Between Consecutive Fractures: Time and Sex as Dominant Factors in Type and Severity Concordance of Contralateral Hip Injuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Imaging and Measurement Tools
2.3. Fracture Classification and Radiographic Measurements
2.4. Statistical Analysis
3. Results
3.1. Study Population Demographics
3.2. Prevalence and Distribution of Hip Fracture
3.3. Consistency of AO/OTA Fracture Types Across Bilateral Hip Fractures
3.4. Predictive Relationship Between Fractures
3.5. Time Distribution for Fracture Association
3.6. Comparative Analysis of Hip Morphology and Fracture Timing in Patients with Homogeneous vs. Heterogeneous Fracture Classifications
4. Discussion
4.1. Clinical Implications
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Campion, G.; Melton, L.J. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Boston, D.A. Bilateral fractures of the femoral neck. Injury 1982, 14, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, W.; Sun, T.; Zhang, Q.; Liu, S.; Zhang, Y. Epidemiological characteristics and outcome in elderly patients sustaining non-simultaneous bilateral hip fracture: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Müller, F.; Galler, M.; Zellner, M.; Bäuml, C.; Roll, C.; Füchtmeier, B. Comparative analysis of non-simultaneous bilateral fractures of the proximal femur. Eur. J. Trauma Emerg. Surg. 2019, 45, 1053–1057. [Google Scholar] [CrossRef]
- Vochteloo, A.J.H.; Borger van der Burg, B.L.S.; Röling, M.A.; van Leeuwen, D.H.; van den Berg, P.; Niggebrugge, A.H.P.; de Vries, M.R.; Tuinebreijer, W.E.; Bloem, R.M.; Nelissen, R.G.H.H.; et al. Contralateral hip fractures and other osteoporosis-related fractures in hip fracture patients: Incidence and risk factors. An observational cohort study of 1,229 patients. Arch. Orthop. Trauma. Surg. 2012, 132, 1191–1197. [Google Scholar] [CrossRef]
- Von Friesendorff, M.; McGuigan, F.E.; Wizert, A.; Rogmark, C.; Holmberg, A.H.; Woolf, A.D.; Akesson, K. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos. Int. 2016, 27, 2945–2953. [Google Scholar] [CrossRef]
- Zuckerman, J.D. Hip fracture. N. Engl. J. Med. 1996, 334, 1519–1525. [Google Scholar] [CrossRef]
- Cornwall, R.; Gilbert, M.S.; Koval, K.J.; Strauss, E.; Siu, A.L. Functional outcomes and mortality vary among different types of hip fractures: A function of patient characteristics. Clin. Orthop. Relat. Res. 2004, 425, 64–71. [Google Scholar] [CrossRef]
- Li, D.X.; Ead, M.S.; Duke, K.K.; Jaremko, J.L.; Westover, L. Quantitative analysis of regional specific pelvic symmetry. Med. Biol. Eng. Comput. 2021, 59, 369–381. [Google Scholar] [CrossRef]
- Pearse, E.O.; Redfern, D.J.; Sinha, M.; Edge, A.J. Outcome following a second hip fracture. Injury 2003, 34, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Kok, L.M.; Van Der Steenhoven, T.J.; Nelissen, R.G.H.H. A retrospective analysis of bilateral fractures over sixteen years: Localisation and variation in treatment of second hip fractures. Int. Orthop. 2011, 35, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Rotem, G.; Sharfman, Z.T.; Rath, E.; Gold, A.; Rachevsky, G.; Steinberg, E.; Drexler, M.; Haviv, B.; Amar, E. Does hip morphology correlate with proximal femoral fracture type? Hip Int. 2020, 30, 629–634. [Google Scholar] [CrossRef]
- Gaumetou, E.; Zilber, S.; Hernigou, P. Non-simultaneous bilateral hip fracture: Epidemiologic study of 241 hip fractures. Orthop. Traumatol. Surg. Res. 2011, 97, 22–27. [Google Scholar] [CrossRef]
- Shabat, S.; Gepstein, R.; Mann, G.; Kish, B.; Fredman, B.; Nyska, M. The second hip fracture—An analysis of 84 elderly patients. J. Orthop. Trauma 2003, 17, 613–617. [Google Scholar] [CrossRef]
- Parker, M.; Johansen, A. Hip fracture. BMJ 2006, 333, 27–30. [Google Scholar] [CrossRef]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and dislocation classification compendium—2018. J. Orthop. Trauma 2018, 32 (Suppl. 1), S1–S170. [Google Scholar] [CrossRef]
- Crijns, T.J.; Janssen, S.J.; Davis, J.T.; Ring, D.; Sanchez, H.B.; Science of Variation Group. Reliability of the classification of proximal femur fractures: Does clinical experience matter? Injury 2018, 49, 819–823. [Google Scholar] [CrossRef]
- Welton, K.L.; Jesse, M.K.; Kraeutler, M.J.; Garabekyan, T.; Mei-Dan, O. The anteroposterior pelvic radiograph: Acetabular and femoral measurements and relation to hip pathologies. J. Bone Jt. Surg. Am. 2018, 100, 76–85. [Google Scholar] [CrossRef]
- McClincy, M.P.; Wylie, J.D.; Yen, Y.M.; Novais, E.N. Mild or borderline hip dysplasia: Are we characterizing hips with a lateral center-edge angle between 18° and 25° appropriately? Am. J. Sports Med. 2019, 47, 112–122. [Google Scholar] [CrossRef]
- Nötzli, H.P.; Wyss, T.F.; Stoecklin, C.H.; Schmid, M.R.; Treiber, K.; Hodler, J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J. Bone Jt. Surg. Br. 2002, 84, 556–560. [Google Scholar] [CrossRef]
- Tönnis, D. Normal values of the hip joint for the evaluation of X-rays in children and adults. Clin. Orthop. Relat. Res. 1976, 119, 39–47. [Google Scholar]
- Sharp, I.K. Acetabular dysplasia: The acetabular angle. J. Bone Jt. Surg. 1982, 43, 268–272. [Google Scholar] [CrossRef]
- Center, J.R.; Nguyen, T.V.; Pocock, N.A.; Noakes, K.A.; Kelly, P.J.; Eisman, J.A.; Sambrook, P.N. Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos. Int. 1998, 8, 75–81. [Google Scholar] [CrossRef]
- Fajar, J.K.; Taufan, T.; Syarif, M.; Azharuddin, A. Hip geometry and femoral neck fractures: A meta-analysis. J. Orthop. Translat. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Goodman, L.A.; Kruskal, W.H. Measures of association for cross classifications. J. Am. Stat. Assoc. 1954, 49, 732–764. [Google Scholar] [CrossRef]
- Matrangolo, M.R.; Smimmo, A.; Vitiello, R.; De Fazio, A.; El Motassime, A.; Noia, G.; Minutillo, F.; Maccauro, G. Predictor of hip fracture type: A systematic review. Acta Biomed. 2023, 94, e2023047. [Google Scholar] [CrossRef]
- Cauley, J.A.; Lui, L.Y.; Genant, H.K.; Salamone, L.; Browner, W.; Fink, H.A.; Cohen, P.; Hillier, T.; Bauer, D.C.; Cummings, S.R.; et al. Risk factors for severity and type of the hip fracture. J. Bone Miner. Res. 2009, 24, 943–955. [Google Scholar] [CrossRef]
- Jordan, K.M.; Cooper, C. Epidemiology of osteoporosis. Best Pract. Res. Clin. Rheumatol. 2002, 16, 795–806. [Google Scholar] [CrossRef]
- Keen, R.W. Burden of osteoporosis and fractures. Curr. Osteoporos. Rep. 2003, 1, 66–70. [Google Scholar] [CrossRef]
- Borer, K.T. Physical activity in the prevention and amelioration of osteoporosis in women: Interaction of mechanical, hormonal and dietary factors. Sports Med. 2005, 35, 779–830. [Google Scholar] [CrossRef] [PubMed]
- Nian, P.P.; Ganesan, V.; Baidya, J.; Marder, R.S.; Maheshwari, K.; Kobryn, A.; Maheshwari, A.V. Safety and efficacy of a single-stage versus two-stage intramedullary nailing for synchronous impending or pathologic fractures of bilateral femur for oncologic indications: A systematic review. Cancers 2023, 15, 4396. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F. Sterile Inflammatory Response and Surgery-Related Trauma in Elderly Patients with Subtrochanteric Fractures. Biomedicines 2024, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P.; Parkkari, J.; Sievänen, H.; Heinonen, A.; Vuori, I.; Järvinen, M. Epidemiology of hip fractures. Bone 1996, 18 (Suppl. 1), 57S–63S. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhu, Y.; Chen, W.; Sun, T.; Cheng, J.; Zhang, Y. Risk factors for the second contralateral hip fracture in elderly patients: A systematic review and meta-analysis. Clin. Rehabil. 2015, 29, 285–294. [Google Scholar] [CrossRef]
- Ryg, J.; Rejnmark, L.; Overgaard, S.; Brixen, K.; Vestergaard, P. Hip fracture patients at risk of second hip fracture: A nationwide population-based cohort study of 169,145 cases during 1977–2001. J. Bone Miner. Res. 2009, 24, 1299–1307. [Google Scholar] [CrossRef]
Characteristics | Full Sample (n = 91) Mean ± SD | Women (n = 62) Mean ± SD | Men (n = 29) Mean ± SD | p-Value † |
---|---|---|---|---|
Age at time of first fracture (years) | 79.5 ± 9.3 | 79.6 ± 9.1 | 79.4 ± 9.8 | 0.92 |
Age at time of second fracture (years) | 82.2 ± 9.7 | 83.6 ± 9.7 | 81.3 ± 9.9 | 0.56 |
Time interval between fractures (days) | 975 ± 897 | 1102 ± 994 | 704 ± 569 | 0.02 |
Fracture Time Interval | Population | Lambda | p-Value |
---|---|---|---|
<1 Year | Male | 1.000 | <0.0001 |
Female | 0.556 | 0.005 | |
Total | 0.688 | <0.0001 | |
1–2 Years | Male | 1.000 | 0.007 |
Female | 0.600 | 0.013 | |
Total | 0.625 | <0.0001 | |
2–3 Years | Male | 1.000 | 0.07 |
Female | 0.800 | 0.002 | |
Total | 0.667 | 0.001 | |
>3 Years | Male | 0.800 | 0.002 |
Female | 0.278 | 0.11 | |
Total | 0.360 | 0.026 |
Morphologic Characteristics | Identical Fractures (n = 39) | Different Fracture (n = 52) | p-Value † | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Alpha angle (left) | 47.6 | 6.48 | 50.18 | 11.19 | 0.17 |
Alpha angle (right) | 46.1 | 6.99 | 49.8 | 13.09 | 0.09 |
LCEA (left) | 30.46 | 5.63 | 32.12 | 7.47 | 0.23 |
LCEA (right) | 29.76 | 5.76 | 32.74 | 7.72 | 0.038 |
Acetabular angle (left) | 38.71 | 3.61 | 39 | 3.45 | 0.7 |
Acetabular angle (right) | 38.73 | 3.65 | 37.6 | 3.66 | 0.15 |
Acetabular index (Tönnis) (left) | 6.97 | 3.68 | 6.21 | 4.03 | 0.35 |
Acetabular index (Tönnis) (right) | 5.53 | 3.05 | 4.86 | 4.04 | 0.37 |
Neck–shaft angle (left) | 131.5 | 5.51 | 129.51 | 5.95 | 0.10 |
Neck–shaft angle (right) | 130.89 | 6.89 | 130.27 | 4.74 | 0.63 |
Hip axis length (left) | 118.4 | 13.87 | 116.75 | 11.53 | 0.55 |
Hip axis length (right) | 118.06 | 13.89 | 116.97 | 11.35 | 0.69 |
Femoral axis length (left) | 100.36 | 10.12 | 100.39 | 9.2 | 0.99 |
Femoral axis length (right) | 100.43 | 9.77 | 100.43 | 9.29 | 0.99 |
Acetabular width (left) | 18.04 | 5.06 | 16.36 | 4.51 | 0.10 |
Acetabular width (right) | 17.63 | 5.07 | 16.54 | 4.25 | 0.28 |
Femoral neck diameter (left) | 34.08 | 3.61 | 34.44 | 3.44 | 0.63 |
Femoral neck diameter (right) | 33.59 | 3.26 | 34.26 | 3.39 | 0.35 |
Femoral head diameter (left) | 48.73 | 4.46 | 48.65 | 4.9 | 0.93 |
Femoral head diameter (right) | 49.03 | 4.24 | 49.07 | 3.71 | 0.96 |
Age (1st fracture) | 80.6 | 10.14 | 78.76 | 8.54 | 0.36 |
Age (2nd fracture) | 82.51 | 10.57 | 82 | 9.15 | 0.81 |
TI (days) | 700.44 | 625.12 | 1180.77 | 1014.2 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leshem, N.; Stahl, I.; Khury, F.; Simonovich, I.T. Between Consecutive Fractures: Time and Sex as Dominant Factors in Type and Severity Concordance of Contralateral Hip Injuries. Biomedicines 2025, 13, 114. https://doi.org/10.3390/biomedicines13010114
Leshem N, Stahl I, Khury F, Simonovich IT. Between Consecutive Fractures: Time and Sex as Dominant Factors in Type and Severity Concordance of Contralateral Hip Injuries. Biomedicines. 2025; 13(1):114. https://doi.org/10.3390/biomedicines13010114
Chicago/Turabian StyleLeshem, Neta, Ido Stahl, Farouk Khury, and Ianiv Trior Simonovich. 2025. "Between Consecutive Fractures: Time and Sex as Dominant Factors in Type and Severity Concordance of Contralateral Hip Injuries" Biomedicines 13, no. 1: 114. https://doi.org/10.3390/biomedicines13010114
APA StyleLeshem, N., Stahl, I., Khury, F., & Simonovich, I. T. (2025). Between Consecutive Fractures: Time and Sex as Dominant Factors in Type and Severity Concordance of Contralateral Hip Injuries. Biomedicines, 13(1), 114. https://doi.org/10.3390/biomedicines13010114