Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function
Abstract
:1. Introduction
2. Function and Structure of Bcl-2 and Bcl-xL
2.1. Homology of Bcl-2 Proteins
2.2. Structure of Bcl-2 and Bcl-xL
2.3. Preferential Localization of Bcl-2 and Bcl-xL
2.4. Interactions Within the Family of Bcl-2 Proteins
2.5. Non-Canonical Functions of Bcl-2 and Bcl-xL
2.5.1. ER Ca2+ Homeostasis
2.5.2. Mitochondrial Homeostasis
3. Bcl-2 and Bcl-xL in Pancreatic Islets
3.1. Bcl-2 and Bcl-xL Effects in β-Cell Survival
3.2. Bcl-2 and Bcl-xL Effects on β-Cell Function
4. Therapeutic Opportunities
4.1. Gene Therapy
4.2. Bcl-2/Bcl-xL Inhibitors
5. Limitations/Gaps in Knowledge and Future Perspectives
5.1. Limited Research on Human Models
5.2. Limited Preclinical Studies in Mouse Models of T1D and T2D
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Mabhida, S.E.; Ziqubu, K.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hanser, S.; Basson, A.K.; Pheiffer, C.; Kengne, A.P. Pancreatic β-Cell Dysfunction in Type 2 Diabetes: Implications of Inflammation and Oxidative Stress. World J. Diabetes 2023, 14, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-Cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef]
- Herold, K.C.; Delong, T.; Perdigoto, A.L.; Biru, N.; Brusko, T.M.; Walker, L.S.K. The Immunology of Type 1 Diabetes. Nat. Rev. Immunol. 2024, 24, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Grarup, N.; Sandholt, C.H.; Hansen, T.; Pedersen, O. Genetic Susceptibility to Type 2 Diabetes and Obesity: From Genome-Wide Association Studies to Rare Variants and Beyond. Diabetologia 2014, 57, 1528–1541. [Google Scholar] [CrossRef]
- Noble, J.A.; Valdes, A.M.; Varney, M.D.; Carlson, J.A.; Moonsamy, P.; Fear, A.L.; Lane, J.A.; Lavant, E.; Rappner, R.; Louey, A.; et al. HLA Class I and Genetic Susceptibility to Type 1 Diabetes: Results from the Type 1 Diabetes Genetics Consortium. Diabetes 2010, 59, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Knip, M.; Simell, O. Environmental Triggers of Type 1 Diabetes. Cold Spring Harb. Perspect. Med. 2012, 2, a007690. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Magdalena, P.; Quesada, I.; Nadal, A. Endocrine Disruptors in the Etiology of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2011, 7, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.A.M.J.L. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int. J. Mol. Sci. 2021, 22, 7797. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Muralidharan, C.; May, S.C.; Tersey, S.A.; Mirmira, R.G. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2023, 164, bqac184. [Google Scholar] [CrossRef] [PubMed]
- Meyerovich, K.; Fukaya, M.; Terra, L.F.; Ortis, F.; Eizirik, D.L.; Cardozo, A.K. The Non-Canonical NF-κB Pathway Is Induced by Cytokines in Pancreatic Beta Cells and Contributes to Cell Death and Proinflammatory Responses in Vitro. Diabetologia 2016, 59, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Ortis, F.; Pirot, P.; Naamane, N.; Kreins, A.Y.; Rasschaert, J.; Moore, F.; Théâtre, E.; Verhaeghe, C.; Magnusson, N.E.; Chariot, A.; et al. Induction of Nuclear Factor-kappaB and Its Downstream Genes by TNF-Alpha and IL-1beta Has a pro-Apoptotic Role in Pancreatic Beta Cells. Diabetologia 2008, 51, 1213–1225. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 Family Proteins: Changing Partners in the Dance towards Death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef]
- Kapoor, I.; Bodo, J.; Hill, B.T.; Hsi, E.D.; Almasan, A. Targeting BCL-2 in B-Cell Malignancies and Overcoming Therapeutic Resistance. Cell Death Dis. 2020, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From Basic Apoptosis Discoveries to Advanced Selective BCL-2 Family Inhibitors. Nat. Rev. Drug Discov. 2017, 16, 273–284. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ren, J.; Lin, J.; Yu, Z.; Huang, S.; Hu, Y.; Fu, J.; Wang, M.; Zhang, Y.; et al. S-9-PAHSA’s Neuroprotective Effect Mediated by CAIII Suppresses Apoptosis and Oxidative Stress in a Mouse Model of Type 2 Diabetes. CNS Neurosci. Ther. 2024, 30, e14594. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, X.; Ang, S.; Gao, Y.; Chi, Y.; Wang, J.; Tang, C.; Zhou, X.; Feng, Y.; Zhang, K.; et al. Bcl-xL Promotes the Survival of Motor Neurons Derived from Neural Stem Cells. Biology 2023, 12, 132. [Google Scholar] [CrossRef]
- Perez-Serna, A.A.; Dos Santos, R.S.; Ripoll, C.; Nadal, A.; Eizirik, D.L.; Marroqui, L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int. J. Mol. Sci. 2023, 24, 5657. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Finger, L.R.; Yunis, J.; Nowell, P.C.; Croce, C.M. Cloning of the Chromosome Breakpoint of Neoplastic B Cells with the t(14;18) Chromosome Translocation. Science 1984, 226, 1097–1099. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 Family Isoforms in Apoptosis and Cancer. Cell Death Dis. 2019, 10, 177. [Google Scholar] [CrossRef]
- Scorilas, A.; Kyriakopoulou, L.; Yousef, G.M.; Ashworth, L.K.; Kwamie, A.; Diamandis, E.P. Molecular Cloning, Physical Mapping, and Expression Analysis of a Novel Gene, BCL2L12, Encoding a Proline-Rich Protein with a Highly Conserved BH2 Domain of the Bcl-2 Family. Genomics 2001, 72, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Godzik, A.; Reed, J.C. Bcl-G, a Novel pro-Apoptotic Member of the Bcl-2 Family. J. Biol. Chem. 2001, 276, 2780–2785. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Holler, N.; Micheau, O.; Martinon, F.; Tinel, A.; Hofmann, K.; Tschopp, J. Bcl-Rambo, a Novel Bcl-2 Homologue That Induces Apoptosis via Its Unique C-Terminal Extension. J. Biol. Chem. 2001, 276, 19548–19554. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sim, S.-H.; Ha, H.-J.; Ko, J.-J.; Lee, K.; Bae, J. MCL-1ES, a Novel Variant of MCL-1, Associates with MCL-1L and Induces Mitochondrial Cell Death. FEBS Lett. 2009, 583, 2758–2764. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Beatty, C.; Tsujimoto, Y.; Croce, C.M. The Bcl-2 Gene Encodes a Novel G Protein. Nature 1989, 342, 195–198. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Croce, C.M. Analysis of the Structure, Transcripts, and Protein Products of Bcl-2, the Gene Involved in Human Follicular Lymphoma. Proc. Natl. Acad. Sci. USA 1986, 83, 5214–5218. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Zhao, L.; Wu, B.; Li, S.; Liu, P.; Xu, J.; Wang, X.; Chi, P.; Chen, C.; Niu, T.; et al. BCL-2 Isoform β Promotes Angiogenesis by TRiC-Mediated Upregulation of VEGF-A in Lymphoma. Oncogene 2022, 41, 3655–3663. [Google Scholar] [CrossRef] [PubMed]
- Boise, L.H.; González-García, M.; Postema, C.E.; Ding, L.; Lindsten, T.; Turka, L.A.; Mao, X.; Nuñez, G.; Thompson, C.B. Bcl-x, a Bcl-2-Related Gene That Functions as a Dominant Regulator of Apoptotic Cell Death. Cell 1993, 74, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Michels, J.; Kepp, O.; Senovilla, L.; Lissa, D.; Castedo, M.; Kroemer, G.; Galluzzi, L. Functions of BCL-XL at the Interface between Cell Death and Metabolism. Int. J. Cell Biol. 2013, 2013, 705294. [Google Scholar] [CrossRef] [PubMed]
- Muchmore, S.W.; Sattler, M.; Liang, H.; Meadows, R.P.; Harlan, J.E.; Yoon, H.S.; Nettesheim, D.; Chang, B.S.; Thompson, C.B.; Wong, S.L.; et al. X-Ray and NMR Structure of Human Bcl-xL, an Inhibitor of Programmed Cell Death. Nature 1996, 381, 335–341. [Google Scholar] [CrossRef]
- Petros, A.M.; Medek, A.; Nettesheim, D.G.; Kim, D.H.; Yoon, H.S.; Swift, K.; Matayoshi, E.D.; Oltersdorf, T.; Fesik, S.W. Solution Structure of the Antiapoptotic Protein Bcl-2. Proc. Natl. Acad. Sci. USA 2001, 98, 3012–3017. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Millar, D.G.; Yong, V.W.; Korsmeyer, S.J.; Shore, G.C. Targeting of Bcl-2 to the Mitochondrial Outer Membrane by a COOH-Terminal Signal Anchor Sequence. J. Biol. Chem. 1993, 268, 25265–25268. [Google Scholar] [CrossRef]
- Borner, C.; Martinou, I.; Mattmann, C.; Irmler, M.; Schaerer, E.; Martinou, J.C.; Tschopp, J. The Protein Bcl-2 Alpha Does Not Require Membrane Attachment, but Two Conserved Domains to Suppress Apoptosis. J. Cell Biol. 1994, 126, 1059–1068. [Google Scholar] [CrossRef]
- Hockenbery, D.; Nuñez, G.; Milliman, C.; Schreiber, R.D.; Korsmeyer, S.J. Bcl-2 Is an Inner Mitochondrial Membrane Protein That Blocks Programmed Cell Death. Nature 1990, 348, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Takeda, A.; Cleary, M.L.; Endo, T. The Bcl-2 Protein Is Inserted into the Outer Membrane but Not into the Inner Membrane of Rat Liver Mitochondria in Vitro. Biochem. Biophys. Res. Commun. 1993, 196, 233–239. [Google Scholar] [CrossRef]
- Akao, Y.; Otsuki, Y.; Kataoka, S.; Ito, Y.; Tsujimoto, Y. Multiple Subcellular Localization of Bcl-2: Detection in Nuclear Outer Membrane, Endoplasmic Reticulum Membrane, and Mitochondrial Membranes. Cancer Res. 1994, 54, 2468–2471. [Google Scholar] [PubMed]
- de Jong, D.; Prins, F.A.; Mason, D.Y.; Reed, J.C.; van Ommen, G.B.; Kluin, P.M. Subcellular Localization of the Bcl-2 Protein in Malignant and Normal Lymphoid Cells. Cancer Res. 1994, 54, 256–260. [Google Scholar] [PubMed]
- Krajewski, S.; Tanaka, S.; Takayama, S.; Schibler, M.J.; Fenton, W.; Reed, J.C. Investigation of the Subcellular Distribution of the Bcl-2 Oncoprotein: Residence in the Nuclear Envelope, Endoplasmic Reticulum, and Outer Mitochondrial Membranes. Cancer Res. 1993, 53, 4701–4714. [Google Scholar]
- Lithgow, T.; van Driel, R.; Bertram, J.F.; Strasser, A. The Protein Product of the Oncogene Bcl-2 Is a Component of the Nuclear Envelope, the Endoplasmic Reticulum, and the Outer Mitochondrial Membrane. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1994, 5, 411–417. [Google Scholar]
- Monaghan, P.; Robertson, D.; Amos, T.A.; Dyer, M.J.; Mason, D.Y.; Greaves, M.F. Ultrastructural Localization of Bcl-2 Protein. J. Histochem. Cytochem. 1992, 40, 1819–1825. [Google Scholar] [CrossRef]
- Popgeorgiev, N.; Jabbour, L.; Gillet, G. Subcellular Localization and Dynamics of the Bcl-2 Family of Proteins. Front. Cell Dev. Biol. 2018, 6, 13. [Google Scholar] [CrossRef]
- González-García, M.; Pérez-Ballestero, R.; Ding, L.; Duan, L.; Boise, L.H.; Thompson, C.B.; Núñez, G. Bcl-XL Is the Major Bcl-x mRNA Form Expressed during Murine Development and Its Product Localizes to Mitochondria. Development 1994, 120, 3033–3042. [Google Scholar] [CrossRef]
- Eno, C.O.; Eckenrode, E.F.; Olberding, K.E.; Zhao, G.; White, C.; Li, C. Distinct Roles of Mitochondria- and ER-Localized Bcl-xL in Apoptosis Resistance and Ca2+ Homeostasis. Mol. Biol. Cell 2012, 23, 2605–2618. [Google Scholar] [CrossRef]
- Hsu, Y.-T.; Wolter, K.G.; Youle, R.J. Cytosol-to-Membrane Redistribution of Bax and Bcl-XL during Apoptosis. Proc. Natl. Acad. Sci. USA 1997, 94, 3668–3672. [Google Scholar] [CrossRef] [PubMed]
- Aharoni-Simon, M.; Shumiatcher, R.; Yeung, A.; Shih, A.Z.L.; Dolinsky, V.W.; Doucette, C.A.; Luciani, D.S. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells. Endocrinology 2016, 157, 2270–2281. [Google Scholar] [CrossRef] [PubMed]
- Luciani, D.S.; White, S.A.; Widenmaier, S.B.; Saran, V.V.; Taghizadeh, F.; Hu, X.; Allard, M.F.; Johnson, J.D. Bcl-2 and Bcl-xL Suppress Glucose Signaling in Pancreatic β-Cells. Diabetes 2013, 62, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Contreras, J.L.; Smyth, C.A.; Bilbao, G.; Eckstein, C.; Young, C.J.; Thompson, J.A.; Curiel, D.T.; Eckhoff, D.E. Coupling Endoplasmic Reticulum Stress to Cell Death Program in Isolated Human Pancreatic Islets: Effects of Gene Transfer of Bcl-2. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2003, 16, 537–542. [Google Scholar] [CrossRef]
- Annis, M.G.; Zamzami, N.; Zhu, W.; Penn, L.Z.; Kroemer, G.; Leber, B.; Andrews, D.W. Endoplasmic Reticulum Localized Bcl-2 Prevents Apoptosis When Redistribution of Cytochrome c Is a Late Event. Oncogene 2001, 20, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Banjara, S.; Suraweera, C.D.; Hinds, M.G.; Kvansakul, M. The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020, 10, 128. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Gurzov, E.N.; Eizirik, D.L. Bcl-2 Proteins in Diabetes: Mitochondrial Pathways of β-Cell Death and Dysfunction. Trends Cell Biol. 2011, 21, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Shamas-Din, A.; Brahmbhatt, H.; Leber, B.; Andrews, D.W. BH3-Only Proteins: Orchestrators of Apoptosis. Biochim. Biophys. Acta 2011, 1813, 508–520. [Google Scholar] [CrossRef]
- Shamas-Din, A.; Kale, J.; Leber, B.; Andrews, D.W. Mechanisms of Action of Bcl-2 Family Proteins. Cold Spring Harb. Perspect. Biol. 2013, 5, a008714. [Google Scholar] [CrossRef]
- Duan, L.; Dong, S.; Huang, K.; Cong, Y.; Luo, S.; Zhang, J.Z.H. Computational Analysis of Binding Free Energies, Hotspots and the Binding Mechanism of Bcl-xL/Bcl-2 Binding to Bad/Bax. Phys. Chem. Chem. Phys. PCCP 2021, 23, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Sora, V.; Papaleo, E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: An Updated Perspective. Front. Mol. Biosci. 2022, 9, 864874. [Google Scholar] [CrossRef]
- Beigl, T.B.; Paul, A.; Fellmeth, T.P.; Nguyen, D.; Barber, L.; Weller, S.; Schäfer, B.; Gillissen, B.F.; Aulitzky, W.E.; Kopp, H.-G.; et al. BCL-2 and BOK Regulate Apoptosis by Interaction of Their C-Terminal Transmembrane Domains. EMBO Rep. 2024, 25, 3896–3924. [Google Scholar] [CrossRef]
- Wu, G.; Yang, F.; Cheng, X.; Mai, Z.; Wang, X.; Chen, T. Live-Cell Imaging Analysis on the Anti-Apoptotic Function of the Bcl-xL Transmembrane Carboxyl Terminal Domain. Biochem. Biophys. Res. Commun. 2023, 639, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Deng, X.; Carr, B.; May, W.S. Bcl-2 Phosphorylation Required for Anti-Apoptosis Function. J. Biol. Chem. 1997, 272, 11671–11673. [Google Scholar] [CrossRef]
- Wei, Y.; An, Z.; Zou, Z.; Sumpter, R., Jr.; Su, M.; Zang, X.; Sinha, S.; Gaestel, M.; Levine, B. The Stress-Responsive Kinases MAPKAPK2/MAPKAPK3 Activate Starvation-Induced Autophagy through Beclin 1 Phosphorylation. eLife 2015, 4, e05289. [Google Scholar] [CrossRef]
- Nakamura, M.; Keller, M.A.; Fefelova, N.; Zhai, P.; Liu, T.; Tian, Y.; Ikeda, S.; Del Re, D.P.; Li, H.; Xie, L.-H.; et al. Ser14 Phosphorylation of Bcl-xL Mediates Compensatory Cardiac Hypertrophy in Male Mice. Nat. Commun. 2023, 14, 5805. [Google Scholar] [CrossRef] [PubMed]
- Upreti, M.; Galitovskaya, E.N.; Chu, R.; Tackett, A.J.; Terrano, D.T.; Granell, S.; Chambers, T.C. Identification of the Major Phosphorylation Site in Bcl-xL Induced by Microtubule Inhibitors and Analysis of Its Functional Significance. J. Biol. Chem. 2008, 283, 35517–35525. [Google Scholar] [CrossRef]
- Wang, J.; Beauchemin, M.; Bertrand, R. Phospho-Bcl-xL(Ser62) Plays a Key Role at DNA Damage-Induced G2 Checkpoint. Cell Cycle 2012, 11, 2159–2169. [Google Scholar] [CrossRef]
- Gabellini, C.; Trisciuoglio, D.; Del Bufalo, D. Non-Canonical Roles of Bcl-2 and Bcl-xL Proteins: Relevance of BH4 Domain. Carcinogenesis 2017, 38, 579–587. [Google Scholar] [CrossRef]
- Gross, A.; Katz, S.G. Non-Apoptotic Functions of BCL-2 Family Proteins. Cell Death Differ. 2017, 24, 1348–1358. [Google Scholar] [CrossRef]
- Callens, M.; Kraskovskaya, N.; Derevtsova, K.; Annaert, W.; Bultynck, G.; Bezprozvanny, I.; Vervliet, T. The Role of Bcl-2 Proteins in Modulating Neuronal Ca2+ Signaling in Health and in Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118997. [Google Scholar] [CrossRef]
- Ivanova, H.; Vervliet, T.; Monaco, G.; Terry, L.E.; Rosa, N.; Baker, M.R.; Parys, J.B.; Serysheva, I.I.; Yule, D.I.; Bultynck, G. Bcl-2-Protein Family as Modulators of IP3 Receptors and Other Organellar Ca2+ Channels. Cold Spring Harb. Perspect. Biol. 2020, 12, a035089. [Google Scholar] [CrossRef] [PubMed]
- Vervliet, T.; Clerix, E.; Seitaj, B.; Ivanova, H.; Monaco, G.; Bultynck, G. Modulation of Ca2+ Signaling by Anti-Apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum–Mitochondrial Interface. Front. Oncol. 2017, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Hayashi, T.; Wolozny, D.; Yin, B.; Su, T.-C.; Betenbaugh, M.J.; Su, T.-P. The Non-Apoptotic Action of Bcl-xL: Regulating Ca2+ Signaling and Bioenergetics at the ER-Mitochondrion Interface. J. Bioenerg. Biomembr. 2016, 48, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Valencia, I.; Zhong, F.; McColl, K.S.; Roderick, H.L.; Bootman, M.D.; Berridge, M.J.; Conway, S.J.; Holmes, A.B.; Mignery, G.A.; et al. Bcl-2 Functionally Interacts with Inositol 1,4,5-Trisphosphate Receptors to Regulate Calcium Release from the ER in Response to Inositol 1,4,5-Trisphosphate. J. Cell Biol. 2004, 166, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Monaco, G.; Decrock, E.; Akl, H.; Ponsaerts, R.; Vervliet, T.; Luyten, T.; De Maeyer, M.; Missiaen, L.; Distelhorst, C.W.; De Smedt, H.; et al. Selective Regulation of IP3-Receptor-Mediated Ca2+ Signaling and Apoptosis by the BH4 Domain of Bcl-2 versus Bcl-Xl. Cell Death Differ. 2012, 19, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Distelhorst, C.W. Bcl-2 Protein Family Members: Versatile Regulators of Calcium Signaling in Cell Survival and Apoptosis. Annu. Rev. Physiol. 2008, 70, 73–91. [Google Scholar] [CrossRef]
- Ivanova, H.; Ritaine, A.; Wagner, L.; Luyten, T.; Shapovalov, G.; Welkenhuyzen, K.; Seitaj, B.; Monaco, G.; De Smedt, H.; Prevarskaya, N.; et al. The Trans-Membrane Domain of Bcl-2α, but Not Its Hydrophobic Cleft, Is a Critical Determinant for Efficient IP3 Receptor Inhibition. Oncotarget 2016, 7, 55704–55720. [Google Scholar] [CrossRef] [PubMed]
- Foyouzi-Youssefi, R.; Arnaudeau, S.; Borner, C.; Kelley, W.L.; Tschopp, J.; Lew, D.P.; Demaurex, N.; Krause, K.H. Bcl-2 Decreases the Free Ca2+ Concentration within the Endoplasmic Reticulum. Proc. Natl. Acad. Sci. USA 2000, 97, 5723–5728. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Ferrari, D.; Magalhães, P.; Schulze-Osthoff, K.; Di Virgilio, F.; Pozzan, T.; Rizzuto, R. Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+ Influx in Bcl-2–Overexpressing Cells. J. Cell Biol. 2000, 148, 857–862. [Google Scholar] [CrossRef]
- Pinton, P.; Ferrari, D.; Rapizzi, E.; Virgilio, F.D.; Pozzan, T.; Rizzuto, R. The Ca2+ Concentration of the Endoplasmic Reticulum Is a Key Determinant of Ceramide-induced Apoptosis: Significance for the Molecular Mechanism of Bcl-2 Action. EMBO J. 2001, 20, 2690–2701. [Google Scholar] [CrossRef]
- He, H.; Lam, M.; McCormick, T.S.; Distelhorst, C.W. Maintenance of Calcium Homeostasis in the Endoplasmic Reticulum by Bcl-2. J. Cell Biol. 1997, 138, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Monaco, G.; Vervliet, T.; Akl, H.; Bultynck, G. The Selective BH4-Domain Biology of Bcl-2-Family Members: IP3Rs and Beyond. Cell. Mol. Life Sci. CMLS 2013, 70, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Li, C.; Yang, J.; Petrenko, N.B.; Madesh, M.; Thompson, C.B.; Foskett, J.K. The Endoplasmic Reticulum Gateway to Apoptosis by Bcl-XL Modulation of the InsP3R. Nat. Cell Biol. 2005, 7, 1021–1028. [Google Scholar] [CrossRef]
- Yang, J.; Vais, H.; Gu, W.; Foskett, J.K. Biphasic Regulation of InsP3 Receptor Gating by Dual Ca2+ Release Channel BH3-like Domains Mediates Bcl-xL Control of Cell Viability. Proc. Natl. Acad. Sci. USA 2016, 113, E1953–E1962. [Google Scholar] [CrossRef]
- Rosa, N.; Ivanova, H.; Wagner, L.E.; Kale, J.; La Rovere, R.; Welkenhuyzen, K.; Louros, N.; Karamanou, S.; Shabardina, V.; Lemmens, I.; et al. Bcl-xL Acts as an Inhibitor of IP3R Channels, Thereby Antagonizing Ca2+-Driven Apoptosis. Cell Death Differ. 2022, 29, 788–805. [Google Scholar] [CrossRef]
- Li, C.; Fox, C.J.; Master, S.R.; Bindokas, V.P.; Chodosh, L.A.; Thompson, C.B. Bcl-XL Affects Ca2+ Homeostasis by Altering Expression of Inositol 1,4,5-Trisphosphate Receptors. Proc. Natl. Acad. Sci. USA 2002, 99, 9830–9835. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Vais, H.; Thompson, C.B.; Foskett, J.K.; White, C. Apoptosis Regulation by Bcl-xL Modulation of Mammalian Inositol 1,4,5-Trisphosphate Receptor Channel Isoform Gating. Proc. Natl. Acad. Sci. USA 2007, 104, 12565–12570. [Google Scholar] [CrossRef]
- Woll, K.A.; Van Petegem, F. Calcium-Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol. Rev. 2022, 102, 209–268. [Google Scholar] [CrossRef] [PubMed]
- Vervliet, T.; Decrock, E.; Molgó, J.; Sorrentino, V.; Missiaen, L.; Leybaert, L.; De Smedt, H.; Kasri, N.N.; Parys, J.B.; Bultynck, G. Bcl-2 Binds to and Inhibits Ryanodine Receptors. J. Cell Sci. 2014, 127, 2782–2792. [Google Scholar] [CrossRef]
- Vervliet, T.; Lemmens, I.; Vandermarliere, E.; Decrock, E.; Ivanova, H.; Monaco, G.; Sorrentino, V.; Kasri, N.N.; Missiaen, L.; Martens, L.; et al. Ryanodine Receptors Are Targeted by Anti-Apoptotic Bcl-XL Involving Its BH4 Domain and Lys87 from Its BH3 Domain. Sci. Rep. 2015, 5, 9641. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chang, H.-A.; Lin, Y.-H.; Lin, Y.-S.; Chang, H.-T.; Lin, H.-H.; Huang, S.-C.; Tang, M.-J.; Shen, M.-R. Bcl-2 Regulates Store-Operated Ca2+ Entry to Modulate ER Stress-Induced Apoptosis. Cell Death Discov. 2018, 4, 37. [Google Scholar] [CrossRef]
- Bassik, M.C.; Scorrano, L.; Oakes, S.A.; Pozzan, T.; Korsmeyer, S.J. Phosphorylation of BCL-2 Regulates ER Ca2+ Homeostasis and Apoptosis. EMBO J. 2004, 23, 1207–1216. [Google Scholar] [CrossRef]
- Kuo, T.H.; Kim, H.R.; Zhu, L.; Yu, Y.; Lin, H.M.; Tsang, W. Modulation of Endoplasmic Reticulum Calcium Pump by Bcl-2. Oncogene 1998, 17, 1903–1910. [Google Scholar] [CrossRef]
- Dremina, E.S.; Sharov, V.S.; Kumar, K.; Zaidi, A.; Michaelis, E.K.; Schöneich, C. Anti-Apoptotic Protein Bcl-2 Interacts with and Destabilizes the Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase (SERCA). Biochem. J. 2004, 383, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Garbincius, J.F.; Elrod, J.W. Mitochondrial Calcium Exchange in Physiology and Disease. Physiol. Rev. 2022, 102, 893–992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, F.; Li, P.; Gao, Y. Mitochondrial Ca2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int. J. Mol. Sci. 2022, 23, 3025. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.L.; Gillet, G.; Prudent, J.; Popgeorgiev, N. Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int. J. Mol. Sci. 2021, 22, 3730. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Li, X.X.; Gottleib, E.; Hill, R.B.; Thompson, C.B.; Colombini, M. Bcl-xL Promotes the Open Configuration of the Voltage-Dependent Anion Channel and Metabolite Passage through the Outer Mitochondrial Membrane. J. Biol. Chem. 2001, 276, 19414–19419. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Chandel, N.S.; Schumacker, P.T.; Thompson, C.B. Bcl-xL Prevents Cell Death Following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange. Mol. Cell 1999, 3, 159–167. [Google Scholar] [CrossRef]
- Roy, S.S.; Madesh, M.; Davies, E.; Antonsson, B.; Danial, N.; Hajnóczky, G. Bad Targets the Permeability Transition Pore Independent of Bax or Bak to Switch between Ca2+-Dependent Cell Survival and Death. Mol. Cell 2009, 33, 377–388. [Google Scholar] [CrossRef]
- Szabó, I.; Zoratti, M. The Mitochondrial Permeability Transition Pore May Comprise VDAC Molecules. I. Binary Structure and Voltage Dependence of the Pore. FEBS Lett. 1993, 330, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hu, X.; Eno, C.O.; Zhao, G.; Li, C.; White, C. An Interaction between Bcl-xL and the Voltage-Dependent Anion Channel (VDAC) Promotes Mitochondrial Ca2+ Uptake. J. Biol. Chem. 2013, 288, 19870–19881. [Google Scholar] [CrossRef]
- Monaco, G.; Decrock, E.; Arbel, N.; van Vliet, A.R.; La Rovere, R.M.; De Smedt, H.; Parys, J.B.; Agostinis, P.; Leybaert, L.; Shoshan-Barmatz, V.; et al. The BH4 Domain of Anti-Apoptotic Bcl-XL, but Not That of the Related Bcl-2, Limits the Voltage-Dependent Anion Channel 1 (VDAC1)-Mediated Transfer of pro-Apoptotic Ca2+ Signals to Mitochondria. J. Biol. Chem. 2015, 290, 9150–9161. [Google Scholar] [CrossRef]
- Shimizu, S.; Konishi, A.; Kodama, T.; Tsujimoto, Y. BH4 Domain of Antiapoptotic Bcl-2 Family Members Closes Voltage-Dependent Anion Channel and Inhibits Apoptotic Mitochondrial Changes and Cell Death. Proc. Natl. Acad. Sci. USA 2000, 97, 3100–3105. [Google Scholar] [CrossRef]
- Abu-Hamad, S.; Arbel, N.; Calo, D.; Arzoine, L.; Israelson, A.; Keinan, N.; Ben-Romano, R.; Friedman, O.; Shoshan-Barmatz, V. The VDAC1 N-Terminus Is Essential Both for Apoptosis and the Protective Effect of Anti-Apoptotic Proteins. J. Cell Sci. 2009, 122, 1906–1916. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, Y.; Chua, B.H.; Ho, Y.S.; Kuo, T.H. Regulation of Sodium-Calcium Exchange and Mitochondrial Energetics by Bcl-2 in the Heart of Transgenic Mice. J. Mol. Cell. Cardiol. 2001, 33, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Bas, J.; Nguyen, T.; Gillet, G. Involvement of Bcl-xL in Neuronal Function and Development. Int. J. Mol. Sci. 2021, 22, 3202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Y.-B.; Jones, A.; Sanger, R.H.; Collis, L.P.; Flannery, R.J.; McNay, E.C.; Yu, T.; Schwarzenbacher, R.; Bossy, B.; et al. Bcl-XL Induces Drp1-Dependent Synapse Formation in Cultured Hippocampal Neurons. Proc. Natl. Acad. Sci. USA 2008, 105, 2169–2174. [Google Scholar] [CrossRef]
- Bleicken, S.; Hofhaus, G.; Ugarte-Uribe, B.; Schröder, R.; García-Sáez, A.J. cBid, Bax and Bcl-xL Exhibit Opposite Membrane Remodeling Activities. Cell Death Dis. 2016, 7, e2121. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C.; Delivani, P.; Cullen, S.P.; Martin, S.J. Bax- or Bak-Induced Mitochondrial Fission Can Be Uncoupled from Cytochrome C Release. Mol. Cell 2008, 31, 570–585. [Google Scholar] [CrossRef]
- Bessou, M.; Lopez, J.; Gadet, R.; Deygas, M.; Popgeorgiev, N.; Poncet, D.; Nougarède, A.; Billard, P.; Mikaelian, I.; Gonzalo, P.; et al. The Apoptosis Inhibitor Bcl-xL Controls Breast Cancer Cell Migration through Mitochondria-Dependent Reactive Oxygen Species Production. Oncogene 2020, 39, 3056–3074. [Google Scholar] [CrossRef]
- Jonas, E. Contributions of Bcl-xL to Acute and Long Term Changes in Bioenergetics during Neuronal Plasticity. Biochim. Biophys. Acta 2014, 1842, 1168–1178. [Google Scholar] [CrossRef]
- Alavian, K.N.; Li, H.; Collis, L.P.; Bonanni, L.; Zeng, L.; Sacchetti, S.; Lazrove, E.; Nabili, P.; Flaherty, B.J.; Graham, M.; et al. Bcl-xL Regulates Metabolic Efficiency of Neurons through Interaction with the Mitochondrial F1FO ATP Synthase. Nat. Cell Biol. 2011, 13, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-B.; Aon, M.A.; Hsu, Y.-T.; Soane, L.; Teng, X.; McCaffery, J.M.; Cheng, W.C.; Qi, B.; Li, H.; Alavian, K.N.; et al. Bcl-xL Regulates Mitochondrial Energetics by Stabilizing the Inner Membrane Potential. J. Cell Biol. 2011, 195, 263–276. [Google Scholar] [CrossRef]
- Jansen, J.; Scott, M.; Amjad, E.; Stumpf, A.; Lackey, K.H.; Caldwell, K.A.; Park, H.-A. Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites. Biology 2021, 10, 772. [Google Scholar] [CrossRef] [PubMed]
- Fouqué, A.; Lepvrier, E.; Debure, L.; Gouriou, Y.; Malleter, M.; Delcroix, V.; Ovize, M.; Ducret, T.; Li, C.; Hammadi, M.; et al. The Apoptotic Members CD95, BclxL, and Bcl-2 Cooperate to Promote Cell Migration by Inducing Ca2+ Flux from the Endoplasmic Reticulum to Mitochondria. Cell Death Differ. 2016, 23, 1702–1716. [Google Scholar] [CrossRef]
- Juhaszova, M.; Kobrinsky, E.; Zorov, D.B.; Nuss, H.B.; Yaniv, Y.; Fishbein, K.W.; de Cabo, R.; Montoliu, L.; Gabelli, S.B.; Aon, M.A.; et al. ATP Synthase K+- and H+-Fluxes Drive ATP Synthesis and Enable Mitochondrial K+-“Uniporter” Function: II. Ion and ATP Synthase Flux Regulation. Function 2022, 3, zqac001. [Google Scholar] [CrossRef]
- Du, X.; Fu, X.; Yao, K.; Lan, Z.; Xu, H.; Cui, Q.; Yang, E. Bcl-2 Delays Cell Cycle through Mitochondrial ATP and ROS. Cell Cycle 2017, 16, 707–713. [Google Scholar] [CrossRef]
- Du, X.; Xiao, J.; Fu, X.; Xu, B.; Han, H.; Wang, Y.; Pei, X. A Proteomic Analysis of Bcl-2 Regulation of Cell Cycle Arrest: Insight into the Mechanisms. J. Zhejiang Univ. Sci. B 2021, 22, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ueta, E.; Kimura, T.; Yamamoto, T.; Osaki, T. Reactive Oxygen Species (ROS) Control the Expression of Bcl-2 Family Proteins by Regulating Their Phosphorylation and Ubiquitination. Cancer Sci. 2004, 95, 644–650. [Google Scholar] [CrossRef]
- Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 2005, 122, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.G.; Rapp, U.R.; Reed, J.C. Bcl-2 Targets the Protein Kinase Raf-1 to Mitochondria. Cell 1996, 87, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Haughn, L.; Hawley, R.G.; Morrison, D.K.; von Boehmer, H.; Hockenbery, D.M. BCL-2 and BCL-XL Restrict Lineage Choice during Hematopoietic Differentiation. J. Biol. Chem. 2003, 278, 25158–25165. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Liu, S.-H.; Su, C.-C.; Fang, K.-M.; Yang, T.-Y.; Liu, J.-M.; Chen, Y.-W.; Chang, K.-C.; Chuang, H.-L.; Wu, C.-T.; et al. Methylmercury Induces Mitochondria- and Endoplasmic Reticulum Stress-Dependent Pancreatic β-Cell Apoptosis via an Oxidative Stress-Mediated JNK Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 2858. [Google Scholar] [CrossRef]
- Cunha, D.A.; Igoillo-Esteve, M.; Gurzov, E.N.; Germano, C.M.; Naamane, N.; Marhfour, I.; Fukaya, M.; Vanderwinden, J.-M.; Gysemans, C.; Mathieu, C.; et al. Death Protein 5 and P53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress–Mitochondrial Dialog Triggering Lipotoxic Rodent and Human β-Cell Apoptosis. Diabetes 2012, 61, 2763–2775. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Kong, X.; Lv, S.; Shu, X.; Ma, X.; Ai, X.; Yan, D.; Ying, Y. FXR-Regulated COX6A2 Triggers Mitochondrial Apoptosis of Pancreatic β-Cell in Type 2 Diabetes. Cell Death Dis. 2024, 15, 920. [Google Scholar] [CrossRef]
- Park, J.H.; Oh, J.E.; Kim, N.; Kwak, Y.-L. Dexmedetomidine Alleviates CoCl2-Induced Hypoxic Cellular Damage in INS-1 Cells by Regulating Autophagy. Korean J. Anesthesiol. 2024, 77, 623–634. [Google Scholar] [CrossRef]
- Lu, H.; Hao, L.; Li, S.; Lin, S.; Lv, L.; Chen, Y.; Cui, H.; Zi, T.; Chu, X.; Na, L.; et al. Elevated Circulating Stearic Acid Leads to a Major Lipotoxic Effect on Mouse Pancreatic Beta Cells in Hyperlipidaemia via a miR-34a-5p-Mediated PERK/P53-Dependent Pathway. Diabetologia 2016, 59, 1247–1257. [Google Scholar] [CrossRef]
- Lin, N.; Niu, Y.; Zhang, W.; Li, X.; Yang, Z.; Su, Q. microRNA-802 Is Involved in Palmitate-Induced Damage to Pancreatic β Cells through Repression of Sirtuin 6. Int. J. Clin. Exp. Pathol. 2017, 10, 11300–11307. [Google Scholar]
- Lee, Y.-S.; Li, N.; Shin, S.; Jun, H.-S. Role of Nitric Oxide in the Pathogenesis of Encephalomyocarditis Virus-Induced Diabetes in Mice. J. Virol. 2009, 83, 8004–8011. [Google Scholar] [CrossRef]
- Dawson, S.-J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; et al. BCL2 in Breast Cancer: A Favourable Prognostic Marker across Molecular Subtypes and Independent of Adjuvant Therapy Received. Br. J. Cancer 2010, 103, 668–675. [Google Scholar] [CrossRef]
- Ikezawa, K.; Hikita, H.; Shigekawa, M.; Iwahashi, K.; Eguchi, H.; Sakamori, R.; Tatsumi, T.; Takehara, T. Increased Bcl-xL Expression in Pancreatic Neoplasia Promotes Carcinogenesis by Inhibiting Senescence and Apoptosis. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 185–200.e1. [Google Scholar] [CrossRef] [PubMed]
- Moriishi, T.; Maruyama, Z.; Fukuyama, R.; Ito, M.; Miyazaki, T.; Kitaura, H.; Ohnishi, H.; Furuichi, T.; Kawai, Y.; Masuyama, R.; et al. Overexpression of Bcl2 in Osteoblasts Inhibits Osteoblast Differentiation and Induces Osteocyte Apoptosis. PLoS ONE 2011, 6, e27487. [Google Scholar] [CrossRef]
- Shimora, H.; Matsuda, M.; Nakayama, Y.; Maeyama, H.; Tanioka, R.; Tanaka, Y.; Kitatani, K.; Nabe, T. Involvement of Janus Kinase-Dependent Bcl-xL Overexpression in Steroid Resistance of Group 2 Innate Lymphoid Cells in Asthma. Immunology 2024, 172, 653–668. [Google Scholar] [CrossRef]
- Kodama, T.; Takehara, T.; Hikita, H.; Shimizu, S.; Shigekawa, M.; Li, W.; Miyagi, T.; Hosui, A.; Tatsumi, T.; Ishida, H.; et al. BH3-Only Activator Proteins Bid and Bim Are Dispensable for Bak/Bax-Dependent Thrombocyte Apoptosis Induced by Bcl-xL Deficiency: Molecular Requisites for the Mitochondrial Pathway to Apoptosis in Platelets. J. Biol. Chem. 2011, 286, 13905–13913. [Google Scholar] [CrossRef] [PubMed]
- Afreen, S.; Bohler, S.; Müller, A.; Demmerath, E.-M.; Weiss, J.M.; Jutzi, J.S.; Schachtrup, K.; Kunze, M.; Erlacher, M. BCL-XL Expression Is Essential for Human Erythropoiesis and Engraftment of Hematopoietic Stem Cells. Cell Death Dis. 2020, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, K.; Waring, P.; Glaser, S.P.; Wimmer, V.; Cottle, D.L.; Tham, M.S.; Nhu, D.; Whitehead, L.; Delbridge, A.R.; Lessene, G.; et al. BCL-XL Exerts a Protective Role against Anemia Caused by Radiation-Induced Kidney Damage. EMBO J. 2020, 39, e105561. [Google Scholar] [CrossRef]
- Nakamura, A.; Swahari, V.; Plestant, C.; Smith, I.; McCoy, E.; Smith, S.; Moy, S.S.; Anton, E.S.; Deshmukh, M. Bcl-xL Is Essential for the Survival and Function of Differentiated Neurons in the Cortex That Control Complex Behaviors. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 5448–5461. [Google Scholar] [CrossRef] [PubMed]
- Ceizar, M.; Dhaliwal, J.; Xi, Y.; Smallwood, M.; Kumar, K.L.; Lagace, D.C. Bcl-2 Is Required for the Survival of Doublecortin-Expressing Immature Neurons. Hippocampus 2016, 26, 211–219. [Google Scholar] [CrossRef]
- Zhou, Y.-P.; Pena, J.C.; Roe, M.W.; Mittal, A.A.; Levisetti, M.G.; Baldwin, A.C.; Pugh, W.; Ostrega, D.; Ahmed, N.; Bindokas, V.P.; et al. Overexpression of Bcl-xL in β-Cells Prevents Cell Death but Impairs Mitochondrial Signal for Insulin Secretion. Am. J. Physiol.-Endocrinol. Metab. 2000, 278, E340–E351. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Ribeiro, M.M.; Mendoza, V.; Jayaraman, S.; Kenyon, N.S.; Pileggi, A.; Molano, R.D.; Inverardi, L.; Ricordi, C.; Pastori, R.L. Delivery of Bcl-XL or Its BH4 Domain by Protein Transduction Inhibits Apoptosis in Human Islets. Biochem. Biophys. Res. Commun. 2004, 323, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Holohan, C.; Szegezdi, E.; Ritter, T.; O’Brien, T.; Samali, A. Cytokine-Induced β-Cell Apoptosis Is NO-Dependent, Mitochondria-Mediated and Inhibited by BCL-XL. J. Cell. Mol. Med. 2008, 12, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.; Thomas, H.; Beck, D.; Brady, J.L.; Lew, A.M.; Elefanty, A.; Kosaka, H.; Kay, T.W.; Huang, D.C.S.; Strasser, A. Transgenic Overexpression of Human Bcl-2 in Islet β Cells Inhibits Apoptosis but Does Not Prevent Autoimmune Destruction. Int. Immunol. 2000, 12, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Barthson, J.; Germano, C.M.; Moore, F.; Maida, A.; Drucker, D.J.; Marchetti, P.; Gysemans, C.; Mathieu, C.; Nuñez, G.; Jurisicova, A.; et al. Cytokines Tumor Necrosis Factor-α and Interferon-γ Induce Pancreatic β-Cell Apoptosis through STAT1-Mediated Bim Protein Activation. J. Biol. Chem. 2011, 286, 39632–39643. [Google Scholar] [CrossRef] [PubMed]
- Carrington, E.M.; McKenzie, M.D.; Jansen, E.S.; Myers, M.; Fynch, S.; Kos, C.; Strasser, A.; Kay, T.W.H.; Scott, C.L.; Allison, J. Islet β-Cells Deficient in Bcl-xL Develop but Are Abnormally Sensitive to Apoptotic Stimuli. Diabetes 2009, 58, 2316–2323. [Google Scholar] [CrossRef]
- Gurzov, E.N.; Germano, C.M.; Cunha, D.A.; Ortis, F.; Vanderwinden, J.-M.; Marchetti, P.; Zhang, L.; Eizirik, D.L. P53 Up-Regulated Modulator of Apoptosis (PUMA) Activation Contributes to Pancreatic β-Cell Apoptosis Induced by Proinflammatory Cytokines and Endoplasmic Reticulum Stress*. J. Biol. Chem. 2010, 285, 19910–19920. [Google Scholar] [CrossRef] [PubMed]
- Lupi, R.; Dotta, F.; Marselli, L.; Del Guerra, S.; Masini, M.; Santangelo, C.; Patanè, G.; Boggi, U.; Piro, S.; Anello, M.; et al. Prolonged Exposure to Free Fatty Acids Has Cytostatic and Pro-Apoptotic Effects on Human Pancreatic Islets: Evidence That β-Cell Death Is Caspase Mediated, Partially Dependent on Ceramide Pathway, and Bcl-2 Regulated. Diabetes 2002, 51, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, H.; Hanafusa, T.; Eguchi, Y.; Nakajima, H.; Miyagawa, J.; Itoh, N.; Tomita, K.; Namba, M.; Kuwajima, M.; Noguchi, T.; et al. Cytokine-Induced Apoptotic Cell Death in a Mouse Pancreatic Beta-Cell Line: Inhibition by Bcl-2. Diabetologia 1996, 39, 530–536. [Google Scholar] [CrossRef]
- Litwak, S.A.; Wali, J.A.; Pappas, E.G.; Saadi, H.; Stanley, W.J.; Varanasi, L.C.; Kay, T.W.H.; Thomas, H.E.; Gurzov, E.N. Lipotoxic Stress Induces Pancreatic β-Cell Apoptosis through Modulation of Bcl-2 Proteins by the Ubiquitin-Proteasome System. J. Diabetes Res. 2015, 2015, 280615. [Google Scholar] [CrossRef] [PubMed]
- Miani, M.; Barthson, J.; Colli, M.L.; Brozzi, F.; Cnop, M.; Eizirik, D.L. Endoplasmic Reticulum Stress Sensitizes Pancreatic Beta Cells to Interleukin-1β-Induced Apoptosis via Bim/A1 Imbalance. Cell Death Dis. 2013, 4, e701. [Google Scholar] [CrossRef]
- Loo, L.S.W.; Soetedjo, A.A.P.; Lau, H.H.; Ng, N.H.J.; Ghosh, S.; Nguyen, L.; Krishnan, V.G.; Choi, H.; Roca, X.; Hoon, S.; et al. BCL-xL/BCL2L1 Is a Critical Anti-Apoptotic Protein That Promotes the Survival of Differentiating Pancreatic Cells from Human Pluripotent Stem Cells. Cell Death Dis. 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Garchon, H.J.; Luan, J.J.; Eloy, L.; Bédossa, P.; Bach, J.F. Genetic Analysis of Immune Dysfunction in Non-Obese Diabetic (NOD) Mice: Mapping of a Susceptibility Locus Close to the Bcl-2 Gene Correlates with Increased Resistance of NOD T Cells to Apoptosis Induction. Eur. J. Immunol. 1994, 24, 380–384. [Google Scholar] [CrossRef]
- Brozzi, F.; Jacovetti, C.; Cosentino, C.; Menoud, V.; Wu, K.; Bayazit, M.B.; Abdulkarim, B.; Iseli, C.; Guex, N.; Guay, C.; et al. tRNA-Derived Fragments in T Lymphocyte–Beta Cell Crosstalk and in Type 1 Diabetes Pathogenesis in NOD Mice. Diabetologia 2024, 67, 2260–2274. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, P.I.; Juárez-Vicente, F.; Cobo-Vuilleumier, N.; García-Domínguez, M.; Gauthier, B.R. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes 2017, 8, 101. [Google Scholar] [CrossRef]
- Ko, J.; Fonseca, V.A.; Wu, H. Pax4 in Health and Diabetes. Int. J. Mol. Sci. 2023, 24, 8283. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Pineda, B.; Chowdhury, K.; Torres, M.; Oliver, G.; Gruss, P. The Pax4 Gene Is Essential for Differentiation of Insulin-Producing Beta Cells in the Mammalian Pancreas. Nature 1997, 386, 399–402. [Google Scholar] [CrossRef]
- Brun, T.; Franklin, I.; St-Onge, L.; Biason-Lauber, A.; Schoenle, E.J.; Wollheim, C.B.; Gauthier, B.R. The Diabetes-Linked Transcription Factor PAX4 Promotes β-Cell Proliferation and Survival in Rat and Human Islets. J. Cell Biol. 2004, 167, 1123–1135. [Google Scholar] [CrossRef]
- Mellado-Gil, J.M.; Jiménez-Moreno, C.M.; Martin-Montalvo, A.; Alvarez-Mercado, A.I.; Fuente-Martin, E.; Cobo-Vuilleumier, N.; Lorenzo, P.I.; Bru-Tari, E.; de Gracia Herrera-Gómez, I.; López-Noriega, L.; et al. PAX4 Preserves Endoplasmic Reticulum Integrity Preventing Beta Cell Degeneration in a Mouse Model of Type 1 Diabetes Mellitus. Diabetologia 2016, 59, 755–765. [Google Scholar] [CrossRef] [PubMed]
- He, K.H.; Lorenzo, P.I.; Brun, T.; Jimenez Moreno, C.M.; Aeberhard, D.; Vallejo Ortega, J.; Cornu, M.; Thorel, F.; Gjinovci, A.; Thorens, B.; et al. In Vivo Conditional Pax4 Overexpression in Mature Islet β-Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes 2011, 60, 1705–1715. [Google Scholar] [CrossRef]
- Brun, T.; Duhamel, D.L.; He, K.H.; Wollheim, C.B.; Gauthier, B.R. The Transcription Factor PAX4 Acts as a Survival Gene in INS-1E Insulinoma Cells. Oncogene 2007, 26, 4261–4271. [Google Scholar] [CrossRef] [PubMed]
- Brun, T.; He, K.H.H.; Lupi, R.; Boehm, B.; Wojtusciszyn, A.; Sauter, N.; Donath, M.; Marchetti, P.; Maedler, K.; Gauthier, B.R. The Diabetes-Linked Transcription Factor Pax4 Is Expressed in Human Pancreatic Islets and Is Activated by Mitogens and GLP-1. Hum. Mol. Genet. 2008, 17, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Cnop, M.; Welsh, N.; Jonas, J.-C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of Pancreatic Beta-Cell Death in Type 1 and Type 2 Diabetes: Many Differences, Few Similarities. Diabetes 2005, 54, S97–S107. [Google Scholar] [CrossRef]
- Gurzov, E.N.; Ortis, F.; Cunha, D.A.; Gosset, G.; Li, M.; Cardozo, A.K.; Eizirik, D.L. Signaling by IL-1beta+IFN-Gamma and ER Stress Converge on DP5/Hrk Activation: A Novel Mechanism for Pancreatic Beta-Cell Apoptosis. Cell Death Differ. 2009, 16, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.A.; Kutlu, B.; Velmurugan, K.; Kizaka-Kondoh, S.; Lee, C.E.; Wong, R.; Valentine, A.; Davidson, H.W.; Hutton, J.C.; Pugazhenthi, S. Cytokine-Mediated Induction of Anti-Apoptotic Genes That Are Linked to Nuclear Factor Kappa-B (NF-kappaB) Signalling in Human Islets and in a Mouse Beta Cell Line. Diabetologia 2009, 52, 1092–1101. [Google Scholar] [CrossRef]
- Gurzov, E.N.; Ortis, F.; Bakiri, L.; Wagner, E.F.; Eizirik, D.L. JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells. PLoS ONE 2008, 3, e3030. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Labuda, T.; Xia, Y.; Gallagher, E.; Fang, D.; Liu, Y.-C.; Karin, M. Jun Turnover Is Controlled through JNK-Dependent Phosphorylation of the E3 Ligase Itch. Science 2004, 306, 271–275. [Google Scholar] [CrossRef]
- Inoshita, S.; Takeda, K.; Hatai, T.; Terada, Y.; Sano, M.; Hata, J.; Umezawa, A.; Ichijo, H. Phosphorylation and Inactivation of Myeloid Cell Leukemia 1 by JNK in Response to Oxidative Stress. J. Biol. Chem. 2002, 277, 43730–43734. [Google Scholar] [CrossRef]
- Allagnat, F.; Cunha, D.; Moore, F.; Vanderwinden, J.M.; Eizirik, D.L.; Cardozo, A.K. Mcl-1 Downregulation by pro-Inflammatory Cytokines and Palmitate Is an Early Event Contributing to β-Cell Apoptosis. Cell Death Differ. 2011, 18, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.S.; Marroqui, L.; Grieco, F.A.; Marselli, L.; Suleiman, M.; Henz, S.R.; Marchetti, P.; Wernersson, R.; Eizirik, D.L. Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology 2017, 158, 2503–2521. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.; Naamane, N.; Colli, M.L.; Bouckenooghe, T.; Ortis, F.; Gurzov, E.N.; Igoillo-Esteve, M.; Mathieu, C.; Bontempi, G.; Thykjaer, T.; et al. STAT1 Is a Master Regulator of Pancreatic {beta}-Cell Apoptosis and Islet Inflammation. J. Biol. Chem. 2011, 286, 929–941. [Google Scholar] [CrossRef]
- Kim, H.; Rafiuddin-Shah, M.; Tu, H.-C.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.-D.; Cheng, E.H.-Y. Hierarchical Regulation of Mitochondrion-Dependent Apoptosis by BCL-2 Subfamilies. Nat. Cell Biol. 2006, 8, 1348–1358. [Google Scholar] [CrossRef]
- Stanley, W.J.; Trivedi, P.M.; Sutherland, A.P.; Thomas, H.E.; Gurzov, E.N. Differential Regulation of Pro-Inflammatory Cytokine Signalling by Protein Tyrosine Phosphatases in Pancreatic β-Cells. J. Mol. Endocrinol. 2017, 59, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Mehmeti, I.; Lenzen, S.; Lortz, S. Modulation of Bcl-2-Related Protein Expression in Pancreatic Beta Cells by pro-Inflammatory Cytokines and Its Dependence on the Antioxidative Defense Status. Mol. Cell. Endocrinol. 2011, 332, 88–96. [Google Scholar] [CrossRef]
- Sims, E.K.; Lakhter, A.J.; Anderson-Baucum, E.; Kono, T.; Tong, X.; Evans-Molina, C. MicroRNA 21 Targets BCL2 mRNA to Increase Apoptosis in Rat and Human Beta Cells. Diabetologia 2017, 60, 1057–1065. [Google Scholar] [CrossRef]
- Kharbanda, S.; Saxena, S.; Yoshida, K.; Pandey, P.; Kaneki, M.; Wang, Q.; Cheng, K.; Chen, Y.-N.; Campbell, A.; Sudha, T.; et al. Translocation of SAPK/JNK to Mitochondria and Interaction with Bcl-xL in Response to DNA Damage*. J. Biol. Chem. 2000, 275, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sinha, S.C.; Levine, B. Dual Role of JNK1-Mediated Phosphorylation of Bcl-2 in Autophagy and Apoptosis Regulation. Autophagy 2008, 4, 949–951. [Google Scholar] [CrossRef]
- Edlich, F.; Banerjee, S.; Suzuki, M.; Cleland, M.M.; Arnoult, D.; Wang, C.; Neutzner, A.; Tjandra, N.; Youle, R.J. Bcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol. Cell 2011, 145, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Federici, M.; Hribal, M.L.; Perego, L.; Ranalli, M.; Caradonna, Z.; Perego, C.; Usellini, L.; Nano, R.; Bonini, P.; Bertuzzi, F.; et al. High Glucose Causes Apoptosis in Cultured Human Pancreatic Islets of Langerhans: A Potential Role for Regulation of Specific Bcl Family Genes Toward an Apoptotic Cell Death Program. Diabetes 2001, 50, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.-O. Streptozotocin-Induced Diabetes Increases the Interaction of Bad/Bcl-XL and Decreases the Binding of pBad/14-3-3 in Rat Testis. Life Sci. 2007, 81, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, F.; Alvelos, M.I.; Marín-Cañas, S.; Castela, Â.; Demine, S.; Colli, M.L.; de Beeck, A.O.; Thomaidou, S.; Marselli, L.; Zaldumbide, A.; et al. Transcription and Splicing Regulation by NLRC5 Shape the Interferon Response in Human Pancreatic β Cells. Sci. Adv. 2022, 8, eabn5732. [Google Scholar] [CrossRef] [PubMed]
- Marroquí, L.; Masini, M.; Merino, B.; Grieco, F.A.; Millard, I.; Dubois, C.; Quesada, I.; Marchetti, P.; Cnop, M.; Eizirik, D.L. Pancreatic α Cells Are Resistant to Metabolic Stress-Induced Apoptosis in Type 2 Diabetes. eBioMedicine 2015, 2, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.A.; Redick, S.D.; Blodgett, D.M.; Richardson, S.J.; Leete, P.; Krogvold, L.; Dahl-Jørgensen, K.; Bottino, R.; Brissova, M.; Spaeth, J.M.; et al. HLA Class II Antigen Processing and Presentation Pathway Components Demonstrated by Transcriptome and Protein Analyses of Islet β-Cells From Donors with Type 1 Diabetes. Diabetes 2019, 68, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Yang, H.; Boffa, D.J.; Ding, R.; Sharma, V.K.; Lagman, M.; Li, B.; Hering, B.; Mohanakumar, T.; Lakey, J.; et al. Proapoptotic Bax Is Hyperexpressed in Isolated Human Islets Compared with Antiapoptotic Bcl-21. Transplantation 2002, 74, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Brondani, L.A.; Rech, T.H.; Boelter, G.; Bauer, A.C.; Leitão, C.B.; Eizirik, D.L.; Crispim, D. UCP2 Expression Is Increased in Pancreas From Brain-Dead Donors and Involved in Cytokine-Induced β Cells Apoptosis. Transplantation 2017, 101, e59–e67. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Ythier, D.; Brozzi, F.; Eizirik, D.L.; Thorens, B. Clic4, a Novel Protein That Sensitizes β-Cells to Apoptosis. Mol. Metab. 2015, 4, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.A.; Ladrière, L.; Ortis, F.; Igoillo-Esteve, M.; Gurzov, E.N.; Lupi, R.; Marchetti, P.; Eizirik, D.L.; Cnop, M. Glucagon-like Peptide-1 Agonists Protect Pancreatic Beta-Cells from Lipotoxic Endoplasmic Reticulum Stress through Upregulation of BiP and JunB. Diabetes 2009, 58, 2851–2862. [Google Scholar] [CrossRef] [PubMed]
- Natalicchio, A.; De Stefano, F.; Orlando, M.R.; Melchiorre, M.; Leonardini, A.; Cignarelli, A.; Labarbuta, R.; Marchetti, P.; Perrini, S.; Laviola, L.; et al. Exendin-4 Prevents c-Jun N-Terminal Protein Kinase Activation by Tumor Necrosis Factor-α (TNFα) and Inhibits TNFα-Induced Apoptosis in Insulin-Secreting Cells. Endocrinology 2010, 151, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Sato, T.; Krajewski, S.; Kochel, K.; Irie, S.; Millan, J.A.; Reed, J.C. Cloning and Functional Analysis of BAG-1: A Novel Bcl-2-Binding Protein with Anti-Cell Death Activity. Cell 1995, 80, 279–284. [Google Scholar] [CrossRef]
- Ferland, C.L.; Harris, E.P.; Lam, M.; Schrader, L.A. Facilitation of the HPA Axis to a Novel Acute Stress Following Chronic Stress Exposure Modulates Histone Acetylation and the ERK/MAPK Pathway in the Dentate Gyrus of Male Rats. Endocrinology 2014, 155, 2942–2952. [Google Scholar] [CrossRef]
- Kurek, A.; Głombik, K.; Detka, J.; Basta-Kaim, A.; Kubera, M.; Lasoń, W.; Budziszewska, B. Regulators of Glucocorticoid Receptor Function in an Animal Model of Depression and Obesity. J. Neuroendocrinol. 2018, 30, e12591. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Gao, Z.; Robert, C.E.; Greene, S.; Xu, G.; Xu, W.; Bell, E.; Campbell, D.; Zhu, Y.; Young, R.; et al. Pancreatic-Derived Factor (FAM3B), a Novel Islet Cytokine, Induces Apoptosis of Insulin-Secreting β-Cells. Diabetes 2003, 52, 2296–2303. [Google Scholar] [CrossRef]
- Yang, J.; Robert, C.E.; Burkhardt, B.R.; Young, R.A.; Wu, J.; Gao, Z.; Wolf, B.A. Mechanisms of Glucose-Induced Secretion of Pancreatic-Derived Factor (PANDER or FAM3B) in Pancreatic Beta-Cells. Diabetes 2005, 54, 3217–3228. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G.; Patel, A.; McLaughlin, M.M.; Silverman, C.; Knecht, K.; Sweitzer, S.; Li, X.; McDonnell, P.; Mirabile, R.; et al. Cloning, Expression, and Initial Characterization of a Novel Cytokine-like Gene Family. Genomics 2002, 80, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mou, H.; Li, Z.; Yao, P.; Zhuo, S.; Luan, W.; Deng, B.; Qian, L.; Yang, M.; Mei, H.; Le, Y. Knockdown of FAM3B Triggers Cell Apoptosis through P53-Dependent Pathway. Int. J. Biochem. Cell Biol. 2013, 45, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, J.; Burkhardt, B.R.; Gao, Z.; Wong, R.K.; Greene, S.R.; Wu, J.; Wolf, B.A. Effects of Overexpression of Pancreatic Derived Factor (FAM3B) in Isolated Mouse Islets and Insulin-Secreting βTC3 Cells. Am. J. Physiol.-Endocrinol. Metab. 2005, 289, E543–E550. [Google Scholar] [CrossRef] [PubMed]
- Arda, H.E.; Li, L.; Tsai, J.; Torre, E.A.; Rosli, Y.; Peiris, H.; Spitale, R.C.; Dai, C.; Gu, X.; Qu, K.; et al. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metab. 2016, 23, 909–920. [Google Scholar] [CrossRef]
- Helman, A.; Klochendler, A.; Azazmeh, N.; Gabai, Y.; Horwitz, E.; Anzi, S.; Swisa, A.; Condiotti, R.; Granit, R.Z.; Nevo, Y.; et al. P16Ink4a-Induced Senescence of Pancreatic Beta Cells Enhances Insulin Secretion. Nat. Med. 2016, 22, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, E.; Krogvold, L.; Zhitomirsky, S.; Swisa, A.; Fischman, M.; Lax, T.; Dahan, T.; Hurvitz, N.; Weinberg-Corem, N.; Klochendler, A.; et al. β-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes. Diabetes 2018, 67, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.J.; Shah, A.; Ntranos, V.; Gool, F.V.; Atkinson, M.; Bhushan, A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019, 29, 1045–1060.e10. [Google Scholar] [CrossRef]
- Rampazzo Morelli, N.; Préfontaine, C.; Pipella, J.; Thompson, P.J. Secreted GDF15 Maintains Transcriptional Responses during DNA Damage-Mediated Senescence in Human β-Cells. Am. J. Physiol.-Endocrinol. Metab. 2024, 327, E552–E562. [Google Scholar] [CrossRef] [PubMed]
- Pasula, D.J.; Shi, R.; Vanderkruk, B.; Shih, A.Z.L.; Zou, Y.; Chaudhry, A.; Hoffman, B.G.; Luciani, D.S. Bcl-xL Restricts Transcriptional, Morphological and Functional Decompensation of β-Cell Mitochondria under Chronic Glucose Excess. bioRxiv 2021, 10.25.465491. [Google Scholar] [CrossRef]
- Soria, B.; Gauthier, B.R. Dual Trade of Bcl-2 and Bcl-xL in Islet Physiology: Balancing Life and Death with Metabolism Secretion Coupling. Diabetes 2012, 62, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Bricard, O.; Haughton, J.; Björkqvist, M.; Thorstensson, M.; Luo, Z.; Mascali, L.; Pasciuto, E.; Mathieu, C.; Dooley, J.; et al. Gene Delivery of Manf to Beta-Cells of the Pancreatic Islets Protects NOD Mice from Type 1 Diabetes Development. Biomolecules 2022, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Sabatino, D.E.; Bushman, F.D.; Chandler, R.J.; Crystal, R.G.; Davidson, B.L.; Dolmetsch, R.; Eggan, K.C.; Gao, G.; Gil-Farina, I.; Kay, M.A.; et al. Evaluating the State of the Science for Adeno-Associated Virus Integration: An Integrated Perspective. Mol. Ther. 2022, 30, 2646–2663. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-Associated Virus as a Delivery Vector for Gene Therapy of Human Diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Xu, C.; Liu, J.; Chen, J.; Li, G.; Huang, B.; Pan, Y.; Zhang, Y.; Wei, Q.; et al. Circular RNA circGlis3 Protects against Islet β-Cell Dysfunction and Apoptosis in Obesity. Nat. Commun. 2023, 14, 351. [Google Scholar] [CrossRef]
- Zhong, L.; Granelli-Piperno, A.; Choi, Y.; Steinman, R.M. Recombinant Adenovirus Is an Efficient and Non-Perturbing Genetic Vector for Human Dendritic Cells. Eur. J. Immunol. 1999, 29, 964–972. [Google Scholar] [CrossRef]
- Naik, P.; Karrim, J.; Hanahan, D. The Rise and Fall of Apoptosis during Multistage Tumorigenesis: Down-Modulation Contributes to Tumor Progression from Angiogenic Progenitors. Genes Dev. 1996, 10, 2105–2116. [Google Scholar] [CrossRef] [PubMed]
- Kapturczak, M.H.; Flotte, T.; Atkinson, M.A. Adeno-Associated Virus (AAV) as a Vehicle for Therapeutic Gene Delivery Improvements in Vector Design and Viral Production Enhance Potential to Prolong Graft Survival in Pancreatic Islet Cell Transplantation for the Reversal of Type 1 Diabetes. Curr. Mol. Med. 2001, 1, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Bevacqua, R.J.; Dai, X.; Lam, J.Y.; Gu, X.; Friedlander, M.S.H.; Tellez, K.; Miguel-Escalada, I.; Bonàs-Guarch, S.; Atla, G.; Zhao, W.; et al. CRISPR-Based Genome Editing in Primary Human Pancreatic Islet Cells. Nat. Commun. 2021, 12, 2397. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Mazzucato, C.; Andle, J.; Lee, T.B.; Midha, A.; Talemal, L.; Chipashvili, V.; Hollister-Lock, J.; van Deursen, J.; Weir, G.; Bonner-Weir, S. Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019, 30, 129–142.e4. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Abarca, C.; Aguayo-Mazzucato, C. Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes Metab. J. 2023, 47, 441–453. [Google Scholar] [CrossRef]
- Rorsman, P.; Ashcroft, F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef] [PubMed]
- Brozzi, F.; Nardelli, T.R.; Lopes, M.; Millard, I.; Barthson, J.; Igoillo-Esteve, M.; Grieco, F.A.; Villate, O.; Oliveira, J.M.; Casimir, M.; et al. Cytokines Induce Endoplasmic Reticulum Stress in Human, Rat and Mouse Beta Cells via Different Mechanisms. Diabetologia 2015, 58, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Balboa, D.; Saarimäki-Vire, J.; Otonkoski, T. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology. Stem Cells 2019, 37, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Blanchi, B.; Taurand, M.; Colace, C.; Thomaidou, S.; Audeoud, C.; Fantuzzi, F.; Sawatani, T.; Gheibi, S.; Sabadell-Basallote, J.; Boot, F.W.J.; et al. EndoC-βH5 Cells Are Storable and Ready-to-Use Human Pancreatic Beta Cells with Physiological Insulin Secretion. Mol. Metab. 2023, 76, 101772. [Google Scholar] [CrossRef]
- Marasco, M.R.; Linnemann, A.K. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018, 159, 2127–2141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Serna, A.A.; Guzman-Llorens, D.; Dos Santos, R.S.; Marroqui, L. Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function. Biomedicines 2025, 13, 223. https://doi.org/10.3390/biomedicines13010223
Perez-Serna AA, Guzman-Llorens D, Dos Santos RS, Marroqui L. Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function. Biomedicines. 2025; 13(1):223. https://doi.org/10.3390/biomedicines13010223
Chicago/Turabian StylePerez-Serna, Atenea A., Daniel Guzman-Llorens, Reinaldo S. Dos Santos, and Laura Marroqui. 2025. "Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function" Biomedicines 13, no. 1: 223. https://doi.org/10.3390/biomedicines13010223
APA StylePerez-Serna, A. A., Guzman-Llorens, D., Dos Santos, R. S., & Marroqui, L. (2025). Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function. Biomedicines, 13(1), 223. https://doi.org/10.3390/biomedicines13010223