Serum Uric Acid as an Indicator of Right Ventricular Dysfunction in LVAD Patients: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
- Preoperative hyperuricemia, either primary or secondary to hypothyroidism;
- End-stage kidney failure;
- Iron supplementation;
- Alcoholic beverage consumption.
Statistical Analysis
3. Results
3.1. Correlations
3.2. Receiver Operator Curve (ROC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Barge-Caballero, E. Advanced Heart Failure: Definition, Epidemiology, and Clinical Course. Heart Fail. Clin. 2021, 17, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Roesel, M.J.; Nersesian, G.; Neuber, S.; Thau, H.; Von Gudenberg, R.W.; Lanmueller, P.; Hennig, F.; Falk, V.; Potapov, E.; Knosalla, C.; et al. LVAD as a Bridge to TransplantationCurrent Status and Future Perspectives. Rev. Cardiovasc. Med. 2024, 25, 176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-Year Outcomes in Patients with Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA. 2022, 328, 1233–1242. [Google Scholar] [CrossRef]
- Purohit, S.N.; Cornwell, W.K.; Lindenfeld, J.; Ambardekar, A.V. Living Without a Pulse: The Vascular Implications of Continuous-Flow Left Ventricular Assist Devices. Circ. Heart Fail. 2018, 11, e004670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bravo, C.A.; Navarro, A.G.; Dhaliwal, K.K.; Khorsandi, M.; Keenan, J.E.; Mudigonda, P.; O’Brien, K.D.; Mahr, C. Right heart failure after left ventricular assist device: From mechanisms to treatments. Front. Cardiovasc. Med. 2022, 9, 1023549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frankfurter, C.; Molinero, M.; Vishram-Nielsen, J.K.K.; Foroutan, F.; Mak, S.; Rao, V.; Billia, F.; Orchanian-Cheff, A.; Alba, A.C. Predicting the Risk of Right Ventricular Failure in Patients Undergoing Left Ventricular Assist Device Implantation: A Sys-tematic Review. Circ. Heart Fail. 2020, 13, e006994. [Google Scholar] [CrossRef] [PubMed]
- Shad, R.; Fong, R.; Quach, N.; Bowles, C.; Kasinpila, P.; Li, M.; Callon, K.; Castro, M.; Guha, A.; Suarez, E.E.; et al. Long-term survival in patients with post-LVAD right ventricular failure: Multi-state modelling with competing outcomes of heart transplant. J. Heart Lung Transplant. 2021, 40, 778–785. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Bonios, M.; Ben Gal, T.; Gustafsson, F.; Abdelhamid, M.; Adamo, M.; Bayes-Genis, A.; Böhm, M.; Chioncel, O.; Cohen-Solal, A.; et al. Right heart failure with left ventricular assist devices: Preoperative, perioperative and postoperative management strategies. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Rodenas-Alesina, E.; Brahmbhatt, D.H.; Rao, V.; Salvatori, M.; Billia, F. Prediction, prevention, and management of right ventricular failure after left ventricular assist device implantation: A comprehensive review. Front. Cardiovasc. Med. 2022, 9, 1040251. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Z.; Yang, J.; Zheng, J.; Shui, X.; Yan, Y.; Huang, S.; Liang, Z.; Lei, W.; He, Y. The Role of Hyperuricemia in Cardiac Diseases: Evidence, Controversies, and Therapeutic Strategies. Biomolecules 2024, 14, 753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nowak, M.M.; Niemczyk, M.; Gołębiewski, S.; Pączek, L. Influence of xanthine oxidase inhibitors on all-cause mortality in adults: A systematic review and meta-analysis. Cardiol. J. 2024, 31, 479–487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Shults, N.V.; Suzuki, Y.J. Oxidative profiling of the failing right heart in rats with pulmonary hypertension. PLoS ONE 2017, 12, e0176887. [Google Scholar] [CrossRef] [PubMed]
- El Din, U.A.A.S.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2016, 8, 537–548. [Google Scholar] [CrossRef]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, X.; Han, Y.; Cao, Y.; Han, X.; Di, H.; Yin, Y.; Wu, J. Hyperuricemia and gout increased the risk of long-term mortality in patients with heart failure: Insights from the National Health and Nutrition Examination Survey. J. Transl. Med. 2023, 21, 463–473. [Google Scholar]
- Correale, M.; Tricarico, L.; Chirivì, F.; Bevere, E.M.L.; Ruggeri, D.; Migliozzi, C.; Rossi, L.; Vitullo, A.; Granatiero, M.; Granato, M.; et al. Endothelial Function Correlates with Pulmonary Pressures in Subjects with Clinically Suspected Pulmonary Hypertension. Am. J. Cardiol. 2024, 225, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Gao, X.; Sun, Q.; Gong, M.; Pan, Y.; Guo, Q.; Zhao, X.; Guo, R.; Liu, Y. Association between uric acid and cardiac outcomes mediated by neutrophil-to-lymphocyte ratio in patients with left ventricular diastolic dysfunction and pulmonary hypertension. Sci. Rep. 2024, 14, 2751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jordhani, M.; Cafka, M.; Seiti, J.; Barrios, V. The Relationship between Hyperuricemia and Echocardiographic Parameters in Patients with Chronic Atrial Fibrillation. J. Clin. Med. 2023, 12, 5034. [Google Scholar] [CrossRef]
- Ardahanli, I.; Celik, M. Serum Uric Acid Levels among Patients who Died in Recent Year due to Heart Failure with Reduced Ejection Fraction. J. Coll. Physicians Surg. Pak. 2020, 30, 780–784. [Google Scholar] [CrossRef]
- Gulati, G.; Grandin, E.W.; Kennedy, K.; Cabezas, F.; DeNofrio, D.D.; Kociol, R.; Rame, J.E.; Pagani, F.D.; Kirklin, J.K.; Kormos, R.L.; et al. Preimplant Phosphodiesterase-5 Inhibitor Use Is Associated with Higher Rates of Severe Early Right Heart Failure After Left Ventricular Assist Device Implantation. Circ. Heart Fail. 2019, 12, e005537. [Google Scholar] [CrossRef]
- López-Vilella, R.; Cervera, B.G.; Trenado, V.D.; Dolz, L.M.; Bonet, L.A. Clinical profiling of patients admitted with acute heart failure: A comprehensive survival analysis. Front. Cardiovasc. Med. 2024, 11, 1381514. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Doehner, W.; Rauchhaus, M.; Sharma, R.; Francis, D.; Knosalla, C.; Davos, C.H.; Cicoira, M.; Shamim, W.; Kemp, M. Uric acid and survival in chronic heart failure: Validation and application in metabolic, functional, and hemodynamic staging. Circulation 2003, 107, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; Xue, Y.; He, D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front. Immunol. 2022, 13, 888306. [Google Scholar] [CrossRef] [PubMed]
- Deis, T.; Rossing, K.; Ersbøll, M.K.; Wolsk, E.; Gustafsson, F. Uric acid in advanced heart failure: Relation to central haemodynamics and outcome. Open Heart 2022, 9, e002092. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Olasińska-WIśniewska, A.; Michalak, M.; Straburzyńska-MIgaj, E.; Jemielity, M. Neutrophil to lymphocyte ratio as noninvasive predictor of pulmonary vascular resistance increase in congestive heart failure patients: Single-center preliminary report. Adv. Clin. Exp. Med. 2020, 29, 1313–1317. [Google Scholar] [CrossRef]
- Piani, F.; Baschino, S.; Agnoletti, D.; Calandrini, L.; Degli Esposti, D.; Di Micoli, A.; Falcone, R.; Fiorini, G.; Ianniello, E.; Mauloni, P.; et al. Serum uric acid to eGFR ratio correlates with adverse outcomes in elderly hospitalized for acute heart failure. Int. J. Cardiol. 2024, 409, 132160–132174. [Google Scholar] [CrossRef]
- Wu, X.; Jian, G.; Tang, Y.; Cheng, H.; Wang, N.; Wu, J. Asymptomatic hyperuricemia and incident congestive heart failure in elderly patients without comorbidities. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 666–673. [Google Scholar] [CrossRef]
- Piani, F.; Sasai, F.; Bjornstad, P.; Borghi, C.; Yoshimura, A.; Sanchez-Lozada, L.G.; Roncal-Jimenez, C.; Garcia, G.E.; Hernando, A.A.; Fuentes, G.C.; et al. Hyperuricemia and chronic kidney disease: To treat or not to treat. Braz. J. Nephrol. 2021, 43, 572–579. [Google Scholar] [CrossRef]
- Miao, B.; Wu, J.; Wang, J.; Li, Y.; Da, Y.; Wang, D.; Gao, B. Correlation between SUA and prognosis in CHF patients after revascularization. J. Med. Biochem. 2023, 43, 193–199. [Google Scholar] [CrossRef]
- Amin, A.; Chitsazan, M.; Abad, F.S.A.; Taghavi, S.; Naderi, N. On admission serum sodium and uric acid levels predict 30 day rehospitalization or death in patients with acute decompensated heart failure. ESC Heart Fail. 2017, 4, 162–168. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Wojtasińska, E.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Ładzińska, M.; Sikora, J.; Straburzyńska-Migaj, E.; Tykarski, A.; Jemielity, M.; Rupa-Matysek, J. Neutrophil to extracellular traps as an early marker of right ventricular dilatation in patients with left ventricular assist device. Kardiol. Pol. 2024; epub ahead of print. [Google Scholar] [CrossRef]
Parameters (Median (Q1–Q3)) | Preoperative n = 29 | Follow-Up n = 29 | p |
---|---|---|---|
Peripheral blood analysis: | |||
WBC (K/μL) | 7.93 (6.89–8.54) | 7.99 (6.76–9.60) | 0.747 |
Neutrophile (K/μL) | 5.52 (4.59–6.50) | 5.31 (4.33–6.31) | 0.603 |
Lymphocyte (K/μL) | 1.32 (0.95–1.90) | 1.29 (1.09–1.70) | 0.237 |
Monocyte (K/μL) | 0.52 (0.43–0.58) | 0.51 (0.43–0.63) | 0.227 |
Hemoglobin (mmol/L) | 8.80 (7.50–9.46) | 8.60 (7.35–8.80) | 0.438 |
Hematocrit (%) | 43 (36–45) | 41 (35–44) | 0.300 |
Platelets (K/μL) | 197 (157–254) | 198 (167–251) | 0.705 |
MPV (fL) | 8.65 (8.43–9.50) | 8.30 (8.00–9.13) | 0.722 |
MCV (fL) | 91.5 (89.0–95.0) | 88 (81.8–90.4) | 0.023 |
MCHC (mmol/L) | 20.79 (20.54–20.96) | 20.56 (20.21–21.02) | 1.000 |
RDW (%) | 15.0 (14.3–15.6) | 15.3 (14.6–16.6) | 0.925 |
Kidney tests: | |||
Creatinine (mmol/L) | 115 (86–137) | 109 (87–136) | 0.227 |
GFR (mL/min) | 71 (58–89.5) | 61 (47.5–73.5) | 0.374 |
UA (μmol/L) | 396.5 (295.8–470.8) | 383 (326–543) | 0.492 |
UA > 420 μmol/L | 5 (17) | 9 (31) | 0.003 * |
LDH (U/L) | 237 (218–290) | 221 (201–246) | 0.213 |
NT pro-BNP (pg/mL) | 2873 (1789–4372) | 916 (432–1821) | 0.006 * |
Echocardiography Data | Preoperative n = 29 | Follow-Up n = 29 | p |
---|---|---|---|
LV mm (median (Q1–Q3)) | 65 (60–75) | 63.5 (57–68.8) | 0.147 |
RV mm (median (Q1–Q3)) | 31 (29–37) | 32.5 (28.5–38.8) | 0.567 |
RV2/1 (median (Q1–Q3)) | NA | 0.93 (0.91–1.08) | NA |
RV2/RV1 > 1 (n, (%)) | NA | 7 (24) | NA |
RV2–RV1 difference (mm) (median (Q1–Q3)) | NA | −1.5 (−3.3–19.00) | NA |
TAPSE mm (median (Q1–Q3)) | 14.5 (14.0–15.5) | 15.0 (14.0–16.0) | 0.140 |
TAPSE2–TAPSE1 difference (mm) (median (Q1–Q3)) | NA | 0 (−5–13) | NA |
LA mm (median (Q1–Q3)) | 48 (44–52) | 49 (48–51.8) | 0.615 |
IVs mm (median (Q1–Q3)) | 10 (9–11) | 10 (10–11) | 0.380 |
IM grade (median (Q1–Q3)) | 2.5 (2.1–3.1) | 2.3 (2.1–2.7) | 0.643 |
LVEF (%) (median (Q1–Q3)) | 20 (15–25) | 20 (15–20) | 0.633 |
Parameters (Median (Q1–Q3)) | Stable or Decreased RV Dimension (n = 22) | RV Dilatation (n = 7) | p |
---|---|---|---|
Peripheral blood analysis: | |||
WBC (K/μL) | 7.78 (6.06–9.02) | 7.97 (7.81–8.15) | 0.630 |
Neutrophile (K/μL) | 6.02 (4.57–6.83) | 5.02 (4.94–6.20) | 0.447 |
Lymphocyte (K/μL) | 1.21 (0.93–1.87) | 1.63 (1.52–1.91) | 0.944 |
Monocyte (K/μL) | 0.46 (0.42–0.56) | 0.58 (0.57–0.66) | 0.078 |
Hemoglobin (mmol/L) | 8.90 (6.70–9.50) | 8.70 (6.70–9.50) | 0.620 |
Hematocrit (%) | 43 (35–45) | 44 (38–45) | 0.479 |
Platelets (K/μL) | 195 (156–257) | 200 (197–244) | 0.657 |
MPV (fL) | 9.40 (8.40–9.70) | 8.50 (8.30–8.70) | 0.972 |
MCV (fL) | 93 (89–96) | 90 (89–94) | 0.916 |
MCHC (mmol/L) | 20.94 (20.51–20.99) | 20.73 (20.62–20.76) | 0.573 |
RDW (%) | 15.0 (14.3–15.6) | 15.0 (14.6–15.2) | 0.646 |
Other: | |||
Creatinine (mmol/L) | 113 (90–135) | 125 (84–125) | 0.057 |
GFR (mL/min) | 70.5 (58.0–88.5) | 67.0 (55.5–78.5) | 0.218 |
LDH (μmol/L) | 262.5 (229.3–299.8) | 219.5 (202.8–246.8) | 0.452 |
UA (μmol/L) | 396.5 (288.3–454.3) | 428.5 (366.3–491.8) | 0.002 * |
UA difference (2 − 1) | −57 (−110–−12) | 38 (17–58) | 0.041 |
NT pro BNP (pg/mL) | 759 (484–1906) | 1072 (414–1332) | 0.775 |
LVAD parameters: | |||
Flow (L/min) | 4.5 (4.0–4.7) | 4.6 (4.4–6.1) | 0.177 |
Speed (RPM) | 5.200 (5050–5225) | 5200 (5000–5300) | 0.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Tomaszewska, M.; Olasińska-Wiśniewska, A.; Sikora, J.; Straburzyńska-Migaj, E.; Piecek, J.; Białasik-Misiorny, M.; Krasińska-Płachta, A.; Tykarski, A.; Jemielity, M. Serum Uric Acid as an Indicator of Right Ventricular Dysfunction in LVAD Patients: A Preliminary Study. Biomedicines 2024, 12, 1935. https://doi.org/10.3390/biomedicines12091935
Urbanowicz T, Tomaszewska M, Olasińska-Wiśniewska A, Sikora J, Straburzyńska-Migaj E, Piecek J, Białasik-Misiorny M, Krasińska-Płachta A, Tykarski A, Jemielity M. Serum Uric Acid as an Indicator of Right Ventricular Dysfunction in LVAD Patients: A Preliminary Study. Biomedicines. 2024; 12(9):1935. https://doi.org/10.3390/biomedicines12091935
Chicago/Turabian StyleUrbanowicz, Tomasz, Małgorzata Tomaszewska, Anna Olasińska-Wiśniewska, Jędrzej Sikora, Ewa Straburzyńska-Migaj, Jakub Piecek, Maksymilian Białasik-Misiorny, Aleksandra Krasińska-Płachta, Andrzej Tykarski, and Marek Jemielity. 2024. "Serum Uric Acid as an Indicator of Right Ventricular Dysfunction in LVAD Patients: A Preliminary Study" Biomedicines 12, no. 9: 1935. https://doi.org/10.3390/biomedicines12091935
APA StyleUrbanowicz, T., Tomaszewska, M., Olasińska-Wiśniewska, A., Sikora, J., Straburzyńska-Migaj, E., Piecek, J., Białasik-Misiorny, M., Krasińska-Płachta, A., Tykarski, A., & Jemielity, M. (2024). Serum Uric Acid as an Indicator of Right Ventricular Dysfunction in LVAD Patients: A Preliminary Study. Biomedicines, 12(9), 1935. https://doi.org/10.3390/biomedicines12091935