From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy?
Abstract
:1. Introduction
2. Materials and Methods
2.1. PICOs (Inclusion Criteria)
2.2. Search Strategy
2.3. Data Extraction
3. Results
3.1. Bibliographical and Descriptive Data on Publications
3.2. Deep-Learning Strategy
3.3. Tumor Genetics’ Explored
3.3.1. IDH Mutation Prediction
3.3.2. MGMT Promoter Methylation Prediction
3.3.3. EGFR Amplification Prediction
3.3.4. Chromosome 1p19q Co-Deletion Prediction
4. Discussion
4.1. Evolution of Publications
4.2. Deep Learning Algorithms
4.3. Performance and Reproducibility
4.4. Limitations and Challenges
5. Conclusions
Key Recommendations for Future Research
- External Validation: Ensure robust validation on external datasets to assess generalizability and avoid overfitting on internal datasets, which may artificially inflate performance.
- Improved Validation Methods: Apply advanced validation techniques such as k-fold cross-validation with sufficiently large k-values and Leave-One-Out Cross-Validation (LOOCV), especially for small datasets, to improve reliability.
- Dataset Size and Diversity: Use larger and more diverse datasets, capturing clinical, genetic, and demographic variability (e.g., tumor types, patient populations, and ethnicities) to ensure broad applicability of the algorithms.
- Integrated Multi-Genetic Trait Models: Focus on developing integrated models capable of predicting multiple genetic traits simultaneously, rather than separate classifiers, to better reflect the complexity of gliomas.
- Integration of Tumor Heterogeneity: Develop models that take account of tumor heterogeneity to improve the understanding of tumor complexity.
- Explanatory and Interpretable AI: Ensure that deep learning models include interpretable components to allow clinicians to understand algorithm predictions, thus enhancing their trust in AI tools and ensuring accountability in clinical settings.
- Standardized MRI Acquisition Protocols: Establish standardized protocols for MRI acquisition (e.g., field strength and sequence types) to reduce variability between datasets and improve model reproducibility.
- Cross-Disciplinary Collaboration: Promote interdisciplinary collaboration among data scientists, radiologists, pathologists, geneticists, and neurosurgeons to design clinically relevant models that align with real-world clinical workflows.
- Ethical and Legal Frameworks: Address ethical and regulatory considerations, ensuring that the developed models comply with standards for medical liability, data privacy, and patient safety, especially given the potential future deployment of AI in healthcare.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci. 2009, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Parpura, V.; Heneka, M.T.; Montana, V.; Oliet, S.H.R.; Schousboe, A.; Haydon, P.G.; Stout, R.F., Jr.; Spray, D.C.; Reichenbach, A.; Pannicke, T.; et al. Glial cells in (patho)physiology. J. Neurochem. 2012, 121, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncology 2022, 24, v1–v95. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Rathore, S.; Mohan, S.; Bakas, S.; Sako, C.; Badve, C.; Pati, S.; Singh, A.; Bounias, D.; Ngo, P.; Akbari, H.; et al. Multi-institutional noninvasive in vivo characterization of IDH, 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk). Neuro-Oncol. Adv. 2020, 2, iv22–iv34. [Google Scholar] [CrossRef]
- Kihira, S.; Mei, X.; Mahmoudi, K.; Liu, Z.; Dogra, S.; Belani, P.; Tsankova, N.; Hormigo, A.; Fayad, Z.A.; Doshi, A.; et al. U-Net Based Segmentation and Characterization of Gliomas. Cancers 2022, 14, 4457. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Hussain, L.; Ibrar, U.; Alabdulkreem, E.; Nour, M.K.; Alqahtani, M.S.; Nafie, F.M.; Mohamed, A.; Mohammed, G.P.; Duong, T.Q. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci. Rep. 2023, 13, 3291. [Google Scholar] [CrossRef]
- Levner, I.; Drabycz, S.; Roldan, G.; De Robles, P.; Cairncross, J.G.; Mitchell, R. Predicting MGMT methylation status of glioblastomas from MRI texture. Med. Image Comput. Comput. Assist. Interv. 2009, 12, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, P.; Alberts, E.; Delbridge, C.; Trebeschi, S.; Valentinitsch, A.; Bette, S.; Huber, T.; Gempt, J.; Meyer, B.; Schlegel, J.; et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci. Rep. 2017, 7, 13396. [Google Scholar] [CrossRef]
- Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.-Y.; Cha, S.; Filippi, C.G.; Bota, D.; et al. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. Am. J. Neuroradiol. 2018, 39, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, R.; Liang, D.; Song, T.; Ai, T.; Xia, C.; Xia, L.; Wang, Y. Multimodal 3D densenet for IDH genotype prediction in gliomas. Genes 2018, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Hedyehzadeh, M.; Maghooli, K.; MomenGharibvand, M.; Pistorius, S. A Comparison of the Efficiency of Using a Deep CNN Approach with Other Common Regression Methods for the Prediction of EGFR Expression in Glioblastoma Patients. J. Digit. Imaging 2020, 33, 391–398. [Google Scholar] [CrossRef]
- Matsui, Y.; Maruyama, T.; Nitta, M.; Saito, T.; Tsuzuki, S.; Tamura, M.; Kusuda, K.; Fukuya, Y.; Asano, H.; Kawamata, T.; et al. Prediction of lower-grade glioma molecular subtypes using deep learning. J. Neuro-Oncol. 2020, 146, 321–327. [Google Scholar] [CrossRef]
- Kocak, B.; Durmaz, E.S.; Ates, E.; Sel, I.; Gunes, S.T.; Kaya, O.K.; Zeynalova, A.; Kilickesmez, O. Radiogenomics of lower-grade gliomas: Machine learning–based MRI texture analysis for predicting 1p/19q codeletion status. Eur. Radiol. 2020, 30, 877–886. [Google Scholar] [CrossRef]
- Yogananda, C.; Shah, B.; Nalawade, S.; Murugesan, G.; Yu, F.; Pinho, M.; Wagner, B.; Mickey, B.; Patel, T.; Fei, B.; et al. MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status. Am. J. Neuroradiol. 2021, 42, 845–852. [Google Scholar] [CrossRef]
- Choi, Y.S.; Bae, S.; Chang, J.H.; Kang, S.-G.; Kim, S.H.; Kim, J.; Rim, T.H.; Choi, S.H.; Jain, R.; Lee, S.-K. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro-Oncology 2021, 23, 304–313. [Google Scholar] [CrossRef]
- Hrapșa, I.; Florian, I.A.; Șușman, S.; Farcaș, M.; Beni, L.; Florian, I.S. External Validation of a Convolutional Neural Network for IDH Mutation Prediction. Medicina 2022, 58, 526. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; E Villanueva-Meyer, J.; Clarke, J.L.; A Solomon, D.; Cha, S. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac060. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-H.; Lee, H.; Choi, K.S.; Nam, J.G.; Park, C.-K.; Park, S.-H.; Chung, J.W.; Choi, S.H. Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge. Cancers 2022, 14, 4827. [Google Scholar] [CrossRef] [PubMed]
- Sakly, H.; Said, M.; Seekins, J.; Guetari, R.; Kraiem, N.; Marzougui, M. Brain Tumor Radiogenomic Classification of O6-Methylguanine-DNA Methyltransferase Promoter Methylation in Malignant Gliomas-Based Transfer Learning. Cancer Control 2023, 30, 10732748231169149. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Ridzuan, M.; Alasmawi, H.; Sobirov, I.; Yaqub, M. MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models. Med. Image Anal. 2023, 90, 102989. [Google Scholar] [CrossRef]
Authors | Year | Journal | SJR Pub. Year | Title | Number of Patients | Gliomas/ Glioblastomas/ Both | MRI Modalities | Dataset | Algorithms |
---|---|---|---|---|---|---|---|---|---|
I. Levner et al. [12] | 2009 | Medical Image Computing and Computer-Assisted Intervention | 0.297 | Predicting MGMT Methylation Status of Glioblastomas from MRI Texture | 59 | Glioblastomas | T1-Gd, T2, T2-FLAIR | Local | CNN (2 layers) |
P. Eichinger et al. [13] | 2017 | Scientific Reports | 1.533 | Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas | 79 | Gliomas | T2-FLAIR | TCIA | N-net |
P. Chang et al. [14] | 2018 | AJNR Am J Neuroradiol | 1.543 | Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas | 259 | Gliomas | T1w, T1-Gd, T2w, T2-FLAIR | TCIA, TCGA | CNN |
S. Liang et al. [15] | 2018 | Genes | 1.592 | Multimodal 3D DenseNet for IDH Genotype Prediction in Gliomas | 167 | Both | T1w, T1-Gd, T2w, T2-FLAIR | BrATS-2017, TCGA | M3D-DenseNet |
M. Hedyehzadeh et al. [16] | 2020 | Journal of Digital Imaging | 1.055 | A Comparison of the Efficiency of Using a Deep CNN Approach with Other Common Regression Methods for the Prediction of EGFR Expression in Glioblastoma Patients | 166 | Glioblastomas | T1w, T1-Gd, T2w, T2-FLAIR | TCIA, TCGA | CNN |
Y. Matsui et al. [17] | 2020 | Journal of Neuro-Oncology | 1.256 | Prediction of lower-grade glioma molecular subtypes using deep learning | 217 | Gliomas | T1w, T2w, T2-FLAIR, Spectrometry, PET scan | Local | ResNet into CNN |
B Kocak et al. [18] | 2020 | European Radiology | 1.606 | Radiogenomics of lower-grade gliomas: Machine Learning-based MRI texture analysis for predicting 1p/19q codeletion status | 107 | Gliomas | T1w, T2w | TCIA | CNN against ML algorithms |
S Rathore et al. [9] * | 2020 | Neuro-Oncology Advances | 1.052 | Multi-institutional non-invasive in vivo characterization of IDH, 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk) | 473 | Both | T1w, T1-Gd, T2w, T2-FLAIR, DSC, DCE | Local, TCIA, TCGA | Neuro-CaPTK (Cancer Imaging Phenomics Toolkit) |
C. G. B. Yogananda et al. [19] | 2021 | AJNR Am J Neuroradiol | 1.34 | MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status | 247 | Gliomas | T2w | TCIA, TCGA | 3D-dense-Unets |
Y. S. Choi et al. [20] | 2021 | Neuro-Oncology | 3.097 | Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics | 856 | Both | T1w, T2w, T2-FLAIR | Local, SNUH set, TCIA | CNN |
I. Hrapșa et al. [21] | 2022 | Medicina | 0.59 | External Validation of a Convolutional Neural Network for IDH Mutation Prediction | 21 | Glioblastomas | T1w, T2w, T2-FLAIR | Local, TCIA, TCGA | CHOI et al.’s CNN [20] |
E. Calabrese et al. [22] | 2022 | Neuro-Oncology Advances | 1.052 | Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma | 400 | Glioblastomas | T1w, T2w, T2-FLAIR, SWI, DWI, ASL, MD, AD, RD | Local | CNN Limb |
B.-H. Kim et al. [23] | 2022 | Cancers | 1.312 | Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge | 400 (+585) | Both | T1w, T1-Gd, T2w, T2-FLAIR | Local, SNUH set, BrATS 2021 | Efficient-Net, squeeze-and-excitation networks, SEResNet, SEResNeXt, DenseNet |
S. Kihira et al. [10] * | 2022 | Cancers | 1.312 | U-Net Based Segmentation and Characterization of Gliomas | 208 | Both | T2-FLAIR | Local | DenseNet121 |
H. Sakly et al. [24] | 2023 | Cancer Control: Journal of the Moffitt Cancer Center | 0.698 | Brain Tumor Radiogenomic Classification of O6-Methylguanine-DNA Methyltransferase Promoter Methylation in Malignant Gliomas-Based Transfer Learning | 585 | Glioblastomas | T1w, T1-Gd, T2w, T2-FLAIR | BrATS 2021 | Alexnet, Googlenet, Resnet, ImageNet, VGG, DenseNet, Xception, InceptionV3Squeezenet |
S. A. Qureshi et al. [11] * | 2023 | Scientific Reports | 0.9 | Radiogenomic classification for MGMT promoter methylation status using multi-omics-fused feature space for least invasive diagnosis through mpMRI scans | 585 | Glioblastomas | T1w, T1-Gd, T2w | BrATS 2021 | CNN for segmentation and extraction feature but SVM or k-NN for classification |
N. Saeed et al. [25] | 2023 | Medical Image Analysis | 4.112 | MGMT promoter methylation status prediction using MRI scans. An extensive experimental evaluation of deep learning models | 585 | Glioblastomas | T1w, T1-Gd, T2w, T2-FLAIR | BrATS 2021 | ResNet, DenseNet, EfficientNEt |
MRI Sequence | Number | Percent |
---|---|---|
T1w | 13 | 76% |
T1-Gd | 9 | 53% |
T2w | 14 | 82% |
T2-FLAIR | 14 | 82% |
Spectrometry | 1 | 6% |
Other | 3 | 18% |
Genetic Features | Number | Percent |
---|---|---|
IDH1/2 mutation | 9 | 53% |
MGMT methylation | 9 | 53% |
EGFR expression | 3 | 18% |
1p19q codeletion | 4 | 24% |
Other | 1 | 6% |
Tumors Type | AUC (95% CI) | Accuracy (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|
P. Eichinger et al. [13] | Gliomas | 0.952 | 0.95 | NA | NA |
P. Chang et al. [14] | Gliomas | 0.91 (0.89–0.92) | NA | NA | NA |
S. Liang et al. [15] | Both | 0.857 | 84.6 | 78.5 | 88.0 |
Y. Matsui et al. [17] | Gliomas | NA | 82.9 | NA | NA |
S. Rathore et al. [9] | Both | 0.87 | 82.5 | 70.43 | 88.32 |
Y.S. Choi et al. [20] | Both | 0.96 (0.93–0.99) | 93.8 | NA | NA |
I. Hrapșa et al. [21] | Glioblastomas | 0.74 (0.53–0.91) | 76 | 78 | 75 |
E. Calabrese et al. [22] | Glioblastomas | 0.96 (0.88–1) | 84 | 100 | 83 |
S. Kihira et al. [10] | Both | 0.93 (0.90–0.97) | NA | 0.98 | 0.32 |
Tumor Type | AUC (95% CI) | Accuracy (%) | Sensitivity (%) | |
---|---|---|---|---|
I. Levner et al. [12] | Glioblastomas | NA | 87.7 | 85.4 |
P. Chang et al. [14] | Gliomas | 0.81 (0.76–0.84) | NA | NA |
C. G. B. Yogananda et al. [19] | Gliomas | 0.58 (0.4182–0.7422) 1 | 65.95 | NA |
E. Calabrese et al. [22] | Glioblastomas | 0.73 (0.65–0.81) 2 | 68 | 72 |
B.-H. Kim et al. [23] | Both | 0.517 (0.459–0.645) | 51.9 | NA |
S. Kihira et al. [10] | Both | 0.62 (0.54–0.71) | NA | 0.45 |
H. Sakly et al. [24] 3 | Glioblastomas | NA | NA | NA |
S. A. Qureshi et al. [11] | Glioblastomas | 0.96 (0.94–0.98) 4 | 96.94 | 96.31 |
N. Saeed et al. [25] | Glioblastomas | 0.631 (0.629–0.633) | NA | NA |
Tumor Type | AUC (95% CI) | Accuracy (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|
M. Hedyehzadeh et al. [16] 1 | Glioblastomas | NA | NA | NA | NA |
S. Rathore et al. [9] | Both | 0.80 2 | 86.74 | 84.91 | 87.5 |
E. Calabrese et al. [22] | Glioblastomas | 0.72 (0.64–0.80) 3 | 66 | 68 | 66 |
Tumor Type | AUC (95% CI) | Accuracy (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|
P. Chang et al. [14] | Gliomas | 0.88 (0.85–0.90) | NA | NA | NA |
Y. Matsui et al. [17] | Gliomas 1 | NA | 75.1 | NA | NA |
B. Kocak et al. [18] | Gliomas | 0.869 (0.751–0.987) 2 | 83.8 | 87.5 | 75.8 |
S. Rathore et al. [9] | Both | 0.79 3 | 75.15 | 81.49 | 73.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Guillou Horn, X.M.; Lecellier, F.; Giraud, C.; Naudin, M.; Fayolle, P.; Thomarat, C.; Fernandez-Maloigne, C.; Guillevin, R. From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy? Biomedicines 2024, 12, 2156. https://doi.org/10.3390/biomedicines12092156
Le Guillou Horn XM, Lecellier F, Giraud C, Naudin M, Fayolle P, Thomarat C, Fernandez-Maloigne C, Guillevin R. From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy? Biomedicines. 2024; 12(9):2156. https://doi.org/10.3390/biomedicines12092156
Chicago/Turabian StyleLe Guillou Horn, Xavier Maximin, François Lecellier, Clement Giraud, Mathieu Naudin, Pierre Fayolle, Céline Thomarat, Christine Fernandez-Maloigne, and Rémy Guillevin. 2024. "From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy?" Biomedicines 12, no. 9: 2156. https://doi.org/10.3390/biomedicines12092156
APA StyleLe Guillou Horn, X. M., Lecellier, F., Giraud, C., Naudin, M., Fayolle, P., Thomarat, C., Fernandez-Maloigne, C., & Guillevin, R. (2024). From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy? Biomedicines, 12(9), 2156. https://doi.org/10.3390/biomedicines12092156