Ten-Year Evaluation of Ventilator-Associated Pneumonia (VAP) According to Initial Empiric Treatment: A Retrospective Analysis Using Real-World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Variables
2.3. Definitions
2.4. Objectives and Follow-Up
2.4.1. Primary Objective
2.4.2. Secondary Objectives
2.4.3. Primary Outcome
2.4.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. General
3.2. Etiology of VAP over the Years
3.3. Empiric Antibiotic Treatment
3.4. ICU Mortality Rate
Lineal Regression Analysis (GLM)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, R.; Al-Dorzi, H.M.; Tamim, H.M.; Rishu, A.H.; Balkhy, H.; El-Saed, A.; Arab, Y.M. The impact of onset time on the isolated pathogens and outcomes in ventilator associated pneumonia. J. Infect. Public. Health 2016, 9, 161–171. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Deja, M.; Koulenti, D.; Dimopoulos, G.; Marsh, B.; Torres, A.; Niederman, M.S.; Rello, J.; EU-VAP Study Investigators. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: The interaction of ecology, shock and risk factors. Intensive Care Med. 2013, 39, 672–681. [Google Scholar] [CrossRef]
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, M.; Timsit, J.F.; Vansteelandt, S.; Depuydt, P.; Vesin, A.; Garrouste-Orgeas, M.; Decruyenaere, J.; Clec’h, C.; Elie Azoulay, E.; Benoit, D.; et al. Attributable mortality of ventilator-associated pneumonia:a reappraisal using causal analysis. Am. J. Respir. Crit. Care Med. 2011, 184, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Melsen, W.G.; Rovers, M.M.; Groenwold, R.H.; Bergmans, D.C.; Camus, C.; Bauer, T.T.; Hanisch, E.W.; Klarin, B.; Koeman, M.; Krueger, W.A.; et al. Attributable mortality of ventilator-associated pneumonia: A meta-analysis of individual patient data from randomised prevention studies. Lancet Infect. Dis. 2013, 13, 665–671. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Infectious Diseases Society of America Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef] [PubMed]
- Reignier, J.; Mercier, E.; Le Gouge, A.; Boulain, T.; Desachy, A.; Bellec, F.; Clavel, M.; Frat, J.P.; Plantefeve, G.; Quenot, J.-P.; et al. Effect of not monitoring residual gastric volume on risk of ventilator-associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: A randomized controlled trial. JAMA 2013, 309, 249–256. [Google Scholar]
- Kuti, E.L.; Patel, A.A.; Coleman, C.I. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood streaminfection: A meta-analysis. J. Crit. Care 2008, 23, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Chihara, S.; Costin, B.; Treggiari, M.M.; Bartz, R.R.; Raghunathan, K.; Krishnamoorthy, V. Association of Appropriate Empirical Antimicrobial Therapy With In-Hospital Mortality in Patients With Bloodstream Infections in the US. JAMA Netw. Open. 2023, 6, e2249353. [Google Scholar] [CrossRef] [PubMed]
- Esteban, A.; Frutos-Vivar, F.; Muriel, A.; Ferguson, N.D.; Peñuelas, O.; Abraira, V.; Raymondos, K.; Rios, F.; Nin, N.; Apezteguía, C.; et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am. J. Respir. Crit. Care Med. 2013, 188, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Rubulotta, F.; Blanch Torra, L.; Naidoo, K.D.; Aboumarie, H.S.; Mathivha, L.R.; Asiri, A.Y.; Sarlabous Uranga, L.; Soussi, S. Mechanical Ventilation, Past, Present, and Future. Anesth. Analg. 2024, 138, 308–325. [Google Scholar] [CrossRef] [PubMed]
- Foglia, F.; Della Rocca, M.T.; Melardo, C.; Nastri, B.M.; Manfredini, M.; Montella, F.; De Filippis, A.; Finamore, E.; Galdiero, M. Bloodstream infections and antibiotic resistance patterns: A six-year surveillance study from southern Italy. Pathog. Glob. Health 2023, 117, 381–391. [Google Scholar] [CrossRef] [PubMed]
- de Kraker, M.E.; Jarlier, V.; Monen, J.C.; Heuer, O.E.; van de Sande, N.; Grundmann, H. The changing epidemiology of bacteraemias in Europe: Trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 2013, 19, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.; Rawson, T.M.; Hart, P.; Satta, G.; Abdulaal, A.; Hughes, S.; Gilchrist, M.; Mughal, N.; Moore, L.S.P. Bacteraemia variation during the COVID-19 pandemic; a multi-centre UK secondary care ecological analysis. BMC Infect. Dis. 2021, 21, 556. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Moreno, G.; Bodi, M.; Martín-Loeches, I. Antibiotics in development for multiresistant gram-negative bacilli. Med. Intensiv. (Engl. Ed.) 2022, 46, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Dudeck, M.A.; Edwards, J.R.; Allen-Bridson, K.; Gross, C.; Malpiedi, P.J.; Peterson, K.D.; Pollock, D.A.; Weiner, L.M.; Sievert, D.M. National healthcare safety network report, data summary for 2013, device-associated module. Am. J. Infect. Control 2015, 43, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Metersky, M.L.; Wang, Y.; Klompas, M.; Eckenrode, S.; Bakullari, A.; Eldridge, N. Trend in ventilator-associated pneumonia rates between 2005 and 2013. JAMA 2016, 316, 2427–2429. [Google Scholar] [CrossRef]
- de Miguel-Díez, J.; López-de-Andrés, A.; Hernández-Barrera, V.; Jiménez-Trujillo, I.; Méndez-Bailón, M.; de Miguel-Yanes, J.M.; del Rio-López, B. Decreasing incidence and mortality among hospitalized patients suffering a ventilator-associated pneumonia Analysis of the Spanish national hospital discharge database from 2010 to 2014. Medicine 2017, 96, pe7625. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.; Martín-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Rodríguez, A.; Gómez, F.; Sarvisé, C.; Gutiérrez, C.; Giralt, M.G.; Guerrero-Torres, M.D.; Pardo-Granell, S.; Picó-Plana, E.; Benavent- Bonfill, C.; Trefler, S.; et al. Clinical and Microbiological Impact of Implementing a Decision Support Algorithm through Microbiologic Rapid Diagnosis in Critically Ill Patients: An Epidemiological Retrospective Pre-/Post-Intervention Study. Biomedicines 2023, 11, 3330. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Ramsey, J.B. Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. J. R. Stat. Soc. Ser. B (Methodol.) 1969, 31, 350–371. [Google Scholar]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Fihman, V.; Messika, J.; Hajage, D.; Tournier, V.; Gaudry, S.; Magdoud, F.; Barnaud, G.; Billard-Pomares, T.; Branger, C.; Dreyfuss, D.; et al. Five-year trends for ventilator-associated pneumonia: Correlation between microbiological findings and antimicrobial drug consumption. Int. J. Antimicrob. Agents 2015, 46, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Cheyron, D.D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Makris, D.; Geronimi, C.B.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 177. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Nseir, S. Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in COVID-19. Semin. Respir. Crit. Care Med. 2022, 43, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Strich, J.R.; Heil, E.L.; Masur, H. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance. J. Infect. Dis. 2020, 222, S119–S131. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Brian, H.; Nathanson, B.H.; Laura, A.; Puzniak, L.A.; Dillon, R.J.; Shorr, A.F. The risk of inappropriate empiric treatment and its outcomes based on pathogens in non-ventilated (nvHABP), ventilated (vHABP) hospital-acquired and ventilator-associated (VABP) bacterial pneumonia in the US, 2012–2019. BMC Infect. Dis. 2022, 22, 775. [Google Scholar] [CrossRef]
- Magnotti, L.J.; Schroeppel, T.J.; Fabian, T.C.; Clement, L.P.; Swanson, J.M.; Fischer, P.E.; Bee, T.K.; Maish, G.O.; Minard, G.; Zarzaur, B.L.; et al. Reduction in Inadequate Empiric Antibiotic Therapy for Ventilator-Associated Pneumonia: Impact of a Unit-Specific Treatment Pathway. Am. Surg. 2008, 74, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Ticac, M.; Grubic Kezele, T.; Bubonja Šonje, M. Impact of Appropriate Empirical Antibiotic Treatment on the Clinical Response of Septic Patients in Intensive Care Unit: A Single-Center Observational Study. Antibiotics 2024, 13, 569. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Fasce, R.; Molinari, M.P.; Rosso, R.; Di Biagio, A.; Mussap, M.; Bobbio Pallavicini, F.; Viscoli, C. Efficacy of ertapenem in the treatment of early ventilator-associated pneumonia caused by extended-spectrum b-lactamase-producing organisms in an intensive care unit. J. Antimicrob. Chemother. 2007, 60, 433–435. [Google Scholar] [CrossRef]
- Burkhardt, O.; Kumar, V.; Katterwe, D.; Majcher-Peszynska, J.; Drewelow, B.; Derendorf, H.; Welte, T. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: Pharmacokinetics with special consideration of free-drug concentration. J. Antimicrob. Chemother. 2007, 59, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Boselli, E.; Breilh, D.; Saux, M.-C.; Gordien, J.-B.; Allaouchiche, B. Pharmacokinetics and lung concentrations of ertapenem in patients with ventilator-associated pneumonia. Intensive Care Med. 2006, 32, 2059–2062. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, M.; Ferrer, M.; Esperatti, M.; Crisafulli, E.; Giunta, V.; Li Bassi, G.; Rinaudo, M.; Blasi, F.; Niederman, M.; Torres, A. Assessment of severity of ICU-acquired pneumonia and association with etiology. Crit. Care Med. 2014, 42, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Esperatti, M.; Ferrer, M.; Theessen, A.; Liapikou, A.; Valencia, M.; Saucedo, L.M.; Zavala, E.; Welte, T.; Torres, A. Nosocomial pneumonia in the intensive care unit acquired during mechanical ventilation or not. Am. J. Respir. Crit. Care Med. 2010, 182, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Thilakchand, K.R.; Boloor, R.; Suresh, S.; George, T.; Pais, M.L.J.; Jakribettu, R.P.; Baliga, M.S. Antimicrobial resistance pattern in aerobic bacteria isolated from endotracheal aspirate in ventilator-associated pneumonia: Ten years observation from a tertiary care hospital. J. Anaesthesiol. Clin. Pharmacol. 2024, 40, 324–329. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.; Lv, C.; Tian, Y.; Suo, J.; Yan, Z.; Bai, Y.; Liu, B.; Fang, L.; Du, M.; et al. Epidemiological characteristics of ventilator-associated pneumonia in neurosurgery: A 10-year surveillance study in a Chinese tertiary hospital. Infect. Med. (Beijing) 2024, 3, 100128. [Google Scholar] [CrossRef]
- Barbier, F.; Bailly, S.; Schwebel, C.; Papazian, L.; Azoulay, E.; Kallel, H.; Siami, S.; Argaud, L.; Marcotte, G.; Misset, B.; et al. Infection-related ventilator-associate complications in ICU patients colonised with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Intensive Care Med. 2018, 44, 616–626. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American thoracic society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
Variable | 1st Period (n = 47) | 2nd Period (96) | 3rd Period (n = 77) | p-Value |
---|---|---|---|---|
General | ||||
Age median (IQR) year | 60 (50–68) | 64(52–73) | 60(49–69) | 0.16 |
Male, n (%) | 38 (80.9%) | 69(71.9) | 59(76.6) | 0.48 |
SOFA score, median (IQR) | 8 (6–10) | 4(3–6) | 4(2–7) | 0.40 |
Medical disease, n (%) | 27(57.4) | 82(85.4) | 54(70.1) | 0.001 |
Comorbidities | ||||
Diabetes mellitus, n (%) | 5 (10.6) | 24(25.0) | 20(26.0) | 0.09 |
Cirrhosis, n (%) | 3(6.4) | 4(4.2) | 9(11.2) | 0.16 |
Hypertension. n (%) | 13(27.7) | 56(58.3) | 30(39.0) | 0.001 |
Chronic heart disease, n (%) | 3(6.4) | 3(3.1) | 0 (0.0) | 0.08 |
Immunodepression, n (%) | 0 (0.0) | 8(8.3) | 11(14.3) | 0.01 |
Chronic obstructive pulmonary disease, n (%) | 6(12.7) | 11(11.4) | 10(12.9) | 0.80 |
Laboratory at ICU admission | ||||
Hemoglobin, median (IQR) g/L | 8.8(7.5–9.6) | 9.3(7.9–10.5) | 8.7(7.7–9.9) | 0.14 |
White blood cells count, median (IQR) 10 × 9 | 17.0(10.9–22.6) | 15.1(10.5–18.7) | 14.4(9.4–21.7) | 0.35 |
Lymphocytes, median (IQR) 10 × 9 | 0.9(0.6–1.4) | 0.9(0.6–1.5) | 0.9(0.6–1.26) | 0.69 |
C-reactive protein, median (IQR) mg/dL | 33.4(29.7–37.4) | 27.6(17.4–33.1) | 25.9(17.0–29.9) | <0.001 |
Procalcitonin, median (IQR) ng/mL | 2.40(0.80–7.30) | 1.00(0.51–2.64) | 1.02(0.32–2.84) | 0.18 |
Serum creatinine, median (IQR) mg/dL | 0.85(0.49–1.19) | 0.75(0.50–1.30) | 0.69(0.45–1.07) | 0.52 |
Serum lactate, median (IQR) mmol/L | 1.65(1.42–2.17) | 1.81(1.43–2.40) | 1.50(1.23–2.13) | 0.04 |
FiO2, median (IQR) %O2 | 40(30–50) | 50(45–70) | 50(40–70) | <0.001 |
SO2/FiO2, median (IQR) | 261(194–322) | 188(142–218) | 190(149–242) | <0.001 |
Mean arterial pressure, median (IQR) mmHg | 79(76–84) | 78(73–83) | 81(75–85) | 0.48 |
Respiratory rate, median (IQR) by minute | 21(17–23) | 21(18–23) | 20(18–22) | 0.29 |
Heart rate, median (IQR) by minute | 91(86–102) | 88(77–98) | 85(74–101) | 0.13 |
Temperature, median (IQR) °C | 37.9(37.2–38.3) | 37.7(37.2–38.2) | 37.5(37.0–37.9) | 0.051 |
Urinary output, median (IQR) mL/24 h | 1600(1300–2250) | 1700(1400–2440) | 1700(1300–2270) | 0.16 |
Antibiotic empiric treatment | ||||
Ertapenem, n (%) | 3(6.4) | 24(25.0) | 24(31.2) | <0.001 |
Meropenem | 18(38.3) | 29(30.2) | 43(55.8) | |
Piperacillin/tazobactam | 26(55.3) | 43(44.8) | 10(13.0) | |
Adequate empirical antibiotic, n (%) | 45(95.7) | 93(96.9) | 72(93.5) | 0.54 |
Antibiotic stewardship, n (%) | 0.63 | |||
No change | 10(21.3) | 25(26.0) | 22(28.6) | |
Desescalation | 29(61.7) | 50(52.1) | 38(49.4) | |
Escalation | 7(14.9) | 14(14.6) | 10(13.0) | |
Withdrawal/reduction | 0 (0.0) | 6(6.2) | 6(7.8) | |
Resistant microorganism | 1(2.13) | 1(1.0) | 1(1.3) | |
Bacteremic VAP, n (%) | 11(23.4) | 25(26.0) | 18(23.4) | 0.9 |
Outcome | ||||
Mechanical ventilation days, median (IQR) | 4.1(4.9–11.6) | 9.3(6.0–16.1) | 9.1(6.4–12.0) | 0.09 |
ICU Length of stay, median (IQR), days | 28.7(20.7–42.5) | 40.8(26.9–68.4) | 33.7(20.3–48.1) | 0.001 |
Crude ICU nortality, n (%) | 21(44.7) | 36(37.5) | 17(22.1) | 0.02 |
Microorganisms | 1st Period (Patients n = 47) n (%) | 2nd Period (Patients n = 96) n (%) | 3rd Period (Patients n = 77) n (%) |
---|---|---|---|
Gram-negative bacilli | |||
Pseudomonas aeruginosa | 11 (23.5) | 24 (34.8) | 27 (35.0) |
Serratia marcescens | 3 (6.4) | 12 (12.5) | 3 (3.9) |
Klebsiella spp. | 9 (19.1) | 28 (29.2) | 23 (29.8) |
Escherichia coli | 8 (17.0) | 13 (13.5) | 7 (9.0) |
Haemophilus influenzae | 3 (6.4) | 10 (10.4) | 10 (13.0) |
Acinetobacter baumannii | 1 (2.1) | 1 (1.0) | 2 (2.6) |
Enterobacter spp. | 7 (14.9) | 18 (18.7) | 13 (16.9) |
Proteus mirabilis | 5 (10.6) | 5 (5.2) | 8 (10.4) |
Stenotrophomonas maltophilia | 4 (8.5) | 2 (2.0) | 1 (1.3) |
Citrobacter freundii | 1 (2.1) | 6 (6.2) | 3 (3.9) |
Morganella morganii | 0 (0) | 0 (0) | 1 (1.3) |
Achromobacter xylosoxidans | 0 (0) | 0 (0) | 1 (1.3) |
Shewanella putrefaciens | 0 (0) | 0 (0) | 1 (1.3) |
Eikenella corrodens | 0 (0) | 0 (0) | 1 (1.3) |
Gram-positive cocci | |||
Staphylococcus aureus | 13 (31.9) | 38 (40.6) | 26 (35.0) |
Methicillin-resistant Staphylococcus aureus | 2 (4.2) | 1 (1.0) | 1 (1.3) |
Streptococcus anginosus | 0 (0) | 3 (3.1) | 2 (2.6) |
Streptococcus pneumoniae | 1 (2.1) | 2 (2.0) | 0 (0) |
Gram-positive bacilli | |||
Corynebacterium spp. | 1 (2.1) | 3 (3.1) | 0 (0) |
Total number of isolated | 69 | 166 | 130 |
Variable | Survival (n = 146) | Non-Survival (n = 74) | p-Value |
---|---|---|---|
General | |||
Age median (IQR) year | 57 (45–68) | 67 (61–73) | <0.001 |
Male, n (%) | 116 (79.5) | 50 (67.6) | 0.07 |
SOFA score, median (IQR) | 4 (2–6) | 6 (4–8) | <0.001 |
Medical disease, n (%) | 108 (74.0) | 55 (74.3) | 1.0 |
COVID-19, n (%) | 60 (41.1) | 36 (48.6) | 0.35 |
Filmarray, n (%) | 120 (82.2) | 53 (71.6) | 0.10 |
Major comorbidities | |||
Diabetes mellitus, n (%) | 28 (19.2) | 21 (28.4) | 0.16 |
Cirrhosis, n (%) | 11(7.5) | 5 (6.7) | 1.0 |
Hypertension. n (%) | 65 (44.5) | 34 (45.9) | 0.9 |
Chronic heart disease, n (%) | 1 (0.7) | 5 (6.7) | 0.01 |
Immunodepression, n (%) | 10 (6.8) | 9 (12.2) | 0.28 |
Chronic obstrcutive pulmonary disease, n (%) | 17 (11.6) | 10 (13.5) | 0.7 |
Laboratory at ICU admission | |||
Hemoglobin, median (IQR) g/L | 8.9 (7.9–10.3) | 8.8 (7.8–9.9) | 0.54 |
White blood cells count, median (IQR) 10 × 9 | 14.7 (10.3–19.3) | 14.4 (9.3–21.2) | 0.78 |
Lymphocytes, median (IQR) 10 × 9 | 0.9 (0.5–1.2) | 0.7 (0.4–1.1) | 0.07 |
C-reactive protein, median (IQR) mg/dL | 28.3 (18.9–34.0) | 29.0 (18.0–34.1) | 0.57 |
Procalcitonin, median (IQR) ng/mL | 0.86 (0.33–2.77) | 1.35 (0.67–4.47) | 0.02 |
Serum creatinine, median (IQR) mg/dL | 0.71 (0.45–1.04) | 0.87 (0.52–1.52) | 0.06 |
Serum lactate, median (IQR) mmol/L | 1.58 (1.32–2.15) | 1.76 (1.43–2.46) | 0.15 |
Clinical variables | |||
FiO2, median (IQR) %O2 | 50 (40–60) | 50 (40–70) | 0.05 |
SO2/FiO2, median (IQR) | 200 (162–249) | 188 (144–242) | 0.04 |
Mean arterial pressure, median (IQR) mmHg | 81 (76–85) | 76 (72–82) | 0.001 |
Respiratory rate, median(IQR) by minute | 21 (18–23) | 20 (18–23) | 0.62 |
Heart rate, median (IQR) by minute | 86 (76–99) | 87 (79–101) | 0.20 |
Temperature, median (IQR) °C | 37.7 (37.2–38.2) | 37.5 (37.0–38.2) | 0.10 |
Urinary output, median (IQR) mL/24 h | 1900 (1400–2400) | 1500 (100–2200) | 0.007 |
Empiric treatment | |||
Ertapenem, n (%) | 34 (23.3) | 17 (23.0) | 0.54 |
Meropenem, n (%) | 63 (43.2) | 27 (36.5) | |
Piperacillin/Tazobactam, n (%) | 49 (33.6) | 30 (40.5) | |
Adequate empiric antibiotic treatment, n (%) | 140 (95.9) | 70 (90.6) | 0.73 |
Outcome | |||
Bacteremic VAP, n (%) | 35 (24.0) | 19 (25.7) | 0.91 |
Mechanical ventilation days, median (IQR) | 9 (6–13) | 8 (5.7–13) | 0.93 |
ICU length of stay, median (IQR), days | 43 (28–58) | 24 (16–37) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, A.; Berrueta, J.; Páez, C.; Huertas, R.; Marotta, M.; Claverias, L.; Gómez, J.; Trefler, S.; Gómez Bertomeu, F.F.; Guerrero-Torres, M.D.; et al. Ten-Year Evaluation of Ventilator-Associated Pneumonia (VAP) According to Initial Empiric Treatment: A Retrospective Analysis Using Real-World Data. Biomedicines 2025, 13, 360. https://doi.org/10.3390/biomedicines13020360
Rodríguez A, Berrueta J, Páez C, Huertas R, Marotta M, Claverias L, Gómez J, Trefler S, Gómez Bertomeu FF, Guerrero-Torres MD, et al. Ten-Year Evaluation of Ventilator-Associated Pneumonia (VAP) According to Initial Empiric Treatment: A Retrospective Analysis Using Real-World Data. Biomedicines. 2025; 13(2):360. https://doi.org/10.3390/biomedicines13020360
Chicago/Turabian StyleRodríguez, Alejandro, Julen Berrueta, Carolina Páez, Ronny Huertas, Marco Marotta, Laura Claverias, Josep Gómez, Sandra Trefler, Frederic F. Gómez Bertomeu, María Dolores Guerrero-Torres, and et al. 2025. "Ten-Year Evaluation of Ventilator-Associated Pneumonia (VAP) According to Initial Empiric Treatment: A Retrospective Analysis Using Real-World Data" Biomedicines 13, no. 2: 360. https://doi.org/10.3390/biomedicines13020360
APA StyleRodríguez, A., Berrueta, J., Páez, C., Huertas, R., Marotta, M., Claverias, L., Gómez, J., Trefler, S., Gómez Bertomeu, F. F., Guerrero-Torres, M. D., Pardo-Granell, S., Picó-Plana, E., Selles-Sánchez, A., Candel, F. J., Martín-Loeches, I., & Bodí, M. (2025). Ten-Year Evaluation of Ventilator-Associated Pneumonia (VAP) According to Initial Empiric Treatment: A Retrospective Analysis Using Real-World Data. Biomedicines, 13(2), 360. https://doi.org/10.3390/biomedicines13020360