MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions
Abstract
:1. Introduction
2. Current Predictive Methods for AF Recurrence Post-Ablation
3. Methods
4. Results
4.1. MicroRNAs Involved in Atrial Remodeling and Fibrosis
4.2. MicroRNAs Involved in Inflammation and Oxidative Stress
4.3. MicroRNAs Related to Electrical Remodeling
4.4. Novel MicroRNAs Associated with AF Recurrence After Catheter Ablation
5. Clinical Implications
6. Discussion
7. Limitations and Future Perspectives
- Large-scale, multicentric studies have to be conducted to confirm the prognostic value of many promising miRNAs and to determine the most powerful biomarkers in various populations. Most of the studies reviewed in the current analysis were performed with relatively small sample sizes, thus limiting their generalizability. In most instances, the choice of these sample sizes was based on the particular study contexts, available resources, and preliminary data that may be inadequate to provide the power needed to detect smaller but clinically significant effects. This limitation underlines the need for larger, more definitive studies to confirm these initial findings.
- Standardization of miRNA measurement methods is necessary for the comparability of studies. This includes the harmonization of sample collection, processing, and analytical methodologies.
- The different statistical tests applied in most of the studies were selected according to the distribution of data and the analytical objectives, which may affect the reproducibility and comparability of the results. It is thus crucial that future studies ensure that a clear rationale is fully elaborated for the statistical methods chosen. The type of statistical test used by each study should be theoretically justified in light of the data nature, tested hypotheses, and study design. This would increase methodological transparency, with statistical approaches being more appropriate and reproducible. However, different statistical methods can introduce variability in sensitivity and data handling, which are significant limitations that should be acknowledged. The current variability in statistical methods across studies complicates the reproducibility of findings and makes it difficult to draw definitive conclusions across studies. The lack of such harmonization makes the comparison of the results from different studies and the identification of clinically relevant cut-off values difficult to achieve.
- Longitudinal studies that entail multiple time points are necessary for describing how miRNA levels vary over time and how these changes are related to long-term risk in AF recurrence. Most have focused on either preablation miRNA levels or short-term post-ablation changes, whereas long-term dynamics of miRNA expression in the context of AF recurrence remain poorly understood. Future studies should investigate comprehensive risk-prediction models combining miRNA levels with traditional clinical risk factors. This could potentially lead to a further improvement of AF recurrence prediction accuracy and help guide personalized treatment strategies for patients undergoing catheter ablation. While many studies have demonstrated links between miRNAs and AF recurrence, mechanisms are usually not well understood. Further mechanistic in vitro and in vivo studies are warranted to clearly explain how these miRNAs affect the pathophysiology of atrial fibrillation. This could include studies on target genes of these miRNAs and their roles in atrial remodeling and arrhythmogenesis. The potential of miRNAs as therapeutic targets for preventing AF recurrence should be explored. This could include studies on miRNA mimics or inhibitors in animal models of atrial fibrillation. If successful, such approaches could lead to new therapies for preventing AF recurrence after catheter ablation. Finally, most studies have focused on known miRNAs. Thus, few unbiased approaches, like next-generation sequencing, may identify new miRNAs related to AF recurrence and lead to the discovery of new biomarkers and therapeutic targets. In conclusion, while miRNAs show much promise as prognostic biomarkers for atrial fibrillation recurrence post-catheter ablation, considerable work is yet to be performed before translation into clinical practice.
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Virk, S.; Kalman, J.M. Early postablation atrial fibrillation recurrence: Time to blank the blanking period? Heart Rhythm 2024, 21, 538–539. [Google Scholar] [CrossRef]
- Zink, M.D.; Chua, W.; Zeemering, S.; di Biase, L.; de Luna Antoni, B.; David, C.; Hindricks, G.; Haeusler, K.G.; Al-Khalidi, H.R.; Piccini, J.P.; et al. Predictors of recurrence of atrial fibrillation within the first 3 months after ablation. Europace 2020, 22, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Mujović, N.; Marinković, M.; Marković, N.; Shantsila, A.; Lip, G.Y.H.; Potpara, T.S. Prediction of very late arrhythmia recurrence after radiofrequency catheter ablation of atrial fibrillation: The MB-LATER clinical score. Sci. Rep. 2017, 7, srep40828. [Google Scholar] [CrossRef]
- Van den Berg, N.W.E.; Kawasaki, M.; Berger, W.R.; Neefs, J.; Meulendijks, E.; Tijsen, A.J.; De Groot, J.R. MicroRNAs in Atrial Fibrillation: From Expression Signatures to Functional Implications. Cardiovasc. Drugs Ther. 2017, 31, 345–365. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.M.G.; de Araújo, J.N.G.; de Freitas, R.C.C.; Silbiger, V.N. Circulating MicroRNAs as Potential Biomarkers of Atrial Fibrillation. Biomed. Res. Int. 2017, 2017, 7804763. [Google Scholar] [CrossRef]
- Shen, N.-N.; Zhang, Z.-L.; Li, Z.; Zhang, C.; Li, H.; Wang, J.-L.; Wang, J.; Gu, Z.-C. Identification of microRNA biomarkers in atrial fibrillation: A protocol for systematic review and bioinformatics analysis. Medicine 2019, 98, e16538. [Google Scholar] [CrossRef] [PubMed]
- Vardas, E.P.; Theofilis, P.; Oikonomou, E.; Vardas, P.E.; Tousoulis, D. MicroRNAs in Atrial Fibrillation: Mechanisms, Vascular Implications, and Therapeutic Potential. Biomedicines 2024, 12, 811. [Google Scholar] [CrossRef] [PubMed]
- Boxhammer, E.; Dienhart, C.; Rezar, R.; Hoppe, U.C.; Lichtenauer, M. Deciphering the Role of microRNAs: Unveiling Clinical Biomarkers and Therapeutic Avenues in Atrial Fibrillation and Associated Stroke—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 5568. [Google Scholar] [CrossRef] [PubMed]
- Komal, S.; Yin, J.-J.; Wang, S.-H.; Huang, C.-Z.; Tao, H.-L.; Dong, J.-Z.; Han, S.-N.; Zhang, L.-R. MicroRNAs: Emerging biomarkers for atrial fibrillation. J. Cardiol. 2019, 74, 475–482. [Google Scholar] [CrossRef]
- Orenes-Piñero, E.; Quintana-Giner, M.; Romero-Aniorte, A.I.; Valdés, M.; Marín, F. Novel biomarkers in cardiology: MicroRNAs in atrial fibrillation. Arch. Cardiol. Mex. 2015, 85, 225–229. [Google Scholar] [CrossRef]
- Das, K.; Rao, L.V.M. The Role of microRNAs in Inflammation. Int. J. Mol. Sci. 2022, 23, 15479. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, Y.; Sha, R.; Liu, H.; Liu, A.; Maduray, K.; Ge, J.; Ma, C.; Zhong, J. A prediction model of atrial fibrillation recurrence after first catheter ablation by a nomogram: HASBLP score. Front. Cardiovasc. Med. 2022, 9, 934664. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Hindricks, G.; Kosiuk, J.; Arya, A.; Sommer, P.; Husser, D.; Rolf, S.; Richter, S.; Huo, Y.; Piorkowski, C.; et al. Comparison of CHADS2, R2CHADS2, and CHA2DS2-VASc scores for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation: The Leipzig Heart Center AF Ablation Registry. Circ. Arrhythm. Electrophysiol. 2014, 7, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Schumacher, K.; Zeynalova, S.; Sommer, P.; Arya, A.; Weiß, M.; Piorkowski, C.; Husser, D.; Bollmann, A.; Lip, G.Y.H.; et al. Time-dependent prediction of arrhythmia recurrences during long-term follow-up in patients undergoing catheter ablation of atrial fibrillation: The Leipzig Heart Center AF Ablation Registry. Sci. Rep. 2019, 9, 7112. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Hindricks, G.; Shoemaker, M.B.; Husser, D.; Arya, A.; Sommer, P.; Rolf, S.; Saavedra, P.; Kanagasundram, A.; Whalen, S.P.; et al. The APPLE score: A novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation. Clin. Res. Cardiol. 2015, 104, 871–876. [Google Scholar] [CrossRef]
- Winkle, R.A.; Jarman, J.W.; Mead, R.H.; Engel, G.; Kong, M.H.; Fleming, W.; Patrawala, R.A. Predicting atrial fibrillation ablation outcome: The CAAP-AF score. Heart Rhythm 2016, 13, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, J.; Ferreira, A.M.; Cavaco, D.; Costa, F.M.; Carmo, P.; Marques, H.; Morgado, F.; Mendes, M.; Adragão, P. Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure—ATLAS score. Europace 2018, 20, f428–f435. [Google Scholar] [CrossRef]
- Black-Maier, E.; Parish, A.; Steinberg, B.A.; Green, C.L.; Loring, Z.; Barnett, A.S.; Al-Khatib, S.M.; Atwater, B.D.; Daubert, J.P.; Frazier-Mills, C.; et al. Predicting atrial fibrillation recurrence after ablation in patients with heart failure: Validity of the APPLE and CAAP-AF risk scoring systems. Pacing Clin. Electrophysiol. 2019, 42, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Suenari, K.; Chao, T.-F.; Liu, C.-J.; Kihara, Y.; Chen, T.-J.; Chen, S.-A. Usefulness of HATCH score in the prediction of new-onset atrial fibrillation for Asians. Medicine 2017, 96, e5597. [Google Scholar] [CrossRef]
- Barrett, T.W.; Self, W.H.; Wasserman, B.S.; McNaughton, C.D.; Darbar, D. Evaluating the Hatch Score for Predicting Progression to Sustained Atrial Fibrillation in ED Patients with New Atrial Fibrillation. Am. J. Emerg. Med. 2013, 31, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, Z.-Z.; Zhang, G.-G.; Guo, S.-D.; Rivera-Caravaca, J.M.; Wang, Y.-L.; Jin, Y.-Y.; Liu, Y. Validating scores predicting atrial fibrillation recurrence post catheter ablation in patients with concurrent atrial fibrillation and pulmonary diseases. Ann. Palliat. Med. 2021, 10, 4299–4307. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, K.; Dittrich, S.; Scheurlen, C.; Arica, Z.; Erlhoefer, S.; Woermann, J.; Van Den Bruck, J.H.; Sultan, A.; Steven, D.; Lueker, J. Validation of seven risk scores in an independent cohort: The challenge of predicting recurrence after atrial fibrillation ablation. Int. J. Arrhythmia 2022, 23, 29. [Google Scholar]
- Canpolat, U.; Aytemir, K.; Yorgun, H.; Şahiner, L.; Kaya, E.B.; Oto, A. A proposal for a new scoring system in the prediction of catheter ablation outcomes: Promising results from the Turkish Cryoablation Registry. Int. J. Cardiol. 2013, 169, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Dretzke, J.; Chuchu, N.; Agarwal, R.; Herd, C.; Chua, W.; Fabritz, L.; Bayliss, S.; Kotecha, D.; Deeks, J.J.; Kirchhof, P.; et al. Predicting recurrent atrial fibrillation after catheter ablation: A systematic review of prognostic models. EP Eur. 2020, 22, 748–760. [Google Scholar] [CrossRef]
- Saglietto, A.; Gaita, F.; Blomstrom-Lundqvist, C.; Arbelo, E.; Dagres, N.; Brugada, J.; Maggioni, A.P.; Tavazzi, L.; Kautzner, J.; De Ferrari, G.M.; et al. AFA-Recur: An ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation. EP Eur. 2022, 25, 92–100. [Google Scholar] [CrossRef]
- Mo, D.; Wang, M.; Zhang, P.; Dai, H.; Guan, J. Factors predicting the recurrence of atrial fibrillation after catheter ablation: A review. Heliyon 2024, 10, e34205. [Google Scholar] [CrossRef]
- Pradhan, K.; Niehues, P.; Neupane, B.; Maleck, C.; Sharif-Yakan, A.; Emrani, M.; Zink, M.D.; Napp, A.; Marx, N.; Gramlich, M. MicroRNA-21 mediated cross-talk between cardiomyocytes and fibroblasts in patients with atrial fibrillation. Front. Cardiovasc. Med. 2023, 10, 1056134. [Google Scholar] [CrossRef]
- Zhou, Q.; Maleck, C.; von Ungern-Sternberg, S.N.; Neupane, B.; Heinzmann, D.; Marquardt, J.; Duckheim, M.; Scheckenbach, C.; Stimpfle, F.; Gawaz, M.; et al. Circulating MicroRNA-21 Correlates with Left Atrial Low-Voltage Areas and Is Associated with Procedure Outcome in Patients Undergoing Atrial Fibrillation Ablation. Circ. Arrhythmia Electrophysiol. 2018, 11, e006242. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Peng, C.; Liu, Y.; Bi, Z.; Lu, G.; Hao, S.; Tong, Y.; Zhang, G. Predictive Value of Serum microRNA-29b-3p in Recurrence of Atrial Fibrillation After Radiofrequency Catheter Ablation. Clin. Interv. Aging 2024, 19, 715–725. [Google Scholar] [CrossRef]
- Duisters, R.F.; Tijsen, A.J.; Schroen, B.; Leenders, J.J.; Lentink, V.; van der Made, I.; Herias, V.; van Leeuwen, R.E.; Schellings, M.W.; Barenbrug, P.; et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 2009, 104, 170–178, 6p following 178. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Li, S.; Yu, B. Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines. Mol. Med. Rep. 2012, 5, 1457–1460. [Google Scholar] [CrossRef]
- Dai, M.; Jiang, T.; Luo, C.-D.; Du, W.; Wang, M.; Qiu, Q.-Y.; Wang, H. Radiofrequency ablation reduces expression of SELF by upregulating the expression of microRNA-26a/b in the treatment of atrial fibrillation. J. Interv. Card. Electrophysiol. 2022, 65, 663–673. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.D.; Tanriverdi, K.; Lin, H.; Esa, N.; Kinno, M.; Mandapati, D.; Tam, S.; Okike, O.N.; Ellinor, P.T.; Keaney, J.F., Jr.; et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm 2015, 12, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Vaze, A.; Donahue, K.; Spring, M.; Sardana, M.; Tanriverdi, K.; Freedman, J.E.; Keaney, J.F.; Benjamin, E.J.; Lubitz MPH, S.A.; Rosenthal, L.; et al. Plasma MicroRNAs Relate to Atrial Fibrillation Recurrence after Catheter Ablation: Longitudinal Findings from the MiRhythm Study. J. Clin. Exp. Cardiolog 2017, 8, 502. [Google Scholar] [CrossRef]
- Wang, M.; Sun, L.; Ding, W.; Cai, S.; Zhao, Q. Ablation alleviates atrial fibrillation by regulating the signaling pathways of endothelial nitric oxide synthase/nitric oxide via miR-155-5p and miR-24-3p. J. Cell Biochem. 2019, 120, 4451–4462. [Google Scholar] [CrossRef]
- Liau, N.P.D.; Laktyushin, A.; Lucet, I.S.; Murphy, J.M.; Yao, S.; Whitlock, E.; Callaghan, K.; Nicola, N.A.; Kershaw, N.J.; Babon, J.J. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 2018, 9, 1558. [Google Scholar] [CrossRef]
- Jia, X.; Zheng, S.; Xie, X.; Zhang, Y.; Wang, W.; Wang, Z.; Zhang, Y.; Wang, J.; Gao, M.; Hou, Y. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: An atrial tachypacing rabbit model. PLoS ONE 2013, 8, e85639. [Google Scholar] [CrossRef]
- Huang, H.; Chen, H.; Liang, X.; Chen, X.; Chen, X.; Chen, C. Upregulated miR-328-3p and its high risk in atrial fibrillation: A systematic review and meta-analysis with meta-regression. Medicine 2022, 101, e28980. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Wang, N.; Pan, Z.; Gao, X.; Zhang, F.; Zhang, Y.; Shan, H.; Luo, X.; Bai, Y.; et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 2010, 122, 2378–2387. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Meng, H.; Chen, G.; Ma, Y.; Li, J.; Liu, S.; Liang, Z.; Xie, Y.; Liu, Y.; et al. Identification of miR-1 and miR-499 in chronic atrial fibrillation by bioinformatics analysis and experimental validation. Front. Cardiovasc. Med. 2024, 11, 1400643. [Google Scholar] [CrossRef] [PubMed]
- Lage, R.; Cebro-Márquez, M.; Vilar-Sánchez, M.E.; González-Melchor, L.; García-Seara, J.; Martínez-Sande, J.L.; Fernández-López, X.A.; Aragón-Herrera, A.; Martínez-Monzonís, M.A.; González-Juanatey, J.R.; et al. Circulating miR-451a Expression May Predict Recurrence in Atrial Fibrillation Patients after Catheter Pulmonary Vein Ablation. Cells 2023, 12, 638. [Google Scholar] [CrossRef]
- Harada, M.; Okuzaki, D.; Yamauchi, A.; Ishikawa, S.; Nomura, Y.; Nishimura, A.; Motoike, Y.; Koshikawa, M.; Hitachi, K.; Tsuchida, K.; et al. Circulating miR-20b-5p and miR-330-3p are novel biomarkers for progression of atrial fibrillation: Intracardiac/extracardiac plasma sample analysis by small RNA sequencing. PLoS ONE 2023, 18, e0283942. [Google Scholar] [CrossRef]
- Liu, T.; Zhong, S.; Rao, F.; Xue, Y.; Qi, Z.; Wu, S. Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace 2016, 18, 92–99. [Google Scholar] [CrossRef]
- Shen, X.-B.; Zhang, S.-H.; Li, H.-Y.; Chi, X.-D.; Jiang, L.; Huang, Q.-L.; Xu, S.-H. Rs12976445 Polymorphism Is Associated with Post-Ablation Recurrence of Atrial Fibrillation by Modulating the Expression of MicroRNA-125a and Interleukin-6R. Med. Sci. Monit. 2018, 24, 6349–6358. [Google Scholar] [CrossRef] [PubMed]
- Sieweke, J.-T.; Pfeffer, T.J.; Biber, S.; Chatterjee, S.; Weissenborn, K.; Grosse, G.M.; Hagemus, J.; Derda, A.A.; Berliner, D.; Lichtinghagen, R.; et al. miR-21 and NT-proBNP Correlate with Echocardiographic Parameters of Atrial Dysfunction and Predict Atrial Fibrillation. J. Clin. Med. 2020, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
Score Name | Components |
---|---|
APPLE | Age, persistent AF, impaired eGFR, LA diameter ≥ 43 mm, EF < 50% |
CAAP-AF | Coronary artery disease, LA diameter, age, persistent/long-standing AF, number of antiarrhythmic drugs failed, female sex |
BASE-AF2 | BMI > 28 kg/m2, atrial dilatation > 40 mm, current smoking, early AF recurrence, AF duration > 6 years, non-paroxysmal AF |
MB-LATER | Male sex, bundle branch block, left atrial diameter ≥ 47 mm, type of AF (persistent), early recurrence |
HATCH | Hypertension, age > 75 years, stroke/TIA, chronic obstructive pulmonary disease, heart failure |
C2HEST | CAD/COPD (1 point each), hypertension, elderly (age ≥ 75), systolic heart failure, thyroid disease |
CHADS2 | Congestive heart failure, hypertension, age ≥ 75, diabetes, prior stroke/TIA |
CHA2DS2-VASc | Congestive heart failure, hypertension, age ≥ 75, diabetes, prior stroke/TIA, vascular disease, age 65–74, sex category (female) |
DR-FLASH | Diabetes mellitus, renal dysfunction, persistent AF type, LA diameter > 45 mm, age > 65 years, female sex, hypertension |
ATLAS | Age, type of AF (paroxysmal, persistent, long-standing persistent), left atrial diameter, antiarrhythmic drugs failed, female sex |
HASBLP | AF history, age, snoring, BMI, LA diameter, persistent AF |
AFA-Recur | Machine-learning-based model using 19 pre-procedural clinical variables |
MicroRNA | Expression in AF | Change After Ablation | Association with Recurrence |
---|---|---|---|
miR-21 | Upregulated | Decreased in responders | Higher levels associated with recurrence |
miR-150 | Downregulated | Increased in responders | Lower pre-ablation levels associated with recurrence |
miR-26a/b | Downregulated | Increased | Lower levels associated with recurrence |
miR-328 | Upregulated | Decreased | Higher levels associated with recurrence |
miR-409-3p | Downregulated | Increased in responders | Lower levels associated with recurrence |
miR-432 | Downregulated | Increased in responders | Lower levels associated with recurrence |
miR-483 | Unclear | Unclear | Potentially associated with recurrence (needs validation) |
miR-125a | Upregulated | Decreased | Higher levels associated with recurrence |
miR-206 | Upregulated | Unclear | Higher levels associated with early recurrence |
miR-10b | Upregulated | Unclear | Higher levels associated with recurrence |
miR-601 | Upregulated | Unclear | Higher levels associated with recurrence |
miR-30a-3p | Upregulated | Unclear | Higher levels associated with recurrence |
miR-199b | Upregulated | Unclear | Higher levels associated with recurrence |
miR-29b-3p | Unclear | Unclear | Correlated with left atrial diameter and recurrence |
miR-155-5p | Upregulated | Decreased | Higher levels associated with recurrence |
miR-24-3p | Upregulated | Decreased | Higher levels associated with recurrence |
miR-451a | Upregulated | Unclear | Higher levels associated with early recurrence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardas, E.P.; Oikonomou, E.; Vardas, P.E.; Tousoulis, D. MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions. Biomedicines 2025, 13, 32. https://doi.org/10.3390/biomedicines13010032
Vardas EP, Oikonomou E, Vardas PE, Tousoulis D. MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions. Biomedicines. 2025; 13(1):32. https://doi.org/10.3390/biomedicines13010032
Chicago/Turabian StyleVardas, Emmanouil P., Evangelos Oikonomou, Panos E. Vardas, and Dimitris Tousoulis. 2025. "MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions" Biomedicines 13, no. 1: 32. https://doi.org/10.3390/biomedicines13010032
APA StyleVardas, E. P., Oikonomou, E., Vardas, P. E., & Tousoulis, D. (2025). MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions. Biomedicines, 13(1), 32. https://doi.org/10.3390/biomedicines13010032