Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- Presence of liver steatosis, confirmed via ultrasound imaging.
- Evidence of metabolic dysfunction, defined by the presence of at least one of five cardiometabolic risk factors:
- Body mass index (BMI) ≥ 25 kg/m2 or waist circumference (WC) > 94 cm (men) or >80 cm (women);
- Fasting serum glucose ≥ 100 mg/dL, diagnosed type 2 diabetes, or ongoing treatment for diabetes;
- Blood pressure ≥ 130/85 mmHg or treatment with antihypertensive medication;
- Plasma triglycerides ≥ 150 mg/dL or use of lipid-lowering medication;
- Plasma HDL-cholesterol < 40 mg/dL (men) or <50 mg/dL (women) or ongoing lipid-lowering treatment.
- Stratification by Steatosis Severity: Patients were stratified into three groups based on their degree of hepatic steatosis, mild, moderate, or severe, ensuring that all the stages of disease progression were represented. This stratification allowed us to examine the relationship between metabolic dysfunction and steatosis severity across the MASLD spectrum.
- The Exclusion of Confounding Conditions: To isolate the effects of metabolic dysfunction on liver health, patients with significant alcohol consumption, other liver diseases (viral hepatitis B and C, Wilson’s disease, autoimmune hepatitis, and hemochromatosis), or drug consumption (amiodarone, methotrexate, glucocorticoids, valproate, and tamoxifen) were excluded. By strictly adhering to these exclusion criteria, we ensured that the sample was more representative of individuals diagnosed specifically with MASLD, rather than those with mixed etiologies.
- Metabolic Syndrome Criteria as a Foundation: The inclusion of patients initially diagnosed with MS ensured that all the participants presented with a set of metabolic abnormalities that are commonly associated with MASLD.
2.2. Data Collection, Measurements, and Venous Blood Sample Collection Preparation
2.3. Measurement of Inflammatory Markers
- Systemic immune inflammation index (SII): (platelet count (103/mmc) × neutrophil count (103/mmc))/lymphocyte count (103/mmc).
- The pan-immune inflammatory value (PIV): [neutrophil count (103/mmc) × platelet count (103/mmc) × monocyte count (103/mmc)]/lymphocyte count (103/mmc) [26].
- C-reactive protein to albumin ratio (CAR): CRP (mg/dL)/albumin (g/dL).
- Lymphocyte to monocyte ratio (LMR): lymphocyte count (103/mmc) / monocyte count (103/mmc).
- Prognostic nutritional index (PNI): (10 × albumin [g/dL]) + (0.005 × lymphocytes count [103/mmc]) [23].
2.4. Measurements of Serum IL17A/F and TLR4 Using the ELISA Method
- IL-17A: The sensitivity of the assay was 18.75 pg/mL, and the limit of detection (LOD) was determined to be 0.5 pg/mL.
- IL-17F: The sensitivity of the assay was 3.3 pg/mL, and the LOD was determined to be 15.5 pg/mL.
- TLR4: The sensitivity of the assay was 18.75 pg/mL, with a minimum detectable concentration of 0.039 ng/mL.
2.5. Diagnosis and Assessment of Non-Alcoholic Fatty Liver Disease
2.6. Definition of Liver Fibrosis
2.7. Statistical Analysis
3. Results
3.1. Description of the Studied MASLD Sample
3.2. Associations of Inflammatory Markers, IL17 Cytokines, TLR4, and Degree of Steatosis
3.3. Correlations between Inflammatory Markers, Cytokines, and TLR4, Stratified by Degree of Steatosis (Severe Steatosis vs. Mild/Moderate Steatosis)
3.4. Associations between Inflammatory Markers, IL17 Cytokines, TLR4 and a Positive FIB-4 Score for Hepatic Fibrosis in MASLD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Francque, S.M.; Procopet, B. The New Nomenclature for Fatty Liver Disease. J. Gastrointestin. Liver Dis. 2024, 33, 149–151. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335. [Google Scholar] [CrossRef]
- Le, M.H.; Le, D.M.; Baez, T.C.; Wu, Y.; Ito, T.; Lee, E.Y.; Lee, K.; Stave, C.D.; Henry, L.; Barnett, S.D.; et al. Global Incidence of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of 63 Studies and 1,201,807 Persons. J. Hepatol. 2023, 79, 287–295. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current Status and Future Trends of the Global Burden of MASLD. Trends Endocrinol. Metab. TEM 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Pappu, R.; Ramirez-Carrozzi, V.; Sambandam, A. The Interleukin-17 Cytokine Family: Critical Players in Host Defence and Inflammatory Diseases. Immunology 2011, 134, 8–16. [Google Scholar] [CrossRef]
- Abdelnabi, M.N.; Hassan, G.S.; Shoukry, N.H. Role of the Type 3 Cytokines IL-17 and IL-22 in Modulating Metabolic Dysfunction-Associated Steatotic Liver Disease. Front. Immunol. 2024, 15, 1437046. [Google Scholar] [CrossRef]
- Harley, I.T.W.; Stankiewicz, T.E.; Giles, D.A.; Softic, S.; Flick, L.M.; Cappelletti, M.; Sheridan, R.; Xanthakos, S.A.; Steinbrecher, K.A.; Sartor, R.B.; et al. IL-17 Signaling Accelerates the Progression of Nonalcoholic Fatty Liver Disease in Mice. Hepatology 2014, 59, 1830–1839. [Google Scholar] [CrossRef]
- Gomes, A.L.; Teijeiro, A.; Burén, S.; Tummala, K.S.; Yilmaz, M.; Waisman, A.; Theurillat, J.-P.; Perna, C.; Djouder, N. Metabolic Inflammation-Associated IL-17A Causes Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma. Cancer Cell 2016, 30, 161–175. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gao, F.; Li, Y.; Su, D.; Han, L.; Li, Y.; Zhang, X.; Feng, Z. Role of Pattern Recognition Receptors in the Development of MASLD and Potential Therapeutic Applications. Biomed. Pharmacother. 2024, 175, 116724. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, S.; Kuchay, M.S. Toll-like Receptors and Metabolic (Dysfunction)-Associated Fatty Liver Disease. Pharmacol. Res. 2022, 185, 106507. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Friedman, S.L. Toll-like Receptor 4 Signaling in Liver Injury and Hepatic Fibrogenesis. Fibrogenesis Tissue Repair 2010, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-T.; Cheng, A.-C.; Liu, Y.-T.; Yan, C.; Cheng, Y.-C.; Chang, C.-F.; Tseng, P.-H. Persistent TLR4 Activation Promotes Hepatocellular Carcinoma Growth through Positive Feedback Regulation by LIN28A/Let-7g miRNA. Int. J. Mol. Sci. 2022, 23, 8419. [Google Scholar] [CrossRef]
- Sepehri, Z.; Kiani, Z.; Kohan, F.; Alavian, S.M.; Ghavami, S. Toll like Receptor 4 and Hepatocellular Carcinoma; A Systematic Review. Life Sci. 2017, 179, 80–87. [Google Scholar] [CrossRef]
- Barron, L.K.; Bao, J.W.; Aladegbami, B.G.; Colasanti, J.J.; Guo, J.; Erwin, C.R.; Warner, B.W. Toll-like Receptor 4 Is Critical for the Development of Resection-Associated Hepatic Steatosis. J. Pediatr. Surg. 2017, 52, 1014–1019. [Google Scholar] [CrossRef]
- Androutsakos, T.; Bakasis, A.-D.; Pouliakis, A.; Gazouli, M.; Vallilas, C.; Hatzis, G. Single Nucleotide Polymorphisms of Toll-like Receptor 4 in Hepatocellular Carcinoma—A Single-Center Study. Int. J. Mol. Sci. 2022, 23, 9430. [Google Scholar] [CrossRef]
- Ortiz-López, N.; Fuenzalida, C.; Dufeu, M.S.; Pinto-León, A.; Escobar, A.; Poniachik, J.; Roblero, J.P.; Valenzuela-Pérez, L.; Beltrán, C.J. The Immune Response as a Therapeutic Target in Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 954869. [Google Scholar] [CrossRef]
- Schuster, S.; Cabrera, D.; Arrese, M.; Feldstein, A.E. Triggering and Resolution of Inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 349–364. [Google Scholar] [CrossRef]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic Immune-Inflammation Index as a Potential Biomarker of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhang, L.-P.; Xie, S.-Y.; Huang, H.-Y.; Chen, X.-Y.; Jiang, T.-C.; Guo, L.; Lin, H.-X. Pan-Immune-Inflammation Value: A New Prognostic Index in Operative Breast Cancer. Front. Oncol. 2022, 12, 830138. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, Y.; Li, Z.; Li, D.; Zhao, F.; Hao, J.; Yang, C.; Song, J.; Gu, X.; Huang, R. Association between Novel Inflammatory Markers and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study. Eur. J. Gastroenterol. Hepatol. 2024, 36, 203–209. [Google Scholar] [CrossRef]
- Available online: https://www.bsg.org.uk/web-education/nafld-%E2%80%93-diagnosis,-assessment-and-management (accessed on 19 August 2024).
- Clinical Features and Diagnosis of Metabolic Dysfunction-Associated Steatotic Liver Disease (Nonalcoholic Fatty Liver Disease) in Adults—UpToDate. Available online: https://www.uptodate.com/contents/clinical-features-and-diagnosis-of-metabolic-dysfunction-associated-steatotic-liver-disease-nonalcoholic-fatty-liver-disease-in-adults?source=history_widget#H8 (accessed on 19 August 2024).
- Jiang, R.; Hua, Y.; Hu, X.; Hong, Z. The Pan Immune Inflammatory Value in Relation to Non-Alcoholic Fatty Liver Disease and Hepatic Fibrosis. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102393. [Google Scholar] [CrossRef]
- Shannon, A.; Alkhouri, N.; Carter-Kent, C.; Monti, L.; Devito, R.; Lopez, R.; Feldstein, A.E.; Nobili, V. Ultrasonographic Quantitative Estimation of Hepatic Steatosis in Children With NAFLD. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 190–195. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Nash Clinical Research Network Comparison of Noninvasive Markers of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Aradillas-García, C.; Monreal-Escalante, E.; Vargas-Morlaes, J.M.; Alegría-Torres, J.; Rosales-Méndoza, S.; Terán-García, M.; Portales-Pérez, D.P. Serum IL-17, Obesity, and Metabolic Risk in Mexican Young Adults. RESPYN Rev. Salud Pública Nutr. 2021, 20, 1–7. [Google Scholar] [CrossRef]
- Sumarac-Dumanovic, M.; Stevanovic, D.; Ljubic, A.; Jorga, J.; Simic, M.; Stamenkovic-Pejkovic, D.; Starcevic, V.; Trajkovic, V.; Micic, D. Increased Activity of Interleukin-23/Interleukin-17 Proinflammatory Axis in Obese Women. Int. J. Obes. 2009, 33, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Pontillo, A.; Di Palo, C.; Giugliano, G.; Masella, M.; Marfella, R.; Giugliano, D. Effect of Weight Loss and Lifestyle Changes on Vascular Inflammatory Markers in Obese Women: A Randomized Trial. JAMA 2003, 289, 1799–1804. [Google Scholar] [CrossRef]
- Taşolar, S.D.; Çiftçi, N. Role of Pan Immune Inflammatory Value in the Evaluation of Hepatosteatosis in Children and Adolescents with Obesity. J. Pediatr. Endocrinol. Metab. 2022, 35, 1481–1486. [Google Scholar] [CrossRef]
- Cengiz, M.; Ozenirler, S.; Elbeg, S. Role of Serum Toll-like Receptors 2 and 4 in Non-alcoholic Steatohepatitis and Liver Fibrosis. J. Gastroenterol. Hepatol. 2015, 30, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Vespasiani-Gentilucci, U.; Carotti, S.; Perrone, G.; Mazzarelli, C.; Galati, G.; Onetti-Muda, A.; Picardi, A.; Morini, S. Hepatic Toll-like Receptor 4 Expression Is Associated with Portal Inflammation and Fibrosis in Patients with NAFLD. Liver Int. Off. J. Int. Assoc. Study Liver 2015, 35, 569–581. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall (MASLD) (n = 80) | Mild Steatosis Group (n1 = 23) | Moderate Steatosis Group (n2 = 28) | Severe Steatosis Group (n3 = 29) | p (a) |
---|---|---|---|---|---|
Demographics | |||||
Age (years) | 61.8 (11.0) | 61.9 (10.4) | 60.9 (11.4) | 62.7 (11.4) | 0.829 |
Sex, n (%) | 0.541 | ||||
Female | 57 (71.3) | 16 (69.6) | 22 (78.6) | 19 (65.5) | |
Male | 23 (28.8) | 7 (30.4) | 6 (21.4) | 10 (34.5) | |
Place of residence, n (%) | 0.204 | ||||
Rural | 50 (62.5) | 11 (47.8) | 20 (71.4) | 19 (65.5) | |
Urban | 30 (37.5) | 12 (52.2) | 8 (28.6) | 10 (34.5) | |
Anthropometrics | |||||
BMI (kg/m2) | 33.4 (5.8) | 31.0 (4.1) | 31.9 (4.5) | 36.8 (6.7) | 0.001 * |
Waist circumference (cm) | 108.6 (18.7) | 100.8 (12.5) | 101.4 (13.4) | 121.6 (20.5) | 0.0001 * |
Cardiometabolic features | |||||
SBP (mmHg) | 141.4 (17.7) | 140.7 (15.9) | 138.2 (15.3) | 145.1 (20.7) | 0.326 |
DBP (mmHg) | 86.1 (10.9) | 87.1 (11.9) | 84.6 (10.8) | 86.8 (10.4) | 0.672 |
Fasting blood glucose (mg/dL) | 99 (89 to 117) | 98 (91 to 103) | 102 (84 to 117) | 100 (92 to 132) | 0.322 |
HDL-cholesterol (mg/dL) (a) | 49.1 (11.5) | 52.5 (10.6) | 49.1 (11.1) | 46.0 (12.3) | 0.136 |
LDL-cholesterol (mg/dL) | 114.7 (46.7) | 114.6 (41.1) | 121.2 (41.2) | 108.4 (55.6) | 0.590 |
Total cholesterol (mg/dL) | 195.2 (52.2) | 200.6 (49.8) | 203.4 (50.5) | 182.9 (55.1) | 0.286 |
Triglycerides (mg/dL) | 138 (102 to 191) | 109 (101 to 196) | 152 (107 to 193) | 141 (114 to 179) | 0.709 |
ALT (mg/dL) | 18 (14 to 28) | 19 (17 to 24) | 17 (14 to 23) | 18 (14 to 33) | 0.622 |
AST (mg/dL) | 20 (17 to 24) | 20 (18 to 23) | 20 (17 to 24) | 19 (16 to 26) | 0.950 |
AST/ALT ratio | 1.1 (0.4) | 1.1 (0.3) | 1.1 (0.3) | 1.1 (0.6) | 0.919 |
Alkaline phosphatase (U/I) (b) | 82.4 (25.3) | 77.2 (26.4) | 84.8 (19.8) | 84.2 (29.0) | 0.515 |
GGT (U/I) (c) | 25 (20 to 38) | 26 (18 to 37) | 24 (17 to 33) | 31 (22 to 42) | 0.092 |
Total bilirubin (mg/dL) | 0.5 (0.3 to 0.7) | 0.5 (0.3 to 0.8) | 0.4 (0.3 to 0.6) | 0.5 (0.3 to 0.7) | 0.263 |
Albumin (g/dL) | 4.4 (0.5) | 4.6 (0.6) | 4.4 (0.5) | 4.3 (0.4) | 0.093 |
Hgb (g/dL) | 14.0 (1.6) | 13.9 (1.3) | 14.1 (1.8) | 14.1 (1.6) | 0.843 |
Hct (%) | 42.1 (4.1) | 41.2 (3.2) | 42.3 (4.4) | 42.6 (4.4) | 0.465 |
Hypertension, n (%) | 68 (85.0) | 19 (82.6) | 22 (78.6) | 27 (93.1) | 0.328 |
T2DM, n (%) | 31 (38.8) | 4 (17.4) | 11 (39.3) | 16 (55.2) | 0.021 * |
Obesity, n (%) | 68 (85.0) | 19 (82.6) | 23 (82.1) | 26 (89.7) | 0.731 |
Characteristics | Mild Steatosis Group (n1 = 23) | Moderate Steatosis Group (n2 = 28) | Severe Steatosis Group (n3 = 29) | p (a) |
---|---|---|---|---|
PLT (103/uL) | 237.7(55.1) | 256.6 (49.5) | 249.6 (71.5) | 0.531 |
WBC (a) (103/uL) | 7.3 (6.3 to 8.3) | 8.3 (6.8 to 8.9) | 8.5 (6.9 to 9.6) | 0.186 |
Neutrophils (103/uL) | 4.5 (1.5) | 5.1 (1.9) | 5.1 (1.5) | 0.368 |
Lymphocytes (103/uL) | 2.1 (1.9 to 2.4) | 2.0 (1.6 to 2.7) | 2.2 (1.9 to 2.7) | 0.673 |
Monocytes (103/uL) | 0.5 (0.1) | 0.6 (0.2) | 0.6 (0.2) | 0.226 |
PCR (b) (mg/dL) | 0.3 (0.1 to 0.5) | 0.3 (0.2 to 0.6) | 0.5 (0.2 to 0.9) | 0.184 |
ESR (c) (mm/1h) | 10.0 (4.0 to 13.0) | 10 (4.0 to 17.3) | 19 (8.0 to 26.0) | 0.157 |
PIV | 236.4 (1.7) | 323.1 (2.0) | 310.3 (2.0) | 0.199 |
LMR | 4.5 (1.4) | 4.0 (1.7) | 4.1 (1.6) | 0.561 |
CAR (d) | 0.05 (2.93) | 0.07 (2.41) | 0.11 (3.51) | 0.084 |
PNI | 43.9 (42.5 to 48.4) | 43.9 (40.1 to 47.8) | 41.8 (40.0 to 46.2) | 0.196 |
SII | 462.3 (1.6) | 577.7 (1.7) | 530.2 (1.9) | 0.367 |
IL17A | 109.9 (3.5) | 89.9 (2.1) | 124.3 (2.5) | 0.455 |
IL17F | 12.6 (1.5) | 12.9 (1.4) | 12.6 (1.3) | 0.972 |
TLR4 | 904.5 (614.5 to 1014.1) | 711.5 (572.9 to 887.1) | 779.1 (636.6 to 926.9) | 0.484 |
Groups /Variables | the PIV | the LMR | the CAR | the PNI | the SII | IL17A | IL17F | TLR4 |
---|---|---|---|---|---|---|---|---|
Severe steatosis Group | ||||||||
the PIV | 1.00 | |||||||
the LMR | 0.13 (0.518) | 1.00 | ||||||
the CAR | 0.41 (0.033 *) | −0.01 (0.958) | 1.00 | |||||
the PNI | 0.12 (0.549) | 0.13 (0.518) | −0.03 (0.897) | 1.00 | ||||
the SII | 0.86 (<0.0001 *) | −0.38 (0.045 *) | 0.41 (0.028 *) | 0.03 (0.869) | 1.00 | |||
IL17A | 0.09 (0.640) | −0.30 (0.11) | −0.08 (0.617) | −0.12 (0.539) | −0.02 (0.912) | 1.00 | ||
IL17F | 0.35 (0.061) | −0.11 (0.556) | 0.10 (0.704) | −0.04 (0.851) | 0.35 (0.064) | 0.09 (0.639) | 1.00 | |
TLR4 | −0.16 (0.402) | −0.05 (0.795) | −0.11 (0.586) | −0.16 (0.401) | −0.09 (0.624) | 0.18 (0.357) | 0.11 (0.573) | 1.00 |
Mild/moderate steatosis Group | ||||||||
the PIV | the LMR | the CAR | the PNI | the SII | IL17A | IL17F | TLR4 | |
the PIV | 1.00 | |||||||
the LMR | −0.71 (<0.001 *) | 1.00 | ||||||
the CAR | 0.29 (0.011 *) | 0.11 (0.472) | 1.00 | |||||
the PNI | −0.05 (0.729) | −0.15 (0.305) | −0.15 (0.324) | 1.00 | ||||
the SII | 0.87 (<0.0001 *) | −0.55 (<0.0001 *) | 0.27 (0.078) | −0.12 (0.403) | 1.00 | |||
IL17A | 0.30 (0.036 *) | −0.15 (0.283) | −0.11 (0.481) | 0.16 (0.267) | 0.36 (0.010 *) | 1.00 | ||
IL17F | −0.11 (0.435) | −0.09 (0.542) | −0.37 (0.011 *) | 0.26 (0.068) | −0.18 (0.198) | −0.06 (0.687) | 1.00 | |
TLR4 | 0.07 (0.649) | 0.16 (0.253) | 0.15 (0.322) | −0.16 (0.257) | −0.05 (0.722) | 0.21 (0.138) | −0.20 (0.165) | 1.00 |
Variables | Patients with Low Risk for Significant Hepatic Fibrosis (FIB-4 Score < 1.30) (n = 50) | Patients with Intermediate–High Risk for Significant Hepatic Fibrosis (FIB-4 Score ≥ 1.30) (n = 30) | p (a) |
---|---|---|---|
PIV | 336.40 (1.76) | 228.63 (2.10) | 0.0107 * |
LMR | 4.17 (1.44) | 4.19 (1.72) | 0.2565 |
CAR | 0.10 (2.65) | 0.06 (3.54) | 0.0626 |
PNI | 42.41 (40.02 to 46.21) | 47.16 (41.21 to 48.76) | 0.0392 * |
SII | 585.39 (1.61) | 438.47 (1.90) | 0.0238 * |
IL17A | 103.80 (2.17) | 112.80 (3.50) | 0.7447 |
IL17F | 12.60 (1.42) | 12.89 (1.39) | 0.7707 |
TLR4 | 809.01 (585.95 to 997.93) | 715.76 (596.12 to 818.77) | 0.1538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coste, S.-C.; Orășan, O.H.; Cozma, A.; Negrean, V.; Sitar-Tăut, A.-V.; Filip, G.A.; Hangan, A.C.; Lucaciu, R.L.; Iancu, M.; Procopciuc, L.M. Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis. Biomedicines 2024, 12, 2144. https://doi.org/10.3390/biomedicines12092144
Coste S-C, Orășan OH, Cozma A, Negrean V, Sitar-Tăut A-V, Filip GA, Hangan AC, Lucaciu RL, Iancu M, Procopciuc LM. Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis. Biomedicines. 2024; 12(9):2144. https://doi.org/10.3390/biomedicines12092144
Chicago/Turabian StyleCoste, Sorina-Cezara, Olga Hilda Orășan, Angela Cozma, Vasile Negrean, Adela-Viviana Sitar-Tăut, Gabriela Adriana Filip, Adriana Corina Hangan, Roxana Liana Lucaciu, Mihaela Iancu, and Lucia Maria Procopciuc. 2024. "Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis" Biomedicines 12, no. 9: 2144. https://doi.org/10.3390/biomedicines12092144
APA StyleCoste, S. -C., Orășan, O. H., Cozma, A., Negrean, V., Sitar-Tăut, A. -V., Filip, G. A., Hangan, A. C., Lucaciu, R. L., Iancu, M., & Procopciuc, L. M. (2024). Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis. Biomedicines, 12(9), 2144. https://doi.org/10.3390/biomedicines12092144