–424. [Google Scholar] [CrossRef]
- Zhao, G.-H.; Qiu, Y.-Q.; Yang, C.-W.; Chen, I.-S.; Chen, C.-Y.; Lee, S.-J. The cardenolides ouabain and Reevesioside A promote FGF2 secretion and subsequent FGFR1 phosphorylation via converged ERK1/2 activation. Biochem. Pharmacol. 2020, 172, 113741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, N.; Nakai, K.; Tanaka, H.; Fukuzawa, K.; Hayashi, M.; Aoki, M.; Kawato, T. The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts. Biomedicines 2024, 12, 1727. https://doi.org/10.3390/biomedicines12081727
Kato N, Nakai K, Tanaka H, Fukuzawa K, Hayashi M, Aoki M, Kawato T. The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts. Biomedicines. 2024; 12(8):1727. https://doi.org/10.3390/biomedicines12081727
Chicago/Turabian StyleKato, Nobue, Kumiko Nakai, Hideki Tanaka, Kyoko Fukuzawa, Minii Hayashi, Mikio Aoki, and Takayuki Kawato. 2024. "The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts" Biomedicines 12, no. 8: 1727. https://doi.org/10.3390/biomedicines12081727