Deep Learning-Based Drug Compounds Discovery for Gynecomastia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Text Mining
2.2. Biological Process and Pathway Analysis
2.3. Protein–Protein Interaction Network
2.4. Drug-Gene Interactions
2.5. DeepPurpose
2.6. Statistical Analysis
3. Results
3.1. Results of Text Mining, Biological Process and Pathway Analysis
3.2. Results of Protein–Protein Interaction
3.3. Results of Drug–Gene Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braunstein, G.D. Clinical practice. Gynecomastia. N. Engl. J. Med. 2007, 357, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Cuhaci, N.; Evranos, B.; Ersoy, R.; Cakir, B.; Sb, P. Gynecomastia: Clinical evaluation and management. Indian J. Endocrinol. Metab. 2014, 18, 150–158. [Google Scholar] [CrossRef]
- Johnson, R.E.; Kermott, C.A.; Murad, M.H. Gynecomastia-evaluation and current treatment options. Ther. Clin. Risk Manag. 2011, 7, 145–148. [Google Scholar] [PubMed]
- Ayyavoo, A. Gynecomastia. Indian J. Pediatr. 2023, 90, 1013–1017. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Israël-Hoevelaken, B.T.P.M.; Wubben, E.F.M.; Bos, H.L.; Wijffels, R.H.; Omta, O.S.W.F. How to improve the process of forming biobased R&D collaborations. Biofuels Bioprod. Biorefining-Biofpr 2020, 14, 905–923. [Google Scholar]
- Chen, Z.; Yuan, T.; Yan, F.; Ye, S.; Xie, Q.; Zhang, B.; Lin, N.; He, Q.; Yang, B. CT-707 overcomes hypoxia-mediated sorafenib resistance in Hepatocellular carcinoma by inhibiting YAP signaling. BMC Cancer 2022, 22, 425. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.B.; Samanta, S.; Swainston, N. Deep learning and generative methods in cheminformatics and chemical biology: Navigating small molecule space intelligently. Biochem. J. 2020, 477, 4559–4580. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, S.J.; Koeller, K.M.; Wong, J.C.; Butcher, R.A.; Schreiber, S.L. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 2003, 10, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: Predicting drug-target binding affinity with graph neural networks. Bioinformatics 2021, 37, 1140–1147. [Google Scholar] [CrossRef]
- Karger, E.; Kureljusic, M. Using Artificial Intelligence for Drug Discovery: A Bibliometric Study and Future Research Agenda. Pharmaceuticals 2022, 15, 1492. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Fu, T.; Glass, L.M.; Zitnik, M.; Xiao, C.; Sun, J. DeepPurpose: A deep learning library for drug-target interaction prediction. Bioinformatics 2021, 36, 5545–5547. [Google Scholar] [CrossRef] [PubMed]
- Baran, J.; Gerner, M.; Haeussler, M.; Nenadic, G.; Bergman, C.M. pubmed2ensembl: A resource for mining the biological literature on genes. PLoS ONE 2011, 6, e24716. [Google Scholar] [CrossRef]
- Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M.; Pascual-Montano, A. GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007, 8, R3. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinform. 2014, 47, 8–13. [Google Scholar] [CrossRef]
- Jardim, D.L.; Groves, E.S.; Breitfeld, P.P.; Kurzrock, R. Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treat Rev. 2017, 52, 12–21. [Google Scholar] [CrossRef]
- Mieritz, M.G.; Rakêt, L.L.; Hagen, C.P.; Nielsen, J.E.; Talman, M.-L.M.; Petersen, J.H.; Sommer, S.H.; Main, K.M.; Jørgensen, N.; Juul, A. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia. J. Clin. Endocrinol. Metab. 2015, 100, 3752–3759. [Google Scholar] [CrossRef] [PubMed]
- Mieritz, M.G.; Sorensen, K.; Aksglaede, L.; Mouritsen, A.; Hagen, C.P.; Hilsted, L.; Andersson, A.-M.; Juul, A. Elevated serum levels of free triiodothyronine in adolescent boys with gynaecomastia compared with controls. Eur. J. Endocrinol. 2014, 171, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Zhao, Q.; Zhang, L.; Wang, H.; Huang, D.; Hu, P.; Sun, Y.; Shi, Y. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: A multicenter, open-label, first-in-human phase 1 study. BMC Med. 2022, 20, 453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, D.-D.; Yuan, T.; Yan, F.-J.; Zeng, C.-M.; Dai, X.-Y.; Chen, Z.-B.; Chen, Y.; Zhou, T.; Fan, G.-H.; et al. Multikinase Inhibitor CT-707 Targets Liver Cancer by Interrupting the Hypoxia-Activated IGF-1R-YAP Axis. Cancer Res. 2018, 78, 3995–4006. [Google Scholar] [CrossRef]
- Singh, V.P.; Das, L.; Kumar, P.; Bal, A.; Gaba, S.; Tripathy, S.; Dutta, P. The role of steroid receptors, peptides and growth factors in the aetiopathogenesis of idiopathic gynecomastia. Andrologia 2022, 54, e14414. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.; Kirma, N.; Tekmal, R.R. Overexpression of aromatase in transgenic male mice results in the induction of gynecomastia and other biochemical changes in mammary glands. J. Steroid Biochem. Mol. Biol. 2001, 77, 13–18. [Google Scholar] [CrossRef]
- Sansone, A.; Romanelli, F.; Sansone, M.; Lenzi, A.; Di Luigi, L. Gynecomastia and hormones. Endocrine 2017, 55, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.T.; De Sanctis, V.; Yassin, M. Management of Adolescent Gynecomastia: An Update. Acta Biomed. 2017, 88, 204–213. [Google Scholar]
- Lindberg, I.; Fricker, L.D. Obesity, POMC, and POMC-processing Enzymes: Surprising Results from Animal Models. Endocrinology 2021, 162, bqab155. [Google Scholar] [CrossRef] [PubMed]
- Millington GW, M.; Palmer, H.E. Proopiomelanocortin, POMC and psychodermatology. Skin Health Dis. 2023, 3, e201. [Google Scholar] [CrossRef]
- Stárka, L.; Hill, M.; Pospíšilová, H.; Dušková, M. Estradiol, obesity and hypogonadism. Physiol. Res. 2020, 69 (Suppl. S2), S273–S278. [Google Scholar] [CrossRef]
- Fassan, M.; Baffa, R.; Palazzo, J.P.; Lloyd, J.; Crosariol, M.; Liu, C.-G.; Volinia, S.; Alder, H.; Rugge, M.; Croce, C.M.; et al. MicroRNA expression profiling of male breast cancer. Breast Cancer Res. 2009, 11, R58. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, R.; De Matteis, S.; Carloni, S.; Bruno, S.; Abbati, G.; Capelli, L.; Ghetti, M.; Bochicchio, M.T.; Liverani, C.; Mercatali, L.; et al. Kevetrin induces apoptosis in TP53 wild-type and mutant acute myeloid leukemia cells. Oncol. Rep. 2020, 44, 1561–1573. [Google Scholar] [CrossRef]
- Kornegoor, R.; Verschuur-Maes, A.H.; Buerger, H.; van Diest, P.J. The 3-layered ductal epithelium in gynecomastia. Am. J. Surg. Pathol. 2012, 36, 762–768. [Google Scholar] [CrossRef]
Description | Number of Genes | Corrected Hypergeometric p Value | Genes |
---|---|---|---|
signal transduction | 40 | 3.67 × 10−23 | FPR1, LALBA, CD4, TRH, NGFR, GPR182, PDGFRB, PRL, HMGA2, etc. |
positive regulation of cell population proliferation | 26 | 1.98 × 10−21 | MECP2, TGFB1, IL2, PDGFRB, PRL, FGF9, CGA, AR, EPO, ERBB2, etc. |
cell–cell signaling | 20 | 4.01 × 10−21 | LALBA, TRH, IL2, FGF9, PTH, XCL1, GNRH1, AR, FGFR3, CGB8, etc. |
steroid biosynthetic process | 14 | 1.90 × 10−20 | CYP1A1, CYP11B2, HSD17B7, CYP19A1, CYP17A1, SRD5A1, etc. |
steroid metabolic process | 15 | 4.82 × 10−18 | APOA1, CYP1A1, CYP11B2, CYP17A1, SRD5A1, CYP21A2, CYP3A4, etc. |
negative regulation of apoptotic process | 23 | 4.90 × 10−18 | IL2, NGFR, PDGFRB, HMGA2, GNRH1, TP53, EPO, MGMT, BCL2, etc. |
response to estradiol | 14 | 4.24 × 10−17 | TGFB1, PDGFRB, CYP19A1, GH1, SRD5A1, ASS1, NCOA1, PCNA, etc. |
response to drug | 18 | 1.69 × 10−16 | APOA1, CYP1A1, ABCC6, PTH, SRD5A1, ASS1, TP53, MGMT, etc. |
positive regulation of gene expression | 21 | 4.15 × 10−16 | TGFB1, PLAG1, HMGA2, FGF9, CD34, BRCA1, AR, SRY, TP53, VIM, etc. |
aging | 15 | 5.35 × 10−16 | CYP1A1, MME, PDGFRB, IGFBP1, GNRH1, ASS1, EPO, GJB2, etc. |
Description | Numbers of Genes | Genes |
---|---|---|
PI3K-Akt signaling pathway | 22 | IL2, NGFR, PDFRB, PRL, FGF9, GH1, STK11, BRCA1, TP53, EPO, ERBB2, FGFR3, KIT, BCL2, VWF, FASLG, etc. |
Steroid hormone biosynthesis | 13 | CYP1A1, CYP11B2, HSD17B7, CYP19A1, CYP17A1, SRD5A1, CYP21A2, HSD17B1, CYP3A4, HSD3B1, etc. |
Neuroactive ligand–receptor interaction | 17 | FPR1, TRH, PRL, GH1, PTH, CGA, GNRH1, NTS, GRP, AVP, LEP, SST, POMC, CRH, GHR, PRLR, CALCA |
Metabolic pathways, steroid hormone biosynthesis | 11 | CYP1A1, CYP11B2, HSD17B7, CYP19A1, CYP17A1, CYP21A2, HSD17B1, CYP3A4, HSD3B1, HSD11B1, HSD17B3 |
Pathways in cancer | 20 | TGFB1, MAX, IL2, PDFRB, FGF9, NCOA1, AR, TP53, EPO, ERBB2, ARHGEF1, FGFR3, KIT, BCL2, BRCA2, etc. |
MAPK signaling pathway | 16 | TGFB1, MAX, NGFR, PDFRB, FGF9, TP53, ERBB2, FGFR3, KIT, FASLG, FLNB, FLNA, FAS, etc. |
Cytokine–cytokine receptor interaction | 14 | TGFB1, CD4, IL2, NGFR, PRL, GH1, XCL1, EPO, FASLG, LEP, FAS, NODAL, GHR, PRLR |
Pathways in cancer, MAPK signaling pathway | 12 | TGFB1, MAX, PDFRB, FGF9, TP53, ERBB2, FGFR3, KIT, FASLG, FAS, IGF1, VEGFA |
PI3K-Akt signaling pathway, MAPK signaling pathway | 11 | NGFR, PDFRB, FGF9, TP53, ERBB2, FGFR3, KIT, FASLG, IGF1, VEGFA, NR4A1 |
Pathways in cancer, PI3K-Akt signaling pathway | 12 | IL2, PDFRB, FGF9, TP53, EPO, ERBB2, FGFR3, KIT, BCL2, FASLG, IGF1, VEGFA |
Drug Name | Target Gene | Specific Target |
---|---|---|
conteltinib | IGF1 | insulin like growth factor 1 |
pirfenidone, GNI | TGFB1 | transforming growth factor, beta 1 |
pirfenidone, gel, CellPharma | TGFB1 | transforming growth factor, beta 1 |
pirfenidone, extended release, CellPharma | TGFB1 | transforming growth factor, beta 1 |
yifenidone, HEC Pharm | TGFB1 | transforming growth factor, beta 1 |
timbetasin | TGFB1 | transforming growth factor, beta 1 |
tranilast | TGFB1 | transforming growth factor, beta 1 |
vosilasarm | AR | Androgen receptor |
testosterone | AR | Androgen receptor |
cortexolone | AR | Androgen receptor |
CLAR-121 | AR | Androgen receptor |
dimethylcurcumin | AR | Androgen receptor |
FT-7051 | AR | Androgen receptor |
letrozole | CYP19A1 | Cytochrome P450 Family 19 Subfamily A Member 1 |
CLAR-121 | CYP19A1 | Proopiomelanocortin |
bremelanotide | POMC | Proopiomelanocortin |
catequentinib | VEGFA | Vascular Endothelial Growth Factor A |
vorolanib | VEGFA | Vascular Endothelial Growth Factor A |
FN-1501 | VEGFA | Vascular Endothelial Growth Factor A |
fenretinide | VEGFA | Vascular Endothelial Growth Factor A |
CBL-0137 | TP53 | TP53 |
kevetrin | TP53 | TP53 |
Gene | DeepDTA_DAVIS | Morgan_CNN_DAVIS | MPNN_CNN_DAVIS | Daylight_AAC_DAVIS | Morgan_AAC_DAVIS | CNN_CNN_BindingDB | Morgan_CNN_BindingDB | MPNN_CNN_BindingDB | Transformer_CNN_BindingDB | Daylight_AAC_BindingDB | Morgan_AAC_BindingDB | Morgan_CNN_KIBA | MPNN_CNN_KIBA | Daylight_AAC_KIBA | Morgan_AAC_KIBA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IGF1 | 5.2 | 5.6 | 6.6 | 6.1 | 5.3 | 7.2 | 6.7 | 5.4 | 5.9 | 5.4 | 5.1 | 11.5 | 11.4 | 11.5 | 11.7 |
IGF1 | 5.1 | 5.5 | 6.4 | 6 | 5.3 | 7.3 | 6.7 | 5.4 | 5.8 | 5.4 | 5.1 | 11.5 | 11.5 | 11.5 | 11.7 |
TGFB1 | 5 | 5 | 3.3 | 5.1 | 5.1 | 4.8 | 4 | 5.3 | 5.9 | 4.6 | 3.8 | 11.4 | 10.9 | 10.7 | 11.5 |
TGFB1 | 5 | 5 | 3.3 | 5.1 | 5.1 | 4.8 | 4 | 5.3 | 5.9 | 4.6 | 3.8 | 11.4 | 10.9 | 10.7 | 11.5 |
TGFB1 | 5 | 5 | 3.3 | 5.1 | 5.1 | 4.8 | 4 | 5.3 | 5.9 | 4.6 | 3.8 | 11.4 | 10.9 | 10.7 | 11.5 |
TGFB1 | 5.4 | 5 | 7.2 | 5.4 | 5.1 | 6.6 | 6.1 | 5.6 | 6.2 | 7 | 5.7 | 11.4 | 12.3 | 11.5 | 11.5 |
TGFB1 | 5.1 | 5.4 | 4.8 | 5.1 | 5.1 | 6.1 | 6.2 | 5.5 | 6.3 | 4.9 | 5 | 10.7 | 10.5 | 11.4 | 11.1 |
TGFB1 | 4.9 | 5 | 5.7 | 5 | 5.1 | 5.4 | 5 | 5.4 | 6.8 | 4.8 | 3.8 | 11.9 | 11.7 | 11.7 | 11.7 |
AR | 5.3 | 5.1 | 8.6 | 5.2 | 5.2 | 7 | 7 | 5.5 | 6.7 | 6.7 | 5.2 | 11.3 | 10.9 | 11.2 | 11.6 |
AR | 5.3 | 5.5 | 9.3 | 5.5 | 5.1 | 8 | 9 | 6.2 | 7.9 | 6.5 | 6.7 | 11 | 10.7 | 10.4 | 10.8 |
AR | 5.5 | 5.3 | 9 | 5.4 | 5.1 | 7.7 | 7.8 | 7.4 | 7.9 | 5.3 | 5.4 | 11.1 | 10.9 | 10.3 | 10.8 |
AR | 5.3 | 5.5 | 9.3 | 5.5 | 5.1 | 8 | 9 | 6.2 | 8 | 6.5 | 6.7 | 11 | 10.7 | 10.4 | 10.8 |
AR | 5 | 5.1 | 8.3 | 5 | 5.1 | 7 | 4.8 | 5.8 | 7.3 | 4.4 | 4.3 | 11.8 | 11.9 | 11.4 | 11.5 |
AR | 5.6 | 5.1 | 8.9 | 5.6 | 5.1 | 8.3 | 6.5 | 5.5 | 8 | 5.5 | 5.1 | 11.4 | 11.8 | 11.4 | 11.6 |
CYP19A1 | 4.9 | 5 | 5.4 | 5 | 5.1 | 6 | 4.5 | 5.2 | 6.1 | 5 | 3.3 | 11.3 | 11.3 | 11.2 | 11.5 |
CYP19A1 | 5.2 | 5.7 | 6.4 | 5.5 | 5.1 | 6.8 | 8.8 | 6.2 | 7.7 | 6.5 | 6.7 | 11 | 10.7 | 10.4 | 10.8 |
CYP19A1 | 5.3 | 5.4 | 6.5 | 5.5 | 5.1 | 6.7 | 9.1 | 6.2 | 7 | 6.5 | 6.7 | 11 | 10.7 | 10.4 | 10.8 |
POMC | 5.5 | 5.1 | 4.7 | 5 | 5.1 | 5.7 | 9 | 5.2 | 5.7 | 5.2 | 5.8 | 11 | 11.4 | 10.4 | 11.7 |
VEGFA | 4.7 | 5 | 6.8 | 5.1 | 5 | 7.9 | 5.1 | 5.4 | 5.4 | 5 | 5 | 11.3 | 11.3 | 10.6 | 11.5 |
VEGFA | 5.5 | 5.8 | 4.9 | 5 | 5.1 | 4.3 | 6.7 | 5.8 | 7.5 | 5 | 5 | 11.6 | 11.7 | 11.8 | 11.6 |
VEGFA | 4.9 | 5.1 | 5.1 | 5.6 | 5 | 4.4 | 4.5 | 5.2 | 6.3 | 5.5 | 4.9 | 11.3 | 11.5 | 11.5 | 11.3 |
VEGFA | 4.9 | 5.1 | 6 | 5.8 | 5.1 | 6.4 | 7.6 | 5.4 | 7.5 | 5.1 | 5.3 | 12.9 | 11.2 | 11.5 | 11.7 |
TP53 | 4.9 | 5.1 | 5.3 | 5.2 | 5.1 | 6.1 | 5.6 | 5.2 | 6.6 | 5 | 4.6 | 11.4 | 11.4 | 11.5 | 11.1 |
TP53 | 5 | 5 | 3.6 | 5 | 5.1 | 3.8 | 4.3 | 4.9 | 4.6 | 4.4 | 4.2 | 11.9 | 13.8 | 10.2 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Kim, B.S.; Zeng, J.; Chen, Z.; Zhu, M.; Tang, Y.; Pan, Y. Deep Learning-Based Drug Compounds Discovery for Gynecomastia. Biomedicines 2025, 13, 262. https://doi.org/10.3390/biomedicines13020262
Lu Y, Kim BS, Zeng J, Chen Z, Zhu M, Tang Y, Pan Y. Deep Learning-Based Drug Compounds Discovery for Gynecomastia. Biomedicines. 2025; 13(2):262. https://doi.org/10.3390/biomedicines13020262
Chicago/Turabian StyleLu, Yeheng, Byeong Seop Kim, Junhao Zeng, Zhiwei Chen, Mengyu Zhu, Yuxi Tang, and Yuyan Pan. 2025. "Deep Learning-Based Drug Compounds Discovery for Gynecomastia" Biomedicines 13, no. 2: 262. https://doi.org/10.3390/biomedicines13020262
APA StyleLu, Y., Kim, B. S., Zeng, J., Chen, Z., Zhu, M., Tang, Y., & Pan, Y. (2025). Deep Learning-Based Drug Compounds Discovery for Gynecomastia. Biomedicines, 13(2), 262. https://doi.org/10.3390/biomedicines13020262