Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Imaging Protocol and Evaluation
2.3. Application of Lung-RADS and BTS Guidelines
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Important Findings and Literature Review
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Lei, S.; Ding, L.; Xu, Y.; Wu, X.; Wang, H.; Zhang, Z.; Gao, T.; Zhang, Y.; Li, L. Global burden and trends of lung cancer incidence and mortality. Chin. Med. J. 2023, 136, 1583–1590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vlahos, I.; Stefanidis, K.; Sheard, S.; Nair, A.; Sayer, C.; Moser, J. Lung cancer screening: Nodule identification and characterization. Transl. Lung Cancer Res. 2018, 288–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerull, W.D.; Puri, V.; Kozower, B.D. The epidemiology and biology of pulmonary metastases. J. Thorac. Dis. 2021, 13, 2585–2589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Higuchi, R.; Goto, T.; Nakagomi, T.; Hirotsu, Y.; Oyama, T.; Amemiya, K.; Mochizuki, H.; Omata, M. Discrimination Between Primary Lung Cancer and Lung Metastases by Genomic Profiling. JTO Clin. Res. Rep. 2021, 2, 100255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazzone, P.J.; Lam, L. Evaluating the Patient With a Pulmonary Nodule: A Review. JAMA 2022, 327, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Gabelloni, M.; Faggioni, L.; Fusco, R.; Simonetti, I.; De Muzio, F.; Giacobbe, G.; Borgheresi, A.; Bruno, F.; Cozzi, D.; Grassi, F.; et al. Radiomics in Lung Metastases: A Systematic Review. J. Pers. Med. 2023, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.J.; Mohammed, T.L.; Jantz, M.A. The American College of Radiology Lung Imaging Reporting and Data System: Potential Drawbacks and Need for Revision. Chest 2017, 151, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Hardinge, M.; Annandale, J.; Bourne, S.; Cooper, B.; Evans, A.; Freeman, D.; Green, A.; Hippolyte, S.; Knowles, V.; MacNee, W.; et al. British Thoracic Society guidelines for home oxygen use in adults. Thorax 2015, 70 (Suppl. S1), i1–i43. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.T.; Tang, E.K.; Wu, M.T.; Wu, C.C.; Liang, C.H.; Chen, C.S.; Mar, G.Y.; Lai, R.S.; Wang, J.C.; Wu, C.L.; et al. Modified Lung-RADS Improves Performance of Screening LDCT in a Population with High Prevalence of Non-smoking-related Lung Cancer. Acad. Radiol. 2018, 25, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Huang, Y.; Wang, S.; Qi, L.; Zhang, Z.; Hou, D.; Li, H.; Zhao, S. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Med. 2024, 13, e7140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Q.; Zhang, H. Metastatic lung cancer with occult primary site: A difficult diagnosis. Int. J. Clin. Exp. Pathol. 2023, 16, 14–19. [Google Scholar] [PubMed] [PubMed Central]
- Cai, J.; Yang, F.; Wang, X. Occult Non-Small Cell Lung Cancer: An Underappreciated Disease. J. Clin. Med. 2022, 11, 1399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Digumarthy, S.R.; Padole, A.M.; Rastogi, S.; Price, M.; Mooradian, M.J.; Sequist, L.V.; Kalra, M.K. Predicting malignant potential of subsolid nodules: Can radiomics preempt longitudinal follow up CT? Cancer Imaging 2019, 19, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hendrix, W.; Hendrix, N.; Scholten, E.T.; Mourits, M.; Jong, J.T.-D.; Schalekamp, S.; Korst, M.; van Leuken, M.; van Ginneken, B.; Prokop, M.; et al. Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun. Med. 2023, 3, 156. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Yu, Y.; Zhang, G.; Zhou, L.; Wu, Z.; Liu, B. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. BMC Cancer 2020, 20, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbara, A.M.; Loshak, H. Lung-RADS Versus Pan-Canadian Early Detection of Lung Cancer Study Screening for Patients at High Risk of Lung Cancer: CADTH Health Technology Review [Internet]; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK594335/ (accessed on 16 October 2024).
- van Riel, S.J.; Jacobs, C.; Scholten, E.T.; Wittenberg, R.; Winkler Wille, M.M.; de Hoop, B.; Sprengers, R.; Mets, O.M.; Geurts, B.; Prokop, M.; et al. Observer variability for Lung-RADS categorisation of lung cancer screening CTs: Impact on patient management. Eur. Radiol. 2019, 29, 924–931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, K.; Jacobs, C.; Scholten, E.T.; Mets, O.M.; Dekker, I.; Prokop, M.; van Ginneken, B.; Schaefer-Prokop, C.M. Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: Accuracy of low and high risk spectrum when using NLST nodules. Eur. Radiol. 2017, 27, 4672–4679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandhi, Z.; Gurram, P.; Amgai, B.; Lekkala, S.P.; Lokhandwala, A.; Manne, S.; Mohammed, A.; Koshiya, H.; Dewaswala, N.; Desai, R.; et al. Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes. Cancers 2023, 15, 5236. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Cai, J.; Heuvelmans, M.A.; Vliegenthart, R.; Groen, H.J.M.; Oudkerk, M.; Vonder, M.; Dorrius, M.D.; de Bock, G.H. Performance of Lung-RADS in different target populations: A systematic review and meta-analysis. Eur. Radiol. 2024, 34, 1877–1892. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Lin, C.T.; Li, Y.; Tammemagi, M.C.; Brock, M.V.; Atkar-Khattra, S.; Xu, Y.; Hu, P.; Mayo, J.R.; Schmidt, H.; et al. Prediction of lung cancer risk at follow-up screening with low-dose CT: A training and validation study of a deep learning method. Lancet Digit. Health 2019, 1, e353–e362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristic | Primary Lung Cancer (n = 148) | Lung Metastases (n = 48) | p-Value |
---|---|---|---|
Age (years) | 66.2 ± 9.7 | 58.9 ± 10.5 | <0.001 |
Male sex | 96 (64.9%) | 26 (54.2%) | 0.18 |
Smoking history (pack-years) | 34.5 ± 16.0 | 11.2 ± 9.5 | <0.001 |
Symptoms present | 110 (74.3%) | 20 (41.7%) | <0.001 |
Cough | 68 (45.9%) | 10 (20.8%) | 0.002 |
Hemoptysis | 24 (16.2%) | 4 (8.3%) | 0.18 |
Weight loss | 18 (12.2%) | 6 (12.5%) | 0.96 |
Histological subtypes | |||
Adenocarcinoma | 88 (59.5%) | 17 (35.4%) | <0.001 |
Squamous cell carcinoma | 40 (27.1%) | 6 (12.6%) | 0.002 |
Large cell carcinoma | 20 (13.5%) | 3 (6.2%) | 0.08 |
Primary tumor location | |||
Upper lobe | 91 (61.5%) | 16 (33.3%) | <0.001 |
Middle lobe/lingula | 19 (12.8%) | 8 (16.7%) | 0.34 |
Lower lobe | 38 (25.7%) | 24 (50.0%) | <0.001 |
Characteristic | Primary Lung Cancer (n = 148) | Lung Metastases (n = 48) | p-Value |
---|---|---|---|
Nodule size (cm) | 3.1 ± 1.5 | 1.7 ± 0.8 | <0.001 |
Nodule number | <0.001 | ||
Solitary | 121 (81.8%) | 9 (18.8%) | |
Multiple | 27 (18.2%) | 39 (81.3%) | |
Nodule location | <0.001 | 0.01 | |
Upper lobes | 88 (59.5%) | 14 (29.2%) | |
Middle lobe/lingula | 18 (12.2%) | 6 (12.5%) | |
Lower lobes | 42 (28.4%) | 28 (58.3%) | |
Nodule margins | <0.001 | <0.001 | |
Smooth | 30 (20.3%) | 34 (70.8%) | |
Lobulated | 18 (12.2%) | 6 (12.5%) | |
Spiculated | 100 (67.6%) | 8 (16.7%) | |
Attenuation | 0.36 | ||
Solid | 132 (89.2%) | 44 (91.7%) | |
Part solid | 10 (6.8%) | 2 (4.2%) | |
Ground glass | 6 (4.1%) | 2 (4.2%) | |
Growth on follow-up | 0.001 | ||
Stable | 44 (29.7%) | 34 (70.8%) | |
Increased size | 104 (70.3%) | 14 (29.2%) |
Metric | Lung-RADS Version 2022 | BTS Guidelines | Total Nodules |
---|---|---|---|
Differentiating Metastases | <0.001 | ||
Sensitivity (%) | 91.7 | 93.8 | 0.68 |
Specificity (%) | 87.2 | 72.3 | <0.001 |
Positive Predictive Value (%) | 73 | 54.9 | |
Negative Predictive Value (%) | 96.2 | 94.9 | |
Overall Accuracy (%) | 88.8 | 77.6 | <0.001 |
Nodule Size Category | Primary Lung Cancer (n = 148) | Lung Metastases (n = 48) | p-Value |
---|---|---|---|
≤1 cm | 20 (13.5%) | 18 (37.5%) | <0.001 |
1.1–2 cm | 38 (25.7%) | 20 (41.7%) | |
>2 cm | 90 (60.8%) | 10 (20.8%) |
Characteristic | Primary Lung Cancer (n = 148) | Lung Metastases (n = 48) | p-Value |
---|---|---|---|
Nodule Number | <0.001 | <0.001 | |
Solitary | 121 (81.8%) | 9 (18.8%) | |
Multiple | 27 (18.2%) | 39 (81.3%) | |
Nodule Location | <0.001 | ||
Upper lobes | 88 (59.5%) | 14 (29.2%) | |
Middle lobe/lingula | 18 (12.2%) | 6 (12.5%) | |
Lower lobes | 42 (28.4%) | 28 (58.3%) |
Characteristic | Primary Lung Cancer (n = 148) | Lung Metastases (n = 48) | p-Value |
---|---|---|---|
Nodule Margins | <0.001 | ||
Smooth | 30 (20.3%) | 34 (70.8%) | |
Lobulated | 18 (12.2%) | 6 (12.5%) | |
Spiculated | 100 (67.6%) | 8 (16.7%) | |
Smoking History | <0.001 | ||
<20 pack-years | 38 (25.7%) | 36 (75.0%) | |
≥20 pack-years | 110 (74.3%) | 12 (25.0%) |
Variable | Adjusted OR (95% CI) | p-Value |
---|---|---|
Multiple nodules | 12.5 (5.8–27.0) | <0.001 |
Lower lobe location | 3.2 (1.5–6.9) | 0.003 |
Smooth margins | 7.0 (3.1–15.8) | <0.001 |
Nodule size ≤ 2 cm | 2.5 (1.1–5.6) | 0.03 |
Smoking history < 20 pack-years | 3.9 (1.8–8.5) | 0.001 |
Age | 1.2 (0.6–2.2) | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stana, L.G.; Mederle, A.O.; Avram, C.; Bratosin, F.; Barata, P.I. Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer. Biomedicines 2025, 13, 130. https://doi.org/10.3390/biomedicines13010130
Stana LG, Mederle AO, Avram C, Bratosin F, Barata PI. Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer. Biomedicines. 2025; 13(1):130. https://doi.org/10.3390/biomedicines13010130
Chicago/Turabian StyleStana, Loredana Gabriela, Alexandru Ovidiu Mederle, Claudiu Avram, Felix Bratosin, and Paula Irina Barata. 2025. "Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer" Biomedicines 13, no. 1: 130. https://doi.org/10.3390/biomedicines13010130
APA StyleStana, L. G., Mederle, A. O., Avram, C., Bratosin, F., & Barata, P. I. (2025). Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer. Biomedicines, 13(1), 130. https://doi.org/10.3390/biomedicines13010130