Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethical Approval
2.2. Induction of 2K1C Renovascular Hypertension
2.3. Treatment with α-Lipoic Acid
2.4. Analysis of Water Intake, Food Intake, and Diuresis
2.5. Assessment of Blood Pressure
2.6. Histomorphometric Analyses
2.6.1. Aortic Lumen Analysis
2.6.2. Measurement of the Tunica Adventitia/Media Ratio
2.6.3. Area and Volume of Cardiomyocytes
2.7. Biochemical Analysis of Urine
2.8. Vascular Reactivity Study
2.9. Statistical Analysis
3. Results
3.1. Effect of α-Lipoic Acid Treatment on Water Intake and Urine Levels in 2K1C Rats
3.2. Effect of α-Lipoic Acid Treatment on Food Intake in 2K1C Rats
3.3. Blood Pressure Measurement and Relationship between Kidney/Body Weight and Renal Index
3.4. Effect of α-Lipoic Acid Treatment on Weight and Cardiac Morphology in 2K1C Rats
3.5. Treatment with α-Lipoic Acid Promotes Changes in Vascular Reactivity in 2K1C Rats
3.6. Effect of Alpha Lipoic Acid Treatment on Urinary Biochemistry in 2K1C Rats
3.7. Effect of Alpha α-Acid Treatment on Aortic and Cardiac Morphology in 2K1C Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; Lefevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults. JAMA 2014, 311, 507. [Google Scholar] [CrossRef] [PubMed]
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef]
- Patrick, D.M.; Van Beusecum, J.P.; Kirabo, A. The role of inflammation in hypertension: Novel concepts. Curr. Opin. Physiol. 2021, 19, 92–98. [Google Scholar] [CrossRef]
- Mannemuddhu, S.S.; Ojeda, J.C.; Yadav, A. Renovascular Hypertension. Prim. Care Clin. Off. Pr. 2020, 47, 631–644. [Google Scholar] [CrossRef]
- Iversen, B.M.; Heyeraas, K.J.; Sekse, I.; Andersen, K.J.; Ofstad, J. Autoregulation of renal blood flow in two-kidney, one-clip hypertensive rats. Am. J. Physiol. Physiol. 1986, 251, F245–F250. [Google Scholar] [CrossRef]
- dos Santos, V.M.; da Silva, M.V.B.; Prazeres, T.C.M.M.; Cartágenes, M.D.S.S.; Calzerra, N.T.M.; de Queiroz, T.M. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front. Mol. Biosci. 2022, 9, 1032177. [Google Scholar] [CrossRef]
- Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994, 74, 1141–1148. [Google Scholar] [CrossRef]
- Santana-Garrido, Á.; Reyes-Goya, C.; Fernández-Bobadilla, C.; Blanca, A.J.; André, H.; Mate, A.; Vázquez, C.M. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol. Vis. 2021, 27, 161–178. [Google Scholar] [PubMed]
- Costa, C.A.; Amaral, T.A.; Carvalho, L.C.; Ognibene, D.T.; da Silva, A.F.; Moss, M.B.; Valença, S.S.; de Moura, R.S.; Resende, C. Antioxidant Treatment With Tempol and Apocynin Prevents Endothelial Dysfunction and Development of Renovascular Hypertension. Am. J. Hypertens. 2009, 22, 1242–1249. [Google Scholar] [CrossRef]
- Queiroz, T.M.; Guimarães, D.D.; Mendes-Junior, L.G.; Braga, V.A. α-Lipoic Acid Reduces Hypertension and Increases Baroreflex Sensitivity in Renovascular Hypertensive Rats. Molecules 2012, 17, 13357–13367. [Google Scholar] [CrossRef]
- de Queiroz, T.M.; Xia, H.; Filipeanu, C.M.; Braga, V.A.; Lazartigues, E. α-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. Am. J. Physiol. Circ. Physiol. 2015, 309, H926–H934. [Google Scholar] [CrossRef] [PubMed]
- García-Trejo, E.M.A.; Arellano-Buendía, A.S.; Argüello-García, R.; Loredo-Mendoza, M.L.; García-Arroyo, F.E.; Arellano-Mendoza, M.G.; Castillo-Hernández, M.C.; Guevara-Balcázar, G.; Tapia, E.; Sánchez-Lozada, L.G.; et al. Effects of Allicin on Hypertension and Cardiac Function in Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2016, 2016, 3850402. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-L.; Yu, X.-J.; Hu, H.-B.; Yang, Q.-W.; Liu, K.-L.; Chen, Y.-M.; Zhang, Y.; Zhang, D.-D.; Tian, H.; Zhu, G.-Q.; et al. Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovasc. Toxicol. 2021, 21, 721–736. [Google Scholar] [CrossRef]
- Guimaraes, D.A.; dos Passos, M.A.; Rizzi, E.; Pinheiro, L.C.; Amaral, J.H.; Gerlach, R.F.; Castro, M.M.; Tanus-Santos, J.E. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy. Free. Radic. Biol. Med. 2018, 120, 25–32. [Google Scholar] [CrossRef]
- Temiz-Resitoglu, M.; Guden, D.S.; Senol, S.P.; Vezir, O.; Sucu, N.; Kibar, D.; Yılmaz, S.N.; Tunctan, B.; Malik, K.U.; Sahan-Firat, S. Pharmacological Inhibition of Mammalian Target of Rapamycin Attenuates Deoxycorticosterone Acetate Salt–Induced Hypertension and Related Pathophysiology: Regulation of Oxidative Stress, Inflammation, and Cardiovascular Hypertrophy in Male Rats. J. Cardiovasc. Pharmacol. 2022, 79, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Liu, J.-J.; Cui, W.; Shi, X.-L.; Guo, J.; Li, H.-B.; Huo, C.-J.; Miao, Y.-W.; Zhang, M.; Yang, Q.; et al. Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicol. Lett. 2016, 241, 152–158. [Google Scholar] [CrossRef]
- Xu, C.; Li, E.; Liu, S.; Huang, Z.; Qin, J.G.; Chen, L. Effects of α-lipoic acid on growth performance, body composition, antioxidant status and lipid catabolism of juvenile Chinese mitten crab Eriocheir sinensis fed different lipid percentage. Aquaculture 2018, 484, 286–292. [Google Scholar] [CrossRef]
- Kamt, S.F.; Liu, J.; Yan, L.-J. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023, 15, 1732. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef]
- Zhang, J.; McCullough, P.A. Lipoic Acid in the Prevention of Acute Kidney Injury. Nephron 2016, 134, 133–140. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, K.; Xiao, L.; Jin, S.; Dong, J.; Teng, X.; Guo, Q.; Chen, Y.; Wu, Y. Alpha-lipoic acid regulates the autophagy of vascular smooth muscle cells in diabetes by elevating hydrogen sulfide level. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2018, 1864, 3723–3738. [Google Scholar] [CrossRef]
- Smith, S.H.; Bishop, S.P. Selection criteria for drug-treated animals in two-kidney, one clip renal hypertension. Hypertension 1986, 8, 700–705. [Google Scholar] [CrossRef]
- Kaur, S.; Muthuraman, A. Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat. Life Sci. 2016, 150, 89–94. [Google Scholar] [CrossRef]
- Pereira, P.G.; Rabelo, K.; da Silva, J.F.R.; Ciambarella, B.T.; Argento, J.G.C.; Nascimento, A.L.R.; Vieira, A.B.; de Carvalho, J.J. Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension. Histol. Histopathol. 2020, 35, 609–621. [Google Scholar] [CrossRef]
- Lima, C.M.; Lima, A.K.; Melo MG, D.; Dória GA, A.; Serafini, M.R. Alores de referência hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério da Universidade Tiradentes. Sci. Plena 2014, 10, 1–9. [Google Scholar]
- Zhang, Q.; Davis, K.J.; Hoffmann, D.; Vaidya, V.S.; Brown, R.P.; Goering, P.L. Urinary Biomarkers Track the Progression of Nephropathy in Hypertensive and Obese Rats. Biomark. Med. 2014, 8, 85–94. [Google Scholar] [CrossRef]
- Hojná, S.; Kotsaridou, Z.; Vaňourková, Z.; Rauchová, H.; Behuliak, M.; Kujal, P.; Kadlecová, M.; Zicha, J.; Vaněčková, I. Empagliflozin Is Not Renoprotective in Non-Diabetic Rat Models of Chronic Kidney Disease. Biomedicines 2022, 10, 2509. [Google Scholar] [CrossRef]
- El-Beshbishy, H.A.; Bahashwan, S.A.; Aly, H.A.; Fakher, H.A. Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes. Eur. J. Pharmacol. 2011, 668, 278–284. [Google Scholar] [CrossRef]
- Amat, N.; Amat, R.; Abdureyim, S.; Hoxur, P.; Osman, Z.; Mamut, D.; Kijjoa, A. Aqueous extract of dioscorea opposita thunb. normalizes the hypertension in 2K1C hypertensive rats. BMC Complement. Altern. Med. 2014, 14, 36. [Google Scholar] [CrossRef]
- Rabito, S.F.; Carretero, O.A.; Scicli, A.G. Evidence against a role of vasopressin in the maintenance of high blood pressure in mineralocorticoid and renovascular hypertension. Hypertension 1981, 3, 34–38. [Google Scholar] [CrossRef]
- Lincevicius, G.S.; Shimoura, C.G.; Nishi, E.E.; Perry, J.C.; Casarini, D.E.; Gomes, G.N.; Bergamaschi, C.T.; Campos, R.R. Aldosterone Contributes to Sympathoexcitation in Renovascular Hypertension. Am. J. Hypertens. 2015, 28, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Roncari, C.F.; Barbosa, R.M.; Vendramini, R.C.; De Luca, L.A., Jr.; Menani, J.V.; Colombari, E.; Colombari, D.S. Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides 2018, 101, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Anversa, P.; Ricci, R.; Olivetti, G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J. Am. Coll. Cardiol. 1986, 7, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018, 15, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Restini, C.B.A.; Garcia, A.F.E.; Natalin, H.M.; Carmo, M.F.A.; Nowicki, V.F.; Rizzi, E.; Ramalho, L.N.Z. Resveratrol Supplants Captopril’s Protective Effect on Cardiac Remodeling in a Hypertension Model Elicited by Renal Artery Stenosis. Yale J. Biol. Med. 2022, 95, 57–69. [Google Scholar] [PubMed]
- Martinelli, I.; Tomassoni, D.; Roy, P.; Mannelli, L.D.C.; Amenta, F.; Tayebati, S.K. Antioxidant Properties of Alpha-Lipoic (Thioctic) Acid Treatment on Renal and Heart Parenchyma in a Rat Model of Hypertension. Antioxidants 2021, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- Silver, F.H.; Christiansen, D.L.; Buntin, C.M. Mechanical properties of the aorta: A review. Crit. Rev. Biomed. Eng. 1989, 17, 323–358. [Google Scholar] [PubMed]
- Jacob, M.; Badier-Commander, C.; Fontaine, V.; Benazzoug, Y.; Feldman, L.; Michel, J. Extracellular matrix remodeling in the vascular wall. Pathol. Biol. 2001, 49, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar] [CrossRef]
- Bassi, E.; Liberman, M.; Martinatti, M.; Bortolotto, L.; Laurindo, F. Lipoic acid, but not tempol, preserves vascular compliance and decreases medial calcification in a model of elastocalcinosis. Braz. J. Med. Biol. Res. 2014, 47, 119–127. [Google Scholar] [CrossRef]
- Pereira, S.C.; Parente, J.M.; Belo, V.A.; Mendes, A.S.; Gonzaga, N.A.; Vale, G.T.D.; Ceron, C.S.; Tanus-Santos, J.E.; Tirapelli, C.R.; Castro, M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis 2018, 270, 146–153. [Google Scholar] [CrossRef] [PubMed]
(A) MR (%) | Sham | Sham-LA | 2K1C | 2K1C-LA |
---|---|---|---|---|
PHE | 126.2 ± 13.9 | 172.3 ± 18.0 | 163.2 ± 11.6 | 134.7 ± 17.2 |
ACh | 116.0 ± 2.1 | 106.8 ± 2.5 | 124.9 ± 8.9 | 115.4 ± 11.6 |
SNP | 126.0 ± 12.3 | 121.0 ± 3.9 | 151.5 ± 22.3 | 118.1 ± 2.5 |
(B) pD2 | Sham | Sham-LA | 2K1C | 2K1C-LA |
PHE | 6.84 ± 0.10 | 7.40 ± 0.07 | 6.97 ± 0.15 | 7.52 ± 0.09 *,& |
ACh | 9.05 ± 0.09 | 8.58 ± 0.09 | 8.64 ± 0.14 | 8.64 ± 0.13 |
SNP | 8.70 ± 0.10 | 8.19 ± 0.06 | 8.74 ± 0.17 | 8.65 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, D.V.G.; Alencar, D.F.; da Silva, M.V.B.; Rocha, D.G.; Roncari, C.F.; Jorge, R.J.B.; Alves, R.d.S.; David, R.B.; Ferreira e Silva, W.T.; Galindo, L.C.M.; et al. Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats. Biomedicines 2024, 12, 1751. https://doi.org/10.3390/biomedicines12081751
Nascimento DVG, Alencar DF, da Silva MVB, Rocha DG, Roncari CF, Jorge RJB, Alves RdS, David RB, Ferreira e Silva WT, Galindo LCM, et al. Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats. Biomedicines. 2024; 12(8):1751. https://doi.org/10.3390/biomedicines12081751
Chicago/Turabian StyleNascimento, Déborah Victória Gomes, Darlyson Ferreira Alencar, Matheus Vinicius Barbosa da Silva, Danilo Galvão Rocha, Camila Ferreira Roncari, Roberta Jeane Bezerra Jorge, Renata de Sousa Alves, Richard Boarato David, Wylla Tatiana Ferreira e Silva, Lígia Cristina Monteiro Galindo, and et al. 2024. "Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats" Biomedicines 12, no. 8: 1751. https://doi.org/10.3390/biomedicines12081751
APA StyleNascimento, D. V. G., Alencar, D. F., da Silva, M. V. B., Rocha, D. G., Roncari, C. F., Jorge, R. J. B., Alves, R. d. S., David, R. B., Ferreira e Silva, W. T., Galindo, L. C. M., & de Queiroz, T. M. (2024). Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats. Biomedicines, 12(8), 1751. https://doi.org/10.3390/biomedicines12081751