Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Characteristics of Study Participants
2.3. AIS Evaluation
2.4. Surgical Procedure
2.5. Intraoperative Mapping
2.6. Spinal Segmental Mapping
2.7. EES Configuration and Intervention
2.8. Gait Evaluation
2.9. Electromyography Measurements for Walking
2.10. Statistical Analysis
3. Results
3.1. EES Implantation and Configuration
3.2. AIS Evaluation
3.3. EMG Activity
3.4. Gait Performance
4. Discussion
4.1. EES Implantation
4.2. Walk Function Improvement
4.3. AIS Assessment Improvement
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Association impairment scale |
ASIA | American Spinal Injury Association |
BMD | Bone mineral density |
EES | Epidural electrical stimulation |
GEE | Generalized estimating equation |
LEM | Lower extremity motor |
LT | Light touch |
MAS | Modified Ashworth Scale |
MG | Medial gastrocnemius |
MH | Medial hamstring |
RF | Rectus femoris |
SCI | Spinal cord injury |
SI | Symmetry index |
TA | Tibialis anterior |
References
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 2017, 3, 17018. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Sandrow-Feinberg, H.R.; Houlé, J.D. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain. Res. 2015, 1619, 12–21. [Google Scholar] [CrossRef]
- Morawietz, C.; Moffat, F. Effects of locomotor training after incomplete spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2013, 94, 2297–2308. [Google Scholar] [CrossRef] [PubMed]
- Kanakis, A.K.; Benetos, I.S.; Evangelopoulos, D.S.; Vlamis, J.; Vasiliadis, E.S.; Kotroni, A.; Pneumaticos, S.G.; Kanakis, A.; Vasiliadis, E. Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review. Cureus 2024, 16, e61436. [Google Scholar] [CrossRef]
- Harkema, S.; Angeli, C.; Gerasimenko, Y. Historical development and contemporary use of neuromodulation in human spinal cord injury. Curr. Opin. Neurol. 2022, 35, 536–543. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.; Taylor, C.; Mockler, D.; Fleming, N. Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review. NeuroRehabilitation 2021, 49, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Eisdorfer, J.T.; Smit, R.D.; Keefe, K.M.; Lemay, M.A.; Smith, G.M.; Spence, A.J. Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Front. Mol. Neurosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Calvert, J.S.; Grahn, P.J.; Zhao, K.D.; Lee, K.H. Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury. Neuromodulation 2019, 22, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.T.; Chen, Y.C.; Cheng, H.Y.; Lin, C.H.; Lin, H.C.; Yang, C.H.; Liang, C.C.; Chen, S.Y. Spinal cord stimulation for spinal cord injury patients with paralysis: To regain walking and dignity. Tzu chi Med. J. 2020, 33, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Chen, Y.C.; Kuo, C.C.; Tsai, S.T. Potential benefits of spinal cord stimulation treatment on quality of life for paralyzed patients with spinal cord injury. Tzu Chi Med. J. 2023, 35, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.R.; Ng, Z.Y.V.; Wee, S.K.; Fatimah, M.; Lui, W.; Phua, M.W.; So, Q.Y.R.; Maszczyk, T.K.; Premchand, B.; Saffari, S.E.; et al. Recovery of Volitional Motor Control and Overground Walking in Participants With Chronic Clinically Motor Complete Spinal Cord Injury: Restoration of Rehabilitative Function With Epidural Spinal Stimulation (RESTORES) Trial—A Preliminary Study. J. Neurotrauma. 2024, 41, 1146–1162. [Google Scholar] [CrossRef] [PubMed]
- Karamian, B.A.; Siegel, N.; Nourie, B.; Serruya, M.D.; Heary, R.F.; Harrop, J.S.; Vaccaro, A.R. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J. Orthop. Traumatol. 2022, 23, 2. [Google Scholar] [CrossRef]
- Harkema, S.; Gerasimenko, Y.; Hodes, J.; Burdick, J.; Angeli, C.; Chen, Y.; Ferreira, C.; Willhite, A.; Rejc, E.; Grossman, R.G. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet 2011, 377, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Rejc, E.; Angeli, C.A. Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2019, 30, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Peña Pino, I.; Hoover, C.; Venkatesh, S.; Ahmadi, A.; Sturtevant, D.; Patrick, N.; Freeman, D.; Parr, A.; Samadani, U.; Balser, D. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front. Syst. Neurosci. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Angeli, C.; Harkema, S.J.; Reggie Edgerton, V.; Gerasimenko, Y.P. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 2014, 111, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Rejc, E.; Angeli, C.; Harkema, S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS ONE 2015, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Grahn, P.J.; Lavrov, I.A.; Sayenko, D.G.; VanStraaten, M.G.; Gill, M.L.; Strommen, J.A.; Calvert, J.S.; Drubach, D.I.; Beck, L.A.; Linde, M.B. Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia. Mayo Clin. Proc. 2017, 92, 544–554. [Google Scholar] [CrossRef]
- Gill, M.L.; Grahn, P.J.; Calvert, J.S.; Linde, M.B.; Lavrov, I.A.; Strommen, J.A.; Beck, L.A.; Sayenko, D.G.; Van Straaten, M.G.; Drubach, D.I. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 2018, 24, 1677–1682. [Google Scholar] [CrossRef]
- Angeli, C.A.; Boakye, M.; Morton, R.A.; Vogt, J.; Benton, K.; Chen, Y.; Ferreira, C.K.; Harkema, S.J. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 2018, 379, 1244–1250. [Google Scholar] [CrossRef]
- Formento, E.; Minassian, K.; Wagner, F.; Mignardot, J.B.; LeGoff-Mignardot, C.G.; Rowald, A.; Bloch, J.; Micera, S.; Capogrosso, M.; Courtine, G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. [Internet] 2018, 21, 1728–1741. [Google Scholar] [CrossRef]
- Herman, R.; He, J.; D’Luzansky, S.; Willis, W.; Dilli, S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 2002, 40, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Carhart, M.R.; He, J.; Herman, R.; D’Luzansky, S.; Willis, W.T. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans. Neural. Syst. Rehabil. Eng. 2004, 12, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; He, J.; Herman, R.; Carhart, M.R. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans. Neural. Syst. Rehabil. Eng. 2006, 14, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.B.; Mignardot, J.B.; LeGoff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–93. [Google Scholar] [CrossRef]
- Açar, G.; Mutuş, R.; Konakoğlu, G. The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. İstanbul. Gelişim. Üniversitesi. Sağlık. Bilim. Derg. 2024, 21, 1251–1261. [Google Scholar] [CrossRef]
- Brotherton, S.S.; Krause, J.S.; Nietert, P.J. Falls in individuals with incomplete spinal cord injury. Spinal Cord 2007, 45, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Amatachaya, S.; Pramodhyakul, W.; Srisim, K. Failures on obstacle crossing task in independent ambulatory patients with spinal cord injury and associated factors. Arch. Phys. Med. Rehabil. 2015, 96, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, R.; Lajoie, Y.; Serresse, O.; Barbeau, H. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord 2001, 39, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Pujol, C.; Laylor, M.; Unic, N.; Pakosh, M.; Dawe, J.; Musselman, K.E. Falls after spinal cord injury: A systematic review and meta-analysis of incidence proportion and contributing factors. Spinal Cord 2019, 57, 526–539. [Google Scholar] [CrossRef]
- Phonthee, S.; Saengsuwan, J.; Siritaratiwat, W.; Amatachaya, S. Incidence and factors associated with falls in independent ambulatory individuals with spinal cord injury: A 6-month prospective study. Phys. Ther. 2013, 93, 1061–1072. [Google Scholar] [CrossRef]
- Kumprou, M.; Amatachaya, P.; Sooknuan, T.; Thaweewannakij, T.; Amatachaya, S. Is walking symmetry important for ambulatory patients with spinal cord injury? Disabil. Rehabil. 2018, 40, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Behrman, A.L.; Bowden, M.G.; Nair, P.M. Neuroplasticity after spinal cord injury and training: An emerging paradigm shift in rehabilitation and walking recovery. Phys. Ther. 2006, 86, 1406–1425. [Google Scholar] [CrossRef] [PubMed]
- Forrest, G.F.; Hutchinson, K.; Lorenz, D.J.; Buehner, J.J.; VanHiel, L.R.; Sisto, S.A.; Basso, D.M. Are the 10 meter and 6 minute walk tests redundant in patients with spinal cord injury? PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Calvert, J.S.; Grahn, P.J.; Strommen, J.A.; Lavrov, I.A.; Beck, L.A.; Gill, M.L.; Linde, M.B.; Brown, D.A.; Van Straaten, M.G.; Veith, D.D. Electrophysiological guidance of epidural electrode array implantation over the human lumbosacral spinal cord to enable motor function after chronic paralysis. J. Neurotrauma 2019, 36, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Hoglund, B.K.; Zurn, C.A.; Madden, L.R.; Hoover, C.; Slopsema, J.P.; Balser, D.; Parr, A.; Samadani, U.; Johnson, M.D.; Netoff, T.I. Mapping Spinal Cord Stimulation-Evoked Muscle Responses in Patients With Chronic Spinal Cord Injury. Neuromodulation 2023, 26, 1371–1380. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Perret, I.; Bayart, A.; Lackner, P.; Binder, H.; Freundl, B.; Minassian, K. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. iScience 2021, 24, 101930. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Hofstoetter, U.S. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci. Ther. 2016, 22, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Romanauski, B.; Lam, D.; Lujan, L.; Blanz, S.; Ludwig, K.; Lempka, S.; Shoffstall, A.; Knudson, B.; Nishiyama, Y. Characterization and applications of evoked responses during epidural electrical stimulation. Bioelectron. Med. 2023, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Awai, L.; Bolliger, M.; Ferguson, A.R.; Courtine, G.; Curt, A. Influence of spinal cord integrity on gait control in human spinal cord injury. Neurorehabil. Neural. Repair. 2016, 30, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Nooijen, C.; TerHoeve, N.; Field-Fote, E. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J. Neuroeng. Rehabil. 2009, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reaz, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Farfán, F.D.; Politti, J.C.; Felice, C.J. Evaluation of EMG processing techniques using information theory. Biomed. Eng. Online 2010, 1–18. [Google Scholar] [CrossRef]
- Mesbah, S.; Ball, T.; Angeli, C.; Rejc, E.; Dietz, N.; Ugiliweneza, B.; Harkema, S.; Boakye, M. Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury. Brain 2021, 144, 420–433. [Google Scholar] [CrossRef]
- Kim, C.M.; Eng, J.J.; Whittaker, M.W. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: Relationship with muscle strength. Spinal Cord 2004, 42, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Scivoletto, G.; Romanelli, A.; Mariotti, A.; Marinucci, D.; Tamburella, F.; Mammone, A.; Cosentino, E.; Sterzi, S.; Molinari, M. Clinical factors that affect walking level and performance in chronic spinal cord lesion patients. Spine 2008, 33, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Wirz, M.; van Hedel, H.J.; Rupp, R.; Curt, A.; Dietz, V. Muscle Force and Gait Performance: Relationships After Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2006, 87, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Amatachaya, S.; Pramodhyakul, W.; Wattanapan, P.; Eungpinichpong, W. Ability of obstacle crossing is not associated with falls in independent ambulatory patients with spinal cord injury. Spinal Cord 2015, 53, 598–603. [Google Scholar] [CrossRef] [PubMed]
Participant | Age at Implant (yr.) | Sex | Duration of Injury (yr.) | AIS Grade | Neurological Level of Injury | BMD T-Score |
---|---|---|---|---|---|---|
P1 | 52 | Male | 1.5 | D | C4 | No test |
P2 | 51 | Male | 10 | D | C5 | 1.9 |
P3 | 67 | Female | 3 | D | C4 | −0.6 |
Participant | P1 | P2 | P3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Time point | Pre | 8th | 36th | Pre | 8th | 36th | Pre | 8th | 36th |
AIS | D | D | D | D | D | D | D | D | D |
Neurological levels of injury | C5 | C5 | C5 | C4 | C5 | L4 | C5 | C5 | C5 |
UEMs | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L |
C5 | 5 | 4 | 5 | 4 | 5 | 4 | 4 | 4 | 3 | 4 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 |
C6 | 5 | 4 | 5 | 4 | 5 | 4 | 4 | 4 | 4 | 3 | 5 | 5 | 2 | 3 | 2 | 3 | 3 | 3 |
C7 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 5 | 5 | 3 | 3 | 3 | 3 | 3 | 4 |
C8 | 5 | 4 | 5 | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 3 | 3 | 3 | 4 | 3 | 3 |
T1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 5 | 5 | 2 | 4 | 2 | 4 | 3 | 3 |
Total (max. 50) | 23 | 20 43 | 23 | 20 43 | 23 | 20 43 | 20 | 20 40 | 19 | 17 36 | 25 | 25 50 | 14 | 17 31 | 14 | 18 32 | 16 | 17 33 |
LEMs | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L |
L2 | 3 | 2 | 4 | 4 | 5 | 5 | 3 | 3 | 4 | 4 | 5 | 5 | 2 | 2 | 2 | 2 | 3 | 4 |
L3 | 4 | 3 | 4 | 3 | 5 | 5 | 3 | 3 | 4 | 4 | 5 | 5 | 3 | 3 | 3 | 5 | 3 | 4 |
L4 | 3 | 2 | 4 | 3 | 5 | 5 | 2 | 2 | 4 | 4 | 5 | 4 | 1 | 3 | 2 | 4 | 2 | 3 |
L5 | 2 | 2 | 4 | 3 | 5 | 5 | 3 | 3 | 3 | 4 | 4 | 4 | 1 | 4 | 2 | 5 | 2 | 4 |
S1 | 2 | 2 | 4 | 3 | 5 | 5 | 2 | 2 | 3 | 4 | 4 | 4 | 2 | 3 | 1 | 4 | 2 | 4 |
Total (max. 50) | 14 | 11 25 | 20 | 16 36 | 25 | 25 50 | 13 | 13 26 | 18 | 20 38 | 23 | 22 45 | 9 | 15 24 | 10 | 20 30 | 12 |19 31 |
Light touch sensory scores | R | L 14 | 14 | R | L 14 | 14 | R | L 14 | 14 | R | L 14 | 14 | R | L 14 | 14 | R | L 14 | 14 | R | L 7 | 7 | R | L 14 | 14 | R | L 14 | 14 |
L1–S2 | |||||||||
Pinprick touch sensory scores | R | L 14 | 14 | R | L 14 | 14 | R | L 14 | 14 | R | L 7 | 7 | R | L 10 | 10 | R | L 14 | 14 | R | L 7 | 7 | R | L 13 | 7 | R | L 14 | 14 |
L1–S2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Huang, X.-L.; Cheng, H.-Y.; Wu, C.-C.; Wu, M.-Y.; Yan, L.-C.; Chen, S.-Y.; Tsai, S.-T.; Lin, S.-Z. Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury. Biomedicines 2025, 13, 155. https://doi.org/10.3390/biomedicines13010155
Chen Y-C, Huang X-L, Cheng H-Y, Wu C-C, Wu M-Y, Yan L-C, Chen S-Y, Tsai S-T, Lin S-Z. Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury. Biomedicines. 2025; 13(1):155. https://doi.org/10.3390/biomedicines13010155
Chicago/Turabian StyleChen, Yu-Chen, Xiang-Ling Huang, Hung-Yu Cheng, Ciou-Chan Wu, Ming-Yung Wu, Lian-Cing Yan, Shin-Yuan Chen, Sheng-Tzung Tsai, and Shinn-Zong Lin. 2025. "Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury" Biomedicines 13, no. 1: 155. https://doi.org/10.3390/biomedicines13010155
APA StyleChen, Y.-C., Huang, X.-L., Cheng, H.-Y., Wu, C.-C., Wu, M.-Y., Yan, L.-C., Chen, S.-Y., Tsai, S.-T., & Lin, S.-Z. (2025). Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury. Biomedicines, 13(1), 155. https://doi.org/10.3390/biomedicines13010155