Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction
3. Results
Author, Year of Publication | Country | Study Design | Participants | n | Gender (Male/Female) | Age (Range) Mean ± SD |
---|---|---|---|---|---|---|
1. Amato et al., 2021 [52] | Italy | Interventional design | Adults with MS | 8 | NA | 34.88 ± 4.45 |
2. Azevedo et al., 2022 [53] | Brazil | Interventional design | Adults with PD | 30 | 24/6 | 63.82 ± 9.63 |
3. Bansi et al., 2013 [54] | Switzerland | Interventional design | Adults with MS | 52 | 18/34 | 51.08 ± 2.48 |
4. Bartlett et al., 2020 [55] | Australia | Interventional design | Adults with HD | 29 | 10/19 | 44.55 ± 11.77 |
5. Devasahayam et al., 2020 [56] | Canada | Interventional design | Adults with MS | 21 | 7/14 | 53.2 ± 15.6 |
6. Belchior et al., 2017 [57] | Brazil | Interventional design | Adults with PD | 22 | 11/7 | 72.13 ± 12.10 |
7. Harro et al., 2022 [58] | USA | Interventional design | Adults with PD | 12 | 8/4 | 67.17 ± 9.19 |
8. Landers et al., 2019 [59] | USA | Interventional design | Adults with PD | 24 | 19/8 | 64.03 ± 8.74 |
9. Ozkul et al., 2018 [60] | Turkey | Interventional design | Adults with MS | 54 | 12/42 | MS = 34.25 ± 3.64 HC = 33 ± 4.13 |
10. Liu et al., 2020 [61] | Taiwan | Interventional design | Older adults with dementia | 61 | 50/11 | 85.71 ± 6.81 |
11. Zhang et al., 2023 [62] | China | Interventional design | Older adults with MCI | 42 | 4/38 | (60–80) |
12. De Araujo et al., 2019 [63] | Brazil | Interventional design | Adults with COPD | 16 | 9/7 | 68.5 ± 6.7 |
13. Deus et al., 2021 [64] | Brazil | Interventional design | Adults with Renal disease undergoing hemodialysis treatments | 157 | 86/71 | 66.81 ± 3.55 |
14. Gomes et al., 2014 [65] | Brazil | Interventional design | Women with knee OA | 16 | 0/16 | 67 ± 4.41 |
15. Jablochkova et al., 2019 [66] | Sweden | Interventional design | Adults with FM | 100 | 0/100 | FM = 50.8 ± 9.6 HC = 47.6 ± 12.8 |
16. Lee et al., 2014 [67] | Taiwan | Interventional design | Adults with metabolic syndrome | 36 | 36/0 | 44 ± 9.91 |
17. Ribeiro et al., 2021 [68] | Brazil | Interventional design | Women with FM | 32 | 0/32 | 54 (50–58); 56 (53–59) |
18. Žlibinaitė et al., 2020 [69] | Lithuania | Interventional design | Overweight and obese women (BMI > 25 kg/m2) | 26 | 0/26 | 44.9 ± 6.2 |
19. Maguire et al., 2023 [70] | Switzerland | Interventional design | Adults with chronic ischemic or hemorrhagic stroke | 17 | 13/4 | 55.12 ± 7.41 |
20. Cartmel et al., 2021 [48] | USA | Interventional design | Women with stage I–IV ovarian cancer | 144 | 0/144 | 57.3 ± 8.6 |
21. Hartman et al., 2019 [49] | USA | Interventional design | Adults with breast cancer | 87 | 0/87 | 57 ± 10.4 |
22. Miklja et al., 2022 [71] | USA | Correlational design | Adults with glioma | 38 | 23/15 | 50 |
23. Zimmer et al., 2018 [50] | Germany | Interventional design | Adults with breast cancer | 60 | 0/60 | 54.30 ± 8.51 |
24. Gmiat et al., 2018 [72] | Poland | Interventional design | Healthy older adults | 35 | 0/35 | 69 ± 5.12 |
25. Pereira et al., 2013 [73] | Brazil | Interventional design | Community-dwelling older women | 451 | 0/451 | 70.69 ± 4.66 |
26. Ruiz et al., 2015 [74] | Spain | Interventional design | Older adults in nursing homes | 40 | 8/32 | 92.2 ± 2.27 |
27. Yeh et al., 2015 [75] | Taiwan | Interventional design | Community-dwelling women | 67 | 0/67 | 52.7 ± 10.9 |
28. Takahashi et al., 2019 [51] | Japan | Interventional design | Postmenopausal women | 38 | 0/38 | 70.2 ± 3.9 |
29. Vedovelli et al., 2017 [76] | Brazil | Interventional design | Older women | 29 | 0/29 | 81.24 ± 8.0 |
30. Cahn et al., 2017 [77] | USA | Interventional design | Healthy adults | 38 | 19/19 | 34.28 ± 8.84 |
31. Cullen et al., 2020 [78] | UK | Interventional design | Healthy adults | 10 | 10/0 | 27 ± 6.0 |
32. Piacentini et al., 2016 [79] | UK | Interventional design | Healthy adults: endurance athletes (well-trained cyclists) | 8 | NA | 27 ± 8.0 |
33. Suzuki et al., 2014 [80] | Japan | Interventional design | Healthy adults | 52 | 52/0 | 26.6 ± 3.1 |
34. Verbickas et al., 2017 [81] | Lithuania | Interventional design | Healthy and physically active men | 20 | 20/0 | 26.2 ± 8.21 |
35. Verbickas et al., 2018 [82] | Lithuania | Interventional design | Healthy adults | 10 | 10/0 | 21.3 ± 2.3 |
Categories | Descriptions | % * | Reference |
---|---|---|---|
Symptom-related biomarkers | Indicating biophysical conditions (e.g., stress, depression, fatigue, and pain) | 23 | [48,56,62,64,65,78,79,80] |
Exercise/physical activity response | Resulting from physical activities (e.g., aerobic, strengthening, intensified, or combination of exercises) | 69 | [48,50,51,52,53,54,59,60,62,63,64,65,67,68,71,72,73,75,76,77,78,80,81,82] |
Mediator | Mediating the effect of exercise/physical activity on symptoms | 6 | [49,73] |
Inactive | Showing no response to physical exercises (e.g., no changes in BDNF level) Displaying no relations to physical symptoms (e.g., no correlations with symptoms) | 20 | [55,58,61,66,69,70,74] |
4. Discussion
4.1. BDNF as a Marker for Fatigue, Pain, Depression, and Sleep
4.2. BDNF as a Mechanistic Biomarker
4.3. BDNF as a Mediator in Symptom Improvement
4.4. Limitations and Strengths
4.5. Implications for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Kowianski, P.; Lietzau, G.; Czuba, E.; Waskow, M.; Steliga, A.; Morys, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Unal, G.O.; Erkilinc, G.; Ozturk, K.H.; Doguc, D.K.; Ozmen, O. The beneficial effects of vortioxetine on BDNF, CREB, S100B, beta amyloid, and glutamate NR2b receptors in chronic unpredictable mild stress model of depression. Psychopharmacology 2023, 240, 2499–2513. [Google Scholar] [CrossRef]
- Andreska, T.; Aufmkolk, S.; Sauer, M.; Blum, R. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front. Cell Neurosci. 2014, 8, 107. [Google Scholar] [CrossRef]
- Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., 3rd; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef]
- Nguyen, L.; Lucke-Wold, B.P.; Mookerjee, S.A.; Cavendish, J.Z.; Robson, M.J.; Scandinaro, A.L.; Matsumoto, R.R. Role of sigma-1 receptors in neurodegenerative diseases. J. Pharmacol. Sci. 2015, 127, 17–29. [Google Scholar] [CrossRef]
- Malar, D.S.; Thitilertdecha, P.; Ruckvongacheep, K.S.; Brimson, S.; Tencomnao, T.; Brimson, J.M. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023, 37, 399–440. [Google Scholar] [CrossRef]
- Jia, J.; Cheng, J.; Wang, C.; Zhen, X. Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Front. Cell Neurosci. 2018, 12, 314. [Google Scholar] [CrossRef]
- Klein, A.B.; Williamson, R.; Santini, M.A.; Clemmensen, C.; Ettrup, A.; Rios, M.; Knudsen, G.M.; Aznar, S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 2011, 14, 347–353. [Google Scholar] [CrossRef]
- Barcellos, N.; Cechinel, L.R.; de Meireles, L.C.F.; Lovatel, G.A.; Bruch, G.E.; Carregal, V.M.; Massensini, A.R.; Dalla Costa, T.; Pereira, L.O.; Siqueira, I.R. Effects of exercise modalities on BDNF and IL-1beta content in circulating total extracellular vesicles and particles obtained from aged rats. Exp. Gerontol. 2020, 142, 111124. [Google Scholar] [CrossRef]
- Garcia-Suarez, P.C.; Renteria, I.; Moncada-Jimenez, J.; Fry, A.C.; Jimenez-Maldonado, A. Acute Systemic Response Of BDNF, Lactate and Cortisol to Strenuous Exercise Modalities in Healthy Untrained Women. Dose Response 2020, 18, 1559325820970818. [Google Scholar] [CrossRef] [PubMed]
- Aravamudan, B.; Thompson, M.A.; Pabelick, C.M.; Prakash, Y.S. Mechanisms of BDNF regulation in asthmatic airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L270–L279. [Google Scholar] [CrossRef] [PubMed]
- Amadio, P.; Sandrini, L.; Ieraci, A.; Tremoli, E.; Barbieri, S.S. Effect of Clotting Duration and Temperature on BDNF Measurement in Human Serum. Int. J. Mol. Sci. 2017, 18, 1987. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Ashourizadeh, H.; Pasha, B.A.; Haghshomar, M.; Jouzdani, T.; Shobeiric, P.; Teixeira, A.L.; Rezaei, N. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 65, 103984. [Google Scholar] [CrossRef]
- Segura, C.; Eraso, M.; Bonilla, J.; Mendivil, C.O.; Santiago, G.; Useche, N.; Bernal-Pacheco, O.; Monsalve, G.; Sanchez, L.; Hernández, E.; et al. Effect of a High-Intensity Tandem Bicycle Exercise Program on Clinical Severity, Functional Magnetic Resonance Imaging, and Plasma Biomarkers in Parkinson’s Disease. Front. Neurol. 2020, 11, 656. [Google Scholar] [CrossRef]
- Fukushima, A.; Kinugawa, S.; Homma, T.; Masaki, Y.; Furihata, T.; Yokota, T.; Matsushima, S.; Takada, S.; Kadoguchi, T.; Oba, K.; et al. Serum brain-derived neurotropic factor level predicts adverse clinical outcomes in patients with heart failure. J. Card. Fail. 2015, 21, 300–306. [Google Scholar] [CrossRef]
- Hang, P.-Z.; Zhu, H.; Li, P.-F.; Liu, J.; Ge, F.-Q.; Zhao, J.; Du, Z.-M. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life 2021, 11, 70. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Liu, Y.; Gao, S.; Yu, Y.; Hu, Z. Serum Levels of BDNF in Patients with Adenoma and Colorectal Cancer. Dis. Markers 2021, 2021, 8867368. [Google Scholar] [CrossRef]
- Naegelin, Y.; Dingsdale, H.; Säuberli, K.; Schädelin, S.; Kappos, L.; Barde, Y.A. Measuring and Validating the Levels of Brain-Derived Neurotrophic Factor in Human Serum. eNeuro 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Walsh, E.I.; Smith, L.; Northey, J.; Rattray, B.; Cherbuin, N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res. Rev. 2020, 60, 101044. [Google Scholar] [CrossRef]
- Eshragh, J.; Dhruva, A.; Paul, S.M.; Cooper, B.A.; Mastick, J.; Hamolsky, D.; Levine, J.D.; Miaskowski, C.; Kober, K.M. Associations Between Neurotransmitter Genes and Fatigue and Energy Levels in Women Following Breast Cancer Surgery. J. Pain Symptom Manag. 2017, 53, P67–P84. [Google Scholar] [CrossRef] [PubMed]
- Saligan, L.N.; Lukkahatai, N.; Holder, G.; Walitt, B.; Machado-Vieira, R. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy. World J. Biol. Psychiatry 2016, 17, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Wolff, B.S.; Allen, H.R.; Feng, L.R.; Saligan, L.N. BDNF Val66Met Polymorphism Reduces the Fatigue-Like Effects of 5-Fluorouracil on Voluntary Wheel-Running Activity in Mice. Front. Behav. Neurosci. 2022, 16, 880969. [Google Scholar] [CrossRef] [PubMed]
- Bidari, A.; Ghavidel-Parsa, B.; Gharibpoor, F. Comparison of the serum brain-derived neurotrophic factor (BDNF) between fibromyalgia and nociceptive pain groups; and effect of duloxetine on the BDNF level. BMC Musculoskelet. Disord. 2022, 23, 411. [Google Scholar] [CrossRef] [PubMed]
- Gowler, P.R.W.; Li, L.; Woodhams, S.G.; Bennett, A.J.; Suzuki, R.; Walsh, D.A.; Chapman, V. Peripheral brain-derived neurotrophic factor contributes to chronic osteoarthritis joint pain. Pain 2020, 161, 61–73. [Google Scholar] [CrossRef]
- Yamada, A.S.; Antunes, F.T.T.; Ferraz, C.; de Souza, A.H.; Simon, D. The genetic influence of the brain-derived neurotrophic factor Val66Met polymorphism in chronic low back pain. Adv. Rheumatol. 2021, 61, 24. [Google Scholar] [CrossRef]
- Alshogran, O.Y.; Al-Eitan, L.N.; Altawalbeh, S.M.; Khalil, A.A.; Alqudah, M.A.Y.; Oweis, A.O.; Aman, H.A.; Alhawari, H.H. Investigating the Contribution of NPSR1, IL-6 and BDNF Polymorphisms to Depressive and Anxiety Symptoms in Hemodialysis Patients. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 94, 109657. [Google Scholar] [CrossRef]
- Lan, B.; Lv, D.; Sun, X.; Yang, M.; Zhang, L.; Ma, F. Genetic Variations in IFNGR1, BDNF and IL-10 May Predict the Susceptibility to Depression and Anxiety in Chinese Women with Breast Cancer. Clin. Breast Cancer 2022, 22, P674–P680. [Google Scholar] [CrossRef]
- Monteiro, B.C.; Monteiro, S.; Candida, M.; Adler, N.; Paes, F.; Rocha, N.; Nardi, A.E.; Murillo-Rodriguez, E.; Machado, S. Relationship Between Brain-Derived Neurotrofic Factor (Bdnf) and Sleep on Depression: A Critical Review. Clin. Pract. Epidemiol. Ment. Health CP EMH 2017, 13, 213–219. [Google Scholar] [CrossRef]
- Yuksekkaya, M.; Tutar, N.; Buyukoglan, H.; Dundar, M.; Yilmaz, I.; Gulmez, I.; Oymak, F.S.; Balta, B.; Korkmaz, K.; Demir, R. The Association of Brain-Derived Neurotrophic Factor Gene Polymorphism with Obstructive Sleep Apnea Syndrome and Obesity. Lung 2016, 194, 839–846. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Sorkpor, S.K.; Galle, K.; Teixeira, A.L.; Colpo, G.D.; Ahn, B.; Jackson, N.; Miao, H.; Ahn, H. The Relationship Between Plasma BDNF and Pain in Older Adults with Knee Osteoarthritis. Biol. Res. Nurs. 2021, 23, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Mandolini, G.M.; Lazzaretti, M.; Delvecchio, G.; Bressi, C.; Soares, J.C.; Brambilla, P. Association between serum BDNF levels and maternal perinatal depression: A review: Special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J. Affect. Disord. 2020, 261, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Mackay, C.P.; Kuys, S.S.; Brauer, S.G. The Effect of Aerobic Exercise on Brain-Derived Neurotrophic Factor in People with Neurological Disorders: A Systematic Review and Meta-Analysis. Neural Plast. 2017, 2017, 4716197. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J. A multifaceted investigation into the effects of acute exercise on indices of brain function. Appl. Physiol. Nutr. Metab. 2018, 43, 411. [Google Scholar] [CrossRef]
- Setayesh, S.; Mohammad Rahimi, G.R. The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatr. Nurs. 2023, 54, 23–31. [Google Scholar] [CrossRef]
- Olson, R.D.; Vaux-Bjerke, A.; Quam, J.B.; Piercy, K.L.; Troiano, R.P.; George, S.M.; Sprow, K.; Ballard, R.M.; Fulton, J.E.; Galuska, D.A. Physical Activity Guidelines for Americans. 2023. Available online: https://revistanadar.com.br/index.php/Swimming-Magazine/article/view/48/89 (accessed on 9 December 2024).
- Zhang, S.; Gu, B.; Zhen, K.; Du, L.; Lv, Y.; Yu, L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer’s disease models: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2024, 126, 105538. [Google Scholar] [CrossRef]
- Paterno, A.; Polsinelli, G.; Federico, B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: A systematic review of clinical studies in Parkinson’s disease. Front. Physiol. 2024, 15, 1352305. [Google Scholar] [CrossRef]
- Shobeiri, P.; Karimi, A.; Momtazmanesh, S.; Teixeira, A.L.; Teunissen, C.E.; van Wegen, E.E.H.; Hirsch, M.A.; Yekaninejad, M.S.; Rezaei, N. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PLoS ONE 2022, 17, e0264557. [Google Scholar] [CrossRef]
- Miranda-Lourenço, C.; Ribeiro-Rodrigues, L.; Fonseca-Gomes, J.; Tanqueiro, S.R.; Belo, R.F.; Ferreira, C.B.; Rei, N.; Ferreira-Manso, M.; de Almeida-Borlido, C.; Costa-Coelho, T.; et al. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol. Res. 2020, 162, 105281. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Sucharew, H.; Macaluso, M. Methods for Research Evidence Synthesis: The Scoping Review Approach. J. Hosp. Med. 2019, 14, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- JBI. Checklist for Quasi-Experimental Studies. 2020. Available online: https://jbi.global/sites/default/files/2020-08/Checklist_for_Quasi-Experimental_Appraisal_Tool.pdf (accessed on 10 May 2022).
- JBI. Checklist for Randomized Controlled Trials. 2020. Available online: https://jbi.global/sites/default/files/2020-08/Checklist_for_RCTs.pdf (accessed on 10 May 2022).
- Cartmel, B.; Hughes, M.; Ercolano, E.A.; Gottlieb, L.; Li, F.; Zhou, Y.; Harrigan, M.; Ligibel, J.A.; von Gruenige, V.E. Randomized trial of Exercise on Depressive Symptomatology and Brain Derived Neurotrophic Factor (BDNF) in Ovarian Cancer Survivors: The Women’s Activity and Lifestyle Study in Connecticut (WALC). Gynecol. Oncol. 2021, 161, P587–P594. [Google Scholar] [CrossRef]
- Hartman, S.J.; Weiner, L.S.; Nelson, S.H.; Natarajan, L.; Patterson, R.E.; Palmer, B.W.; Parker, B.A.; Sears, D.D. Mediators of a Physical Activity Intervention on Cognition in Breast Cancer Survivors: Evidence from a Randomized Controlled Trial. JMIR Cancer 2019, 5, e13150. [Google Scholar] [CrossRef]
- Zimmer, P.; Baumann, F.T.; Oberste, M.; Schmitt, J.; Joisten, N.; Hartig, P.; Schenk, A.; Kuhn, R.; Bloch, W.; Reuss-Borst, M. Influence of Personalized Exercise Recommendations During Rehabilitation on the Sustainability of Objectively Measured Physical Activity Levels, Fatigue, and Fatigue-Related Biomarkers in Patients with Breast Cancer. Integr. Cancer Ther. 2018, 17, 306–311. [Google Scholar] [CrossRef]
- Takahashi, M.; Lim, P.J.; Tsubosaka, M.; Kim, H.-K.; Miyashita, M.; Suzuki, K.; Tan, E.L.; Shibata, S. Effects of increased daily physical activity on mental health and depression biomarkers in postmenopausal women. J. Phys. Ther. Sci. 2019, 31, 408–413. [Google Scholar] [CrossRef]
- Amato, A.; Ragonese, P.; Ingoglia, S.; Schiera, G.; Schirò, G.; Di Liegro, C.M.; Salemi, G.; Di Liegro, I.; Proia, P. Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach. Nutrients 2021, 13, 4284. [Google Scholar] [CrossRef]
- Azevedo, L.; Pereira, J.R.; Silva Santos, R.M.; Rocha, N.P.; Teixeira, A.L.; Christo, P.P.; Santos, V.R.; Scalzo, P.L. Acute exercise increases BDNF serum levels in patients with Parkinson’s disease regardless of depression or fatigue. Eur. J. Sport. Sci. 2022, 22, 1296–1303. [Google Scholar] [CrossRef]
- Bansi, J.; Bloch, W.; Gamper, U.; Riedel, S.; Kesselring, J. Endurance training in MS: Short-term immune responses and their relation to cardiorespiratory fitness, health-related quality of life, and fatigue. J. Neurol. 2013, 260, 2993–3001. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.M.; Dominguez, D.J.; Lazar, A.S.; Kordsachia, C.C.; Rankin, T.J.; Lo, J.; Govus, A.D.; Power, B.D.; Lampit, A.; Eastwood, P.R.; et al. Multidisciplinary rehabilitation reduces hypothalamic grey matter volume loss in individuals with preclinical Huntington’s disease: A nine-month pilot study. J. Neurol. Sci. 2020, 408, 116522. [Google Scholar] [CrossRef] [PubMed]
- Devasahayam, A.J.; Chaves, A.R.; Lasisi, W.O.; Curtis, M.E.; Wadden, K.P.; Kelly, L.P.; Pretty, R.; Chen, A.; Wallack, E.M.; Newell, C.J.; et al. Vigorous cool room treadmill training to improve walking ability in people with multiple sclerosis who use ambulatory assistive devices: A feasibility study. BMC Neurol. 2020, 20, 33. [Google Scholar] [CrossRef]
- Belchior, L.D.; Tomaz, B.S.; Abdon, A.P.V.; Frota, N.A.F.; Mont’Alverne, D.G.B.; Gaspar, D.M. Treadmill in Parkinson’s: Influence on gait, balance, BDNF and Reduced Glutathione. Fisioter. Mov. 2017, 30, 93–100. [Google Scholar] [CrossRef]
- Harro, C.C.; Shoemaker, M.J.; Coatney, C.M.; Lentine, V.E.; Lieffers, L.R.; Quigley, J.J.; Rollins, S.G.; Stewart, J.D.; Hall, J.; Khoo, S.K. Effects of Nordic Walking Exercise on Gait, Motor/Non-Motor Symptoms, and Serum Brain-Derived Neurotrophic Factor in Individuals with Parkinson’s Disease. Front. Rehabil. Sci. 2022, 3, 1010097. [Google Scholar] [CrossRef] [PubMed]
- Landers, M.R.; Navalta, J.W.; Murtishaw, A.S.; Kinney, J.W.; Richardson, S.P. A High-Intensity Exercise Boot Camp for Persons with Parkinson Disease: A Phase II, Pragmatic, Randomized Clinical Trial of Feasibility, Safety, Signal of Efficacy, and Disease Mechanisms. J. Neurol. Phys. Ther. 2019, 43, 12–25. [Google Scholar] [CrossRef]
- Ozkul, C.; Guclu-Gunduz, A.; Irkec, C.; Fidan, I.; Aydin, Y.; Ozkan, T.; Yazici, G. Effect of combined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. J. Neuroimmunol. 2018, 316, 121–129. [Google Scholar] [CrossRef]
- Liu, I.T.; Lee, W.J.; Lin, S.Y.; Chang, S.T.; Kao, C.L.; Cheng, Y.Y. Therapeutic Effects of Exercise Training on Elderly Patients with Dementia: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 762–769. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, M.; Huang, L.; Zhu, M.; Liu, X.; Zhou, P.; Meng, T. A Study on the Effect of Traditional Chinese Exercise Combined with Rhythm Training on the Intervention of Older Adults with Mild Cognitive Impairment. Am. J. Alzheimer’s Dis. Other Dement. 2023, 38, 15333175231190626. [Google Scholar] [CrossRef]
- de Araujo, C.L.P.; da Silva, I.R.V.; Reinaldo, G.P.; Peccin, P.K.; Pochmann, D.; Teixeira, P.J.Z. Pulmonary rehabilitation and BDNF levels in patients with chronic obstructive pulmonary disease: A pilot study. Respir. Physiol. Neurobiol. 2019, 259, 63–69. [Google Scholar] [CrossRef]
- Deus, L.A.; Corrêa, H.L.; Neves, R.V.P.; Reis, A.L.; Honorato, F.S.; Silva, V.L.; Souza, M.K.; de Araújo, T.B.; de Gusmão Alves, L.S.; Sousa, C.V.; et al. Are Resistance Training-Induced BDNF in Hemodialysis Patients Associated with Depressive Symptoms, Quality of Life, Antioxidant Capacity, and Muscle Strength? An Insight for the Muscle-Brain-Renal Axis. Int. J. Environ. Res. Public Health 2021, 18, 11299. [Google Scholar] [CrossRef] [PubMed]
- Gomes, W.F.; Lacerda, A.C.R.; Mendonça, V.A.; Arrieiro, A.N.; Fonseca, S.F.; Amorim, M.R.; Teixeira, A.L.; Teixeira, M.M.; Miranda, A.S.; Coimbra, C.C.; et al. Effect of exercise on the plasma BDNF levels in elderly women with knee osteoarthritis. Rheumatol. Int. 2014, 34, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Jablochkova, A.; Bäckryd, E.; Kosek, E.; Mannerkorpi, K.; Ernberg, M.; Gerdle, B.; Ghafouri, B. Unaltered low nerve growth factor and high brain-derived neurotrophic factor levels in plasma from patients with fibromyalgia after a 15-week progressive resistance exercise. J. Rehabil. Med. 2019, 51, 779–787. [Google Scholar] [CrossRef]
- Lee, I.-T.; Fu, C.-P.; Lee, W.-J.; Liang, K.-W.; Lin, S.-Y.; Wan, C.-J.; Sheu, W.H.-H. Brain-derived neurotrophic factor, but not body weight, correlated with a reduction in depression scale scores in men with metabolic syndrome: A prospective weight-reduction study. Diabetol. Metab. Syndr. 2014, 6, 18. [Google Scholar] [CrossRef]
- Ribeiro, V.G.C.; Lacerda, A.C.R.; Santos, J.M.; Coelho-Oliveira, A.C.; Fonseca, S.F.; Prates, A.C.N.; Flor, J.; Garcia, B.C.C.; Tossige-Gomes, R.; Leite, H.R.; et al. Efficacy of Whole-Body Vibration Training on Brain-Derived Neurotrophic Factor, Clinical and Functional Outcomes, and Quality of Life in Women with Fibromyalgia Syndrome: A Randomized Controlled Trial. J. Healthc. Eng. 2021, 2021, 7593802. [Google Scholar] [CrossRef]
- Žlibinaitė, L.; Solianik, R.; Vizbaraitė, D.; Mickevičienė, D.; Skurvydas, A. The Effect of Combined Aerobic Exercise and Calorie Restriction on Mood, Cognition, and Motor Behavior in Overweight and Obese Women. J. Phys. Act. Health 2020, 17, 204–210. [Google Scholar] [CrossRef]
- Maguire, C.; Betschart, M.; Pohl, J.; Primani, F.; Taeymans, J.; Hund-Georgiadis, M. Effects of moderate-intensity aerobic exercise on serum BDNF and motor learning in the upper-limb in patients after chronic-stroke: A randomized, controlled feasibility study with embedded health economic evaluation. NeuroRehabilitation 2023, 52, 485–506. [Google Scholar] [CrossRef]
- Miklja, Z.; Gabel, N.; Altshuler, D.; Wang, L.; Hervey-Jumper, S.L.; Smith, S. Exercise improves health-related quality of life sleep and fatigue domains in adult high- and low-grade glioma patients. Support. Care Cancer 2022, 30, 1493–1500. [Google Scholar] [CrossRef]
- Gmiąt, A.; Jaworska, J.; Micielska, K.; Kortas, J.; Prusik, K.; Lipowski, M.; Radulska, A.; Szupryczyńska, N.; Antosiewicz, J.; Ziemann, E. Improvement of cognitive functions in response to a regular Nordic walking training in elderly women—A change dependent on the training experience. Exp. Gerontol. 2018, 104, 105–112. [Google Scholar] [CrossRef]
- Pereira, D.S.; de Queiroz, B.Z.; Miranda, A.S.; Rocha, N.P.; Felício, D.C.; Mateo, E.C.; Favero, M.; Coelho, F.M.; Jesus-Moraleida, F.; Gomes Pereira, D.A.; et al. Effects of physical exercise on plasma levels of brain-derived neurotrophic factor and depressive symptoms in elderly women—A randomized clinical trial. Arch. Phys. Med. Rehabil. 2013, 94, P1443–P1450. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Gil-Bea, F.; Bustamante-Ara, N.; Rodríguez-Romo, G.; Fiuza-Luces, C.; Serra-Rexach, J.A.; Cedazo-Minguez, A.; Lucia, A. Resistance training does not have an effect on cognition or related serum biomarkers in nonagenarians: A randomized controlled trial. Int. J. Sports Med. 2015, 36, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.H.; Lin, L.W.; Chuang, Y.K.; Liu, C.L.; Tsai, L.J.; Tsuei, F.S.; Lee, M.T.; Hsiao, C.Y.; Yang, K.D. Effects of music aerobic exercise on depression and brain-derived neurotrophic factor levels in community dwelling women. Biomed. Res. Int. 2015, 2015, 135893. [Google Scholar] [CrossRef] [PubMed]
- Vedovelli, K.; Giacobbo, B.L.; Corrêa, M.S.; Wieck, A.; Argimon, I.I.d.L.; Bromberg, E. Multimodal physical activity increases brain-derived neurotrophic factor levels and improves cognition in institutionalized older women. Geroscience 2017, 39, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Cahn, B.R.; Goodman, M.S.; Peterson, C.T.; Maturi, R.; Mills, P.J. Yoga, Meditation and Mind-Body Health: Increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat. Front. Hum. Neurosci. 2017, 11, 315. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Thomas, G.; Wadley, A.J. Sleep Deprivation: Cytokine and Neuroendocrine Effects on Perception of Effort. Med. Sci. Sports Exerc. 2020, 52, 909–918. [Google Scholar] [CrossRef]
- Piacentini, M.F.; Witard, O.C.; Tonoli, C.; Jackman, S.R.; Turner, J.E.; Kies, A.K.; Jeukendrup, A.E.; Tipton, K.D.; Meeusen, R. Effect of Intensive Training on Mood with No Effect on Brain-Derived Neurotrophic Factor. Int. J. Sports Physiol. Perform. 2016, 11, 824–830. [Google Scholar] [CrossRef]
- Suzuki, G.; Tokuno, S.; Nibuya, M.; Ishida, T.; Yamamoto, T.; Mukai, Y.; Mitani, K.; Tsumatori, G.; Scott, D.; Shimizu, K. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training. PLoS ONE 2014, 9, e89455. [Google Scholar] [CrossRef]
- Verbickas, V.; Baranauskiene, N.; Eimantas, N.; Kamandulis, S.; Rutkauskas, S.; Satkunskiene, D.; Sadauskas, S.; Brazaitis, M.; Skurvydas, A. Effect of sprint cycling and stretch-shortening cycle exercises on the neuromuscular, immune and stress indicators in young men. J. Physiol. Pharmacol. 2017, 68, 125–132. [Google Scholar]
- Verbickas, V.; Kamandulis, S.; Snieckus, A.; Venckunas, T.; Baranauskiene, N.; Brazaitis, M. Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise. Muscle Nerve 2018, 57, E46–E51. [Google Scholar] [CrossRef]
- Stein, A.M.; Coelho, F.G.d.M.; Vital-Silva, T.M.; Rueda, A.V.; Pereira, J.R.; Deslandes, A.C.; Camarini, R.; Galduró, R.F.S. Aerobic Training and Circulating Neurotrophins in Alzheimer’s Disease Patients: A Controlled Trial. Exp. Aging Res. 2023, 49, 1–17. [Google Scholar] [CrossRef]
- Lambuk, L.; Mohd Lazaldin, M.A.; Ahmad, S.; Iezhitsa, I.; Agarwal, R.; Uskoković, V. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front. Pharmacol. 2022, 13, 875662. [Google Scholar] [CrossRef] [PubMed]
- Mojtabavi, H.; Shaka, Z.; Momtazmanesh, S.; Ajdari, A.; Rezaei, N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: A systematic review and meta-analysis. J. Transl. Med. 2022, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast. 2017, 2017, 7260130. [Google Scholar] [CrossRef]
- Hing, B.; Sathyaputri, L.; Potash, J.B. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 143–167. [Google Scholar] [CrossRef]
- Aguiar, A.S., Jr.; Stragier, E.; da Luz Scheffer, D.; Remor, A.P.; Oliveira, P.A.; Prediger, R.D.; Latini, A.; Raisman-Vozari, R.; Mongeau, R.; Lanfumey, L. Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience 2014, 271, 56–63. [Google Scholar] [CrossRef]
- Canton-Martinez, E.; Renteria, I.; Garcia-Suarez, P.C.; Moncada-Jimenez, J.; Machado-Parra, J.P.; Lira, F.S.; Johnson, D.K.; Jimenez-Maldonado, A. Concurrent Training Increases Serum Brain-Derived Neurotrophic Factor in Older Adults Regardless of the Exercise Frequency. Front. Aging Neurosci. 2022, 14, 791698. [Google Scholar] [CrossRef]
- Nguyen, L.; Lucke-Wold, B.P.; Logsdon, A.F.; Scandinaro, A.L.; Huber, J.D.; Matsumoto, R.R. Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice. Neuroreport 2016, 27, 1004–1011. [Google Scholar] [CrossRef]
- Nguyen, L.; Lucke-Wold, B.P.; Mookerjee, S.; Kaushal, N.; Matsumoto, R.R. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. Adv. Exp. Med. Biol. 2017, 964, 133–152. [Google Scholar] [CrossRef]
- Qin, H.; Yu, M.; Han, N.; Zhu, M.; Li, X.; Zhou, J. Antidepressant effects of esketamine via the BDNF/AKT/mTOR pathway in mice with postpartum depression and their offspring. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 132, 110992. [Google Scholar] [CrossRef]
Study Characteristics | n | % |
---|---|---|
Publication year (Mean = 2019, SD = 2.9) | ||
2013–2015 | 7 | 20 |
2016–2018 | 9 | 25.7 |
2019–2021 | 14 | 40 |
2022–2024 | 5 | 14.3 |
Study region * | ||
The Americas | 15 | 42.9 |
Europe | 13 | 37.1 |
Western Pacific | 7 | 21.6 |
Study populations | ||
Adults with neurological disorders | 10 | 28.6 |
Adults with chronic conditions | 9 | 25.7 |
Adults with cancer | 4 | 11.4 |
Older adults (aged 60 and older) | 6 | 17.1 |
Healthy young adults | 6 | 17.1 |
Sample size ** (n = 1882; Mean = 53.8; SD = 77.3) | ||
8–29 | 15 | 42.9 |
30–59 | 12 | 34.3 |
60–99 | 4 | 11.4 |
100 and above | 4 | 11.4 |
Study design | ||
Interventional study | 34 | 97.1 |
Correlational study | 1 | 2.9 |
Exercise/physical activity types reported in interventional studies (n = 34) | ||
Aerobic exercise and endurance training | 15 | 44.1 |
Strength training/resistance | 4 | 11.8 |
Flexibility/stretching (e.g., yoga, etc.) | 2 | 5.88 |
Multimodal exercise | 9 | 26.5 |
Others (i.e., whole body vibration, drop jumps) | 2 | 5.88 |
Physical activity | 2 | 5.88 |
Symptoms reported † | ||
Pain | 6 | 17.1 |
Fatigue | 16 | 45.7 |
Depression | 22 | 62.9 |
Anxiety | 6 | 17.1 |
Moods (overall moods) | 3 | 8.6 |
Sleep disturbance | 4 | 11.4 |
Cognitive function | 7 | 20.0 |
Dyspnea | 1 | 2.9 |
BDNF † | ||
Circulating BDNF | ||
- Plasma level | 13 | 37.1 |
- Serum level | 22 | 62.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukkahatai, N.; Ong, I.L.; Benjasirisan, C.; Saligan, L.N. Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines 2025, 13, 332. https://doi.org/10.3390/biomedicines13020332
Lukkahatai N, Ong IL, Benjasirisan C, Saligan LN. Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines. 2025; 13(2):332. https://doi.org/10.3390/biomedicines13020332
Chicago/Turabian StyleLukkahatai, Nada, Irvin L. Ong, Chitchanok Benjasirisan, and Leorey N. Saligan. 2025. "Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review" Biomedicines 13, no. 2: 332. https://doi.org/10.3390/biomedicines13020332
APA StyleLukkahatai, N., Ong, I. L., Benjasirisan, C., & Saligan, L. N. (2025). Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines, 13(2), 332. https://doi.org/10.3390/biomedicines13020332