The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease
Abstract
:1. Introduction
2. The mTOR Pathway and Heart Disease
2.1. mTORC1
2.1.1. Composition of mTORC1
2.1.2. Function of mTORC1
2.1.3. Regulation of the mTORC1 Signaling Pathway
2.2. mTOR2
2.2.1. Composition of mTORC2
2.2.2. Function of mTORC2
2.2.3. Regulation of mTORC2 Signaling Pathway
Upstream Regulatory Mechanisms
2.2.4. Downstream Regulatory Mechanisms
2.3. mTORC3
3. The mTOR Pathway and Heart Disease
3.1. Cardiac Hypertrophy
3.2. Cardiomyopathy
3.2.1. Dilated Cardiomyopathy
3.2.2. Hypertrophic Cardiomyopathy
3.3. Myocardial Fibrosis
3.4. Myocardial Ischemia–Reperfusion Injury
4. mTOR Pathway and Heart Disease Treatment
4.1. Diabetic Cardiomyopathy
Category | mTOR Inhibitor | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
Rapalog | Rapamycin | Wide effective dose range; low toxicity; no patent; relatively low price; persistent effect on cardiac function even after discontinuation; approved by the FDA for sale. | There may be side effects, such as oral ulcers, hyperglycemia, and hyperlipidemia, but they can subside after discontinuing the medication; immunosuppressive effect increases the risk of infection; difficult to dissolve in water; low bioavailability; large molecular weight; complex structure; limited restriction sites. | [124,125,126,127] |
Rapalog | Temsirolimus | FDA-approved for sale; good anti-cancer activity in various types of malignant tumors; low dosage; strong efficacy. | Possible side effects include hypercholesterolemia and hyperglycemia, but they can be controlled through diet or medication. Its efficacy and safety are severely limited by defects in solubility and bioavailability, making it poorly soluble in water. | [128] |
Rapalog | Everolimus | FDA-approved for sale; has been used for various neuroendocrine tumors of the digestive tract, lungs, and pancreas; not only does it inhibit the growth and proliferation of APT cells, but it also enhances their sensitivity to radiotherapy and chemotherapy. | It can cause adverse reactions, commonly including hyperlipidemia, oral ulcers, and hyperglycemia. Large molecular weight, complex structure, difficult to synthesize, limited binding sites. | [129,130,131] |
Rapalog | Ridaforolimus | It has good overall tolerance, and water solubility, affinity, and stability have been improved significantly compared to rapamycin. | It may cause side effects, such as rashes, oral ulcers, and high blood sugar. It has a high molecular weight and a complex structure and is difficult to synthesize. | [132,133] |
ATP-competitive | AZD8055 | Exhibits excellent selectivity for all class I phosphoinositide 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family; in inhibiting erythroid differentiation and promoting mitochondrial clearance, it is more effective than rapamycin. Small molecular weight; simplified structure. | Hepatotoxicity is strong, limiting clinical application. | [133,134] |
ATP-competitive | Torkinib | It can inhibit mTORC1 and mTORC2 and has a neuroprotective effect. Small molecular weight; simplified structure. | Hepatotoxic. | [135,136] |
ATP-competitive | Torin1 | It can selectively inhibit mTORC1 and mTORC2; small molecular weight; simplified structure. | Poor stability, low oral bioavailability, and a very short half-life hinder further in vivo studies. | [137,138] |
ATP-competitive | Torin2 | Torin2 is derived from the chemical simplification of Torin1, with better stability and a longer half-life. | The inhibitory effect is not as strong as that of Torin1. | [138] |
Rapalink | Palomid529 | Its characteristic lies in its lack of affinity for ABCB1/ABCG2 (two drug efflux transporters) and its good brain penetration. It can enhance the effects of radiotherapy. | Poor solubility, low oral bioavailability of micronized form. | [139,140] |
Rapalink | Rapalink1 | Low dose, high efficacy. Compared to rapamycin, Rapalink1 has higher specificity for mTORC1. Good permeability to the blood–brain barrier. | It does not inhibit the substrate of mTORC2. | [141,142] |
4.2. Heart Failure
4.3. Cardiac Hypertrophy
4.4. Myocardial Ischemia–Reperfusion Injury
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Mensah, G.A.; Fuster, V.; Roth, G.A. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J. Am. Coll. Cardiol. 2023, 82, 2343–2349. [Google Scholar] [CrossRef]
- Adekoya, A.; Tyagi, S.K.; Duru, C.N.; Satia, I.; Paudyal, V.; Kurmi, O.P. Effects of Household Air Pollution (HAP) on Cardiovascular Diseases in Low- and Middle-Income Countries (LMICs): A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9298. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, Y.; Li, L.; Ge, H.; Wang, Y.; Zeng, C.; Ma, F. Genetic Factors in the Pathogenesis of Cardio-Oncology. J. Transl. Med. 2024, 22, 739. [Google Scholar] [CrossRef]
- Ritchie, R.H.; Abel, E.D. Basic Mechanisms of Diabetic Heart Disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef]
- Shahandeh, N.; Chowdhary, H.; Middlekauff, H.R. Vaping and Cardiac Disease. Heart 2021, 107, 1530–1535. [Google Scholar] [CrossRef]
- Xu, T.; Sun, D.; Chen, Y.; Ouyang, L. Targeting mTOR for Fighting Diseases: A Revisited Review of mTOR Inhibitors. Eur. J. Med. Chem. 2020, 199, 112391. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef] [PubMed]
- Abusaliya, A.; Bhosale, P.B.; Kim, H.H.; Park, M.Y.; Jeong, S.H.; Lee, S.; Kim, G.S. Investigation of Prunetrin Induced G2/M Cell Cycle Arrest and Apoptosis via Akt/mTOR/MAPK Pathways in Hepatocellular Carcinoma Cells. Biomed. Pharmacother. 2024, 174, 116483. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Mossmann, D.; Park, S.; Hall, M.N. mTOR Signalling and Cellular Metabolism Are Mutual Determinants in Cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef]
- Miyamoto, S. Autophagy and Cardiac Aging. Cell Death Differ. 2019, 26, 653–664. [Google Scholar] [CrossRef]
- Xing, H.; Peng, M.; Li, Z.; Chen, J.; Zhang, H.; Teng, X. Ammonia Inhalation-Mediated Mir-202-5p Leads to Cardiac Autophagy through PTEN/AKT/mTOR Pathway. Chemosphere 2019, 235, 858–866. [Google Scholar] [CrossRef]
- He, A.; Chen, X.; Tan, M.; Chen, Y.; Lu, D.; Zhang, X.; Dean, J.M.; Razani, B.; Lodhi, I.J. Acetyl-CoA Derived from Hepatic Peroxisomal β-Oxidation Inhibits Autophagy and Promotes Steatosis via mTORC1 Activation. Mol. Cell 2020, 79, 30–42.e4. [Google Scholar] [CrossRef]
- Vergès, B. mTOR and Cardiovascular Diseases: Diabetes Mellitus. Transplantation 2018, 102, S47–S49. [Google Scholar] [CrossRef] [PubMed]
- Sciarretta, S.; Forte, M.; Frati, G.; Sadoshima, J. The Complex Network of mTOR Signalling in the Heart. Cardiovasc. Res. 2022, 118, 424–439. [Google Scholar] [CrossRef]
- Romero-Becerra, R.; Mora, A.; Manieri, E.; Nikolic, I.; Santamans, A.M.; Montalvo-Romeral, V.; Cruz, F.M.; Rodríguez, E.; León, M.; Leiva-Vega, L.; et al. MKK6 Deficiency Promotes Cardiac Dysfunction through MKK3-P38γ/δ-mTOR Hyperactivation. Elife 2022, 11, e75250. [Google Scholar] [CrossRef] [PubMed]
- Garbern, J.C.; Helman, A.; Sereda, R.; Sarikhani, M.; Ahmed, A.; Escalante, G.O.; Ogurlu, R.; Kim, S.L.; Zimmerman, J.F.; Cho, A.; et al. Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via P53-Induced Quiescence. Circulation 2020, 141, 285–300. [Google Scholar] [CrossRef]
- Wullschleger, S.; Loewith, R.; Hall, M.N. TOR Signaling in Growth and Metabolism. Cell 2006, 124, 471–484. [Google Scholar] [CrossRef]
- Yang, M.; Lu, Y.; Piao, W.; Jin, H. The Translational Regulation in mTOR Pathway. Biomolecules 2022, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Harwood, F.; Have, S.T.; Lamond, A.; Phillips, A.H.; Kriwacki, R.W.; Halder, P.; Cardone, M.; Grosveld, G.C. Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain. Int. J. Mol. Sci. 2024, 25, 10042. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Sarbassov, D.D.; Ali, S.M.; Latek, R.R.; Guntur, K.V.P.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. GbetaL, a Positive Regulator of the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction between Raptor and mTOR. Mol. Cell 2003, 11, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell 2002, 110, 177–189. [Google Scholar] [CrossRef]
- Inoki, K.; Zhu, T.; Guan, K.-L. TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell 2003, 115, 577–590. [Google Scholar] [CrossRef]
- Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Mol. Cell 2008, 30, 214–226. [Google Scholar] [CrossRef]
- González, A.; Hall, M.N.; Lin, S.-C.; Hardie, D.G. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020, 31, 472–492. [Google Scholar] [CrossRef]
- Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; et al. Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1. Mol. Cell 2010, 39, 171–183. [Google Scholar] [CrossRef]
- Al-Bari, M.A.A.; Xu, P. Molecular Regulation of Autophagy Machinery by mTOR-Dependent and -Independent Pathways. Ann. N. Y. Acad. Sci. 2020, 1467, 3–20. [Google Scholar] [CrossRef]
- Mao, B.; Zhang, Q.; Ma, L.; Zhao, D.-S.; Zhao, P.; Yan, P. Overview of Research into mTOR Inhibitors. Molecules 2022, 27, 5295. [Google Scholar] [CrossRef]
- Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; et al. TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell 2006, 126, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.C.; Wei, Y.; An, Z.; Zou, Z.; Xiao, G.; Bhagat, G.; White, M.; Reichelt, J.; Levine, B. Akt-Mediated Regulation of Autophagy and Tumorigenesis through Beclin 1 Phosphorylation. Science 2012, 338, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Wang, G.; Chen, L.; Geng, H.; Yao, J.; Bai, Z.; Deng, L. Trans-Gnetin H Isolated from the Seeds of Paeonia Species Induces Autophagy via Inhibiting mTORC1 Signalling through AMPK Activation. Cell Prolif. 2023, 56, e13360. [Google Scholar] [CrossRef]
- Hara, K.; Yonezawa, K.; Weng, Q.P.; Kozlowski, M.T.; Belham, C.; Avruch, J. Amino Acid Sufficiency and mTOR Regulate P70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism. J. Biol. Chem. 1998, 273, 14484–14494. [Google Scholar] [CrossRef]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Paquette, M.; El-Houjeiri, L.; C Zirden, L.; Puustinen, P.; Blanchette, P.; Jeong, H.; Dejgaard, K.; Siegel, P.M.; Pause, A. AMPK-Dependent Phosphorylation Is Required for Transcriptional Activation of TFEB and TFE3. Autophagy 2021, 17, 3957–3975. [Google Scholar] [CrossRef]
- Ott, C.; Jung, T.; Brix, S.; John, C.; Betz, I.R.; Foryst-Ludwig, A.; Deubel, S.; Kuebler, W.M.; Grune, T.; Kintscher, U.; et al. Hypertrophy-Reduced Autophagy Causes Cardiac Dysfunction by Directly Impacting Cardiomyocyte Contractility. Cells 2021, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Sanches-Silva, A.; Testai, L.; Nabavi, S.F.; Battino, M.; Pandima Devi, K.; Tejada, S.; Sureda, A.; Xu, S.; Yousefi, B.; Majidinia, M.; et al. Therapeutic Potential of Polyphenols in Cardiovascular Diseases: Regulation of mTOR Signaling Pathway. Pharmacol. Res. 2020, 152, 104626. [Google Scholar] [CrossRef]
- Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Rüegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR Complex 2 Controls the Actin Cytoskeleton and Is Rapamycin Insensitive. Nat. Cell Biol. 2004, 6, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Sarbassov, D.D.; Ali, S.M.; Kim, D.-H.; Guertin, D.A.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway That Regulates the Cytoskeleton. Curr. Biol. 2004, 14, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Inoki, K.; Ikenoue, T.; Guan, K.-L. Identification of Sin1 as an Essential TORC2 Component Required for Complex Formation and Kinase Activity. Genes. Dev. 2006, 20, 2820–2832. [Google Scholar] [CrossRef]
- Pearce, L.R.; Huang, X.; Boudeau, J.; Pawłowski, R.; Wullschleger, S.; Deak, M.; Ibrahim, A.F.M.; Gourlay, R.; Magnuson, M.A.; Alessi, D.R. Identification of Protor as a Novel Rictor-Binding Component of mTOR Complex-2. Biochem. J. 2007, 405, 513–522. [Google Scholar] [CrossRef]
- Frias, M.A.; Thoreen, C.C.; Jaffe, J.D.; Schroder, W.; Sculley, T.; Carr, S.A.; Sabatini, D.M. mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s. Curr. Biol. 2006, 16, 1865–1870. [Google Scholar] [CrossRef]
- Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by Association with the Ribosome. Cell 2011, 144, 757–768. [Google Scholar] [CrossRef]
- Kazyken, D.; Magnuson, B.; Bodur, C.; Acosta-Jaquez, H.A.; Zhang, D.; Tong, X.; Barnes, T.M.; Steinl, G.K.; Patterson, N.E.; Altheim, C.H.; et al. AMPK Directly Activates mTORC2 to Promote Cell Survival during Acute Energetic Stress. Sci. Signal. 2019, 12, eaav3249. [Google Scholar] [CrossRef] [PubMed]
- Esen, E.; Chen, J.; Karner, C.M.; Okunade, A.L.; Patterson, B.W.; Long, F. WNT-LRP5 Signaling Induces Warburg Effect through mTORC2 Activation during Osteoblast Differentiation. Cell Metab. 2013, 17, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Daulat, A.M.; Bertucci, F.; Audebert, S.; Sergé, A.; Finetti, P.; Josselin, E.; Castellano, R.; Birnbaum, D.; Angers, S.; Borg, J.-P. PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Dev. Cell 2016, 37, 311–325. [Google Scholar] [CrossRef]
- Jacinto, E.; Facchinetti, V.; Liu, D.; Soto, N.; Wei, S.; Jung, S.Y.; Huang, Q.; Qin, J.; Su, B. SIN1/MIP1 Maintains Rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity. Cell 2006, 127, 125–137. [Google Scholar] [CrossRef]
- Oh, W.J.; Wu, C.; Kim, S.J.; Facchinetti, V.; Julien, L.-A.; Finlan, M.; Roux, P.P.; Su, B.; Jacinto, E. mTORC2 Can Associate with Ribosomes to Promote Cotranslational Phosphorylation and Stability of Nascent Akt Polypeptide. EMBO J. 2010, 29, 3939–3951. [Google Scholar] [CrossRef]
- Sun, J.-J.; Yin, X.-W.; Liu, H.-H.; Du, W.-X.; Shi, L.-Y.; Huang, Y.-B.; Wang, F.; Liu, C.-F.; Cao, Y.-J.; Zhang, Y.-L. Rapamycin Inhibits Ox-LDL-Induced Inflammation in Human Endothelial Cells in Vitro by Inhibiting the mTORC2/PKC/c-Fos Pathway. Acta Pharmacol. Sin. 2018, 39, 336–344. [Google Scholar] [CrossRef]
- Braz, J.C.; Gregory, K.; Pathak, A.; Zhao, W.; Sahin, B.; Klevitsky, R.; Kimball, T.F.; Lorenz, J.N.; Nairn, A.C.; Liggett, S.B.; et al. PKC-Alpha Regulates Cardiac Contractility and Propensity toward Heart Failure. Nat. Med. 2004, 10, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Matsui, T.; Novikov, M.; Park, J.; Hemmings, B.; Rosenzweig, A. Serum and Glucocorticoid-Responsive Kinase-1 Regulates Cardiomyocyte Survival and Hypertrophic Response. Circulation 2005, 111, 1652–1659. [Google Scholar] [CrossRef]
- Harwood, F.C.; Klein Geltink, R.I.; O’Hara, B.P.; Cardone, M.; Janke, L.; Finkelstein, D.; Entin, I.; Paul, L.; Houghton, P.J.; Grosveld, G.C. ETV7 Is an Essential Component of a Rapamycin-Insensitive mTOR Complex in Cancer. Sci. Adv. 2018, 4, eaar3938. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of Cardiac Hypertrophy and Heart Failure: Signaling Pathways and Novel Therapeutic Targets. Arch. Toxicol. 2015, 89, 1401–1438. [Google Scholar] [CrossRef]
- Harvey, P.A.; Leinwand, L.A. The Cell Biology of Disease: Cellular Mechanisms of Cardiomyopathy. J. Cell Biol. 2011, 194, 355–365. [Google Scholar] [CrossRef]
- Nakamura, M.; Sadoshima, J. Mechanisms of Physiological and Pathological Cardiac Hypertrophy. Nat. Rev. Cardiol. 2018, 15, 387–407. [Google Scholar] [CrossRef]
- Kemi, O.J.; Ceci, M.; Wisloff, U.; Grimaldi, S.; Gallo, P.; Smith, G.L.; Condorelli, G.; Ellingsen, O. Activation or Inactivation of Cardiac Akt/mTOR Signaling Diverges Physiological from Pathological Hypertrophy. J. Cell Physiol. 2008, 214, 316–321. [Google Scholar] [CrossRef]
- Sciarretta, S.; Forte, M.; Frati, G.; Sadoshima, J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circ. Res. 2018, 122, 489–505. [Google Scholar] [CrossRef]
- Mellis, D.; Caporali, A. MicroRNA-Based Therapeutics in Cardiovascular Disease: Screening and Delivery to the Target. Biochem. Soc. Trans. 2018, 46, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhou, Y.; Han, L.; Piao, J. MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 Pathway Promotes the Development of Cardiac Hypertrophy through Controlling Autophagy. In Vitro Cell Dev. Biol. Anim. 2020, 56, 112–119. [Google Scholar] [CrossRef]
- Shi, J.; Chen, C.; Xu, X.; Lu, Q. miR-29a Promotes Pathological Cardiac Hypertrophy by Targeting the PTEN/AKT/mTOR Signalling Pathway and Suppressing Autophagy. Acta Physiol. 2019, 227, e13323. [Google Scholar] [CrossRef]
- Xu, X.; Su, Y.-L.; Shi, J.-Y.; Lu, Q.; Chen, C. MicroRNA-17-5p Promotes Cardiac Hypertrophy by Targeting Mfn2 to Inhibit Autophagy. Cardiovasc. Toxicol. 2021, 21, 759–771. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.-L.; Lin, Q.-Y.; Li, H.-H.; Guo, S.-B. ATGL Deficiency Aggravates Pressure Overload-Triggered Myocardial Hypertrophic Remodeling Associated with the Proteasome-PTEN-mTOR-Autophagy Pathway. Cell Biol. Toxicol. 2023, 39, 2113–2131. [Google Scholar] [CrossRef]
- Liu, Q.; Han, C.; Wu, X.; Zhou, J.; Zang, W. F-Box and WD Repeat-Containing Protein 7 Ameliorates Angiotensin II-Induced Myocardial Hypertrophic Injury via the mTOR-Mediated Autophagy Pathway. Exp. Ther. Med. 2022, 24, 464. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.-F.; Chen, H.-Z.; Liu, D.-P. Mitochondrial Sirtuins in Cardiometabolic Diseases. Clin. Sci. 2017, 131, 2063–2078. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tang, X.; Chen, H.-Z. Sirtuins and Insulin Resistance. Front. Endocrinol. 2018, 9, 748. [Google Scholar] [CrossRef] [PubMed]
- Gélinas, R.; Mailleux, F.; Dontaine, J.; Bultot, L.; Demeulder, B.; Ginion, A.; Daskalopoulos, E.P.; Esfahani, H.; Dubois-Deruy, E.; Lauzier, B.; et al. AMPK Activation Counteracts Cardiac Hypertrophy by Reducing O-GlcNAcylation. Nat. Commun. 2018, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Ma, Z.; Jiang, S.; Wang, D.; Fan, C.; Di, S.; Hu, W.; Li, T.; She, J.; Yang, Y. FOXOs in the Impaired Heart: New Therapeutic Targets for Cardiac Diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 486–498. [Google Scholar] [CrossRef]
- Gao, W.; Guo, N.; Zhao, S.; Chen, Z.; Zhang, W.; Yan, F.; Liao, H.; Chi, K. Carboxypeptidase A4 Promotes Cardiomyocyte Hypertrophy through Activating PI3K-AKT-mTOR Signaling. Biosci. Rep. 2020, 40, BSR20200669. [Google Scholar] [CrossRef]
- Gao, W.; Guo, N.; Zhao, S.; Chen, Z.; Zhang, W.; Yan, F.; Liao, H.; Chi, K. HTR2A Promotes the Development of Cardiac Hypertrophy by Activating PI3K-PDK1-AKT-mTOR Signaling. Cell Stress Chaperones 2020, 25, 899–908. [Google Scholar] [CrossRef]
- Ayme-Dietrich, E.; Marzak, H.; Lawson, R.; Mokni, W.; Wendling, O.; Combe, R.; Becker, J.; El Fertak, L.; Champy, M.-F.; Matz, R.; et al. Contribution of Serotonin to Cardiac Remodeling Associated with Hypertensive Diastolic Ventricular Dysfunction in Rats. J. Hypertens. 2015, 33, 2310–2321. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, H.; Wang, Y.; Zhou, J.; Wang, F.; Xie, Y.; Zhao, K.; Gao, W. KLK11 Promotes the Activation of mTOR and Protein Synthesis to Facilitate Cardiac Hypertrophy. BMC Cardiovasc. Disord. 2021, 21, 266. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ji, J.; Yan, X.-H. Cross-Talk between AMPK and mTOR in Regulating Energy Balance. Crit. Rev. Food Sci. Nutr. 2012, 52, 373–381. [Google Scholar] [CrossRef]
- Liao, H.; Gao, W.; Ma, J.; Xue, H.; Wang, Y.; Huang, D.; Yan, F.; Ye, Y. GPR39 Promotes Cardiac Hypertrophy by Regulating the AMPK-mTOR Pathway and Protein Synthesis. Cell Biol. Int. 2021, 45, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wang, Z.; Chi, Y.; Ni, C.; Zheng, X. TFEC Contributes to Cardiac Hypertrophy by Inhibiting AMPK/mTOR Signaling. Exp. Ther. Med. 2021, 22, 1271. [Google Scholar] [CrossRef]
- Braunwald, E. Cardiomyopathies: An Overview. Circ. Res. 2017, 121, 711–721. [Google Scholar] [CrossRef]
- Zhu, Y.; Pires, K.M.P.; Whitehead, K.J.; Olsen, C.D.; Wayment, B.; Zhang, Y.C.; Bugger, H.; Ilkun, O.; Litwin, S.E.; Thomas, G.; et al. Mechanistic Target of Rapamycin (Mtor) Is Essential for Murine Embryonic Heart Development and Growth. PLoS ONE 2013, 8, e54221. [Google Scholar] [CrossRef]
- Shende, P.; Plaisance, I.; Morandi, C.; Pellieux, C.; Berthonneche, C.; Zorzato, F.; Krishnan, J.; Lerch, R.; Hall, M.N.; Rüegg, M.A.; et al. Cardiac Raptor Ablation Impairs Adaptive Hypertrophy, Alters Metabolic Gene Expression, and Causes Heart Failure in Mice. Circulation 2011, 123, 1073–1082. [Google Scholar] [CrossRef]
- Zhang, D.; Contu, R.; Latronico, M.V.G.; Zhang, J.; Rizzi, R.; Catalucci, D.; Miyamoto, S.; Huang, K.; Ceci, M.; Gu, Y.; et al. MTORC1 Regulates Cardiac Function and Myocyte Survival through 4E-BP1 Inhibition in Mice. J. Clin. Investig. 2010, 120, 2805–2816. [Google Scholar] [CrossRef]
- Mazelin, L.; Panthu, B.; Nicot, A.-S.; Belotti, E.; Tintignac, L.; Teixeira, G.; Zhang, Q.; Risson, V.; Baas, D.; Delaune, E.; et al. mTOR Inactivation in Myocardium from Infant Mice Rapidly Leads to Dilated Cardiomyopathy Due to Translation Defects and P53/JNK-Mediated Apoptosis. J. Mol. Cell. Cardiol. 2016, 97, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lu, L.; Dvornikov, A.V.; Ma, X.; Ding, Y.; Zhu, P.; Olson, T.M.; Lin, X.; Xu, X. TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagCS75Y Cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 5494. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, K.P.; Jouret, F.; Shen, K.; Nigam, A.; Arjona, F.J.; Dafinger, C.; Houillier, P.; Jones, D.P.; Kleinerüschkamp, F.; Oh, J.; et al. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J. Am. Soc. Nephrol. 2021, 32, 2885. [Google Scholar] [CrossRef]
- Caragnano, A.; Aleksova, A.; Bulfoni, M.; Cervellin, C.; Rolle, I.G.; Veneziano, C.; Barchiesi, A.; Mimmi, M.C.; Vascotto, C.; Finato, N.; et al. Autophagy and Inflammasome Activation in Dilated Cardiomyopathy. J. Clin. Med. 2019, 8, 1519. [Google Scholar] [CrossRef]
- Jin, B.; Shi, H.; Zhu, J.; Wu, B.; Geshang, Q. Up-Regulating Autophagy by Targeting the mTOR-4EBP1 Pathway: A Possible Mechanism for Improving Cardiac Function in Mice with Experimental Dilated Cardiomyopathy. BMC Cardiovasc. Disord. 2020, 20, 56. [Google Scholar] [CrossRef]
- Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circ. Res. 2014, 114, 549–564. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Liu, K.; Long, C.; Chen, Y.; Li, C.; Li, L.; Liu, F.; Zhang, X.; Jing, Y.; et al. αB-Crystallin/HSPB2 Is Critical for Hyperactive mTOR-Induced Cardiomyopathy. J. Cell Physiol. 2021, 236, 8110–8121. [Google Scholar] [CrossRef] [PubMed]
- Schramm, C.; Fine, D.M.; Edwards, M.A.; Reeb, A.N.; Krenz, M. The PTPN11 Loss-of-Function Mutation Q510E-Shp2 Causes Hypertrophic Cardiomyopathy by Dysregulating mTOR Signaling. Am. J. Physiol.-Heart Circ. Physiol. 2012, 302, H231–H243. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Winkler, J.; Ramos, I.; Do, Q.-T.; Firat, H.; McDonald, K.; González, A.; Thum, T.; Díez, J.; Jaisser, F.; et al. Myocardial Fibrosis: Biomedical Research from Bench to Bedside. Eur. J. Heart Fail. 2017, 19, 177–191. [Google Scholar] [CrossRef]
- Ba, R.; Ja, H. Autophagy in Load-Induced Heart Disease. Circ. Res. 2008, 103, 1363–1369. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.; Li, M.; Zhang, B.; Shen, P.; Liu, P.; Zheng, D.; Chen, Y.; Jiang, J. Autophagy Activation Attenuates Angiotensin II-Induced Cardiac Fibrosis. Arch. Biochem. Biophys. 2016, 590, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Tsuboi, J.; Okabayashi, H.; Fukushima, A.; Itoh, M.; Kawata, H.; Miyake, F.; Kasanuki, H. Development of a Signal-Averaged Vector-Projected 187-Channel High-Resolution Electrocardiogram for the Evaluation of the Spatial Location of High-Frequency Potentials and Abnormal Ventricular Repolarization. Int. Heart J. 2007, 48, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Ja, H. Autophagy in Cardiac Plasticity and Disease. Pediatr. Cardiol. 2011, 32, 282–289. [Google Scholar] [CrossRef]
- Matsui, Y.; Kyoi, S.; Takagi, H.; Hsu, C.-P.; Hariharan, N.; Ago, T.; Vatner, S.F.; Sadoshima, J. Molecular Mechanisms and Physiological Significance of Autophagy during Myocardial Ischemia and Reperfusion. Autophagy 2008, 4, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Lo Verso, F.; Carnio, S.; Vainshtein, A.; Sandri, M. Autophagy Is Not Required to Sustain Exercise and PRKAA1/AMPK Activity but Is Important to Prevent Mitochondrial Damage during Physical Activity. Autophagy 2014, 10, 1883–1894. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, D.; Zheng, J.; Wu, X.; Wang, J.; Liu, X.; He, Y.; Zhang, C.; Liu, C.; Wang, T.; et al. Chikusetsu Saponin IVa Attenuates Isoprenaline-Induced Myocardial Fibrosis in Mice through Activation Autophagy Mediated by AMPK/mTOR/ULK1 Signaling. Phytomedicine 2019, 58, 152764. [Google Scholar] [CrossRef]
- Ikeda, S.; Zablocki, D.; Sadoshima, J. The Role of Autophagy in Death of Cardiomyocytes. J. Mol. Cell Cardiol. 2022, 165, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hamacher-Brady, A.; Brady, N.R.; Gottlieb, R.A. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. J. Biol. Chem. 2006, 281, 29776–29787. [Google Scholar] [CrossRef]
- Nah, J.; Zhai, P.; Huang, C.-Y.; Fernández, Á.F.; Mareedu, S.; Levine, B.; Sadoshima, J. Upregulation of Rubicon Promotes Autosis during Myocardial Ischemia/Reperfusion Injury. J. Clin. Investig. 2020, 130, 2978–2991. [Google Scholar] [CrossRef]
- Nah, J.; Zablocki, D.; Sadoshima, J. Autosis: A New Target to Prevent Cell Death. JACC Basic. Transl. Sci. 2020, 5, 857–869. [Google Scholar] [CrossRef]
- Gupta, S.S.; Zeglinski, M.R.; Rattan, S.G.; Landry, N.M.; Ghavami, S.; Wigle, J.T.; Klonisch, T.; Halayko, A.J.; Dixon, I.M.C. Inhibition of Autophagy Inhibits the Conversion of Cardiac Fibroblasts to Cardiac Myofibroblasts. Oncotarget 2016, 7, 78516–78531. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, X.; Yin, L.; Chen, W.; Xu, Y.; Jiang, B. Stomatin-like Protein-2 Relieve Myocardial Ischemia/Reperfusion Injury by Adenosine 5’-Monophosphate-Activated Protein Kinase Signal Pathway. J. Cell Biochem. 2019, 120, 2323–2335. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, H.; Xu, Y.; Chen, G.; Fan, R.; Zhou, Y.; Liu, Y.; Yao, Y.; Liu, R.; Chen, W.; et al. Stomatin-like Protein 2 Deficiency Exacerbates Adverse Cardiac Remodeling. Cell Death Discov. 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Gourdie, R.G.; Dimmeler, S.; Kohl, P. Novel Therapeutic Strategies Targeting Fibroblasts and Fibrosis in Heart Disease. Nat. Rev. Drug Discov. 2016, 15, 620–638. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, H.; Lv, X.; Liu, Y.; Li, S.; Li, H. Knockdown of the Bmi-1 Oncogene Inhibits Cell Proliferation and Induces Cell Apoptosis and Is Involved in the Decrease of Akt Phosphorylation in the Human Breast Carcinoma Cell Line MCF-7. Oncol. Rep. 2011, 25, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Z.; Song, W.; Zhou, L.; Li, Q.; Tao, K.; Zhou, J.; Wang, X.; Zheng, Z.; You, N.; et al. Overexpression of Bmi-1 Contributes to the Invasion and Metastasis of Hepatocellular Carcinoma by Increasing the Expression of Matrix Metalloproteinase (MMP)-2, MMP-9 and Vascular Endothelial Growth Factor via the PTEN/PI3K/Akt Pathway. Int. J. Oncol. 2013, 43, 793–802. [Google Scholar] [CrossRef]
- Zhao, Q.D.; Viswanadhapalli, S.; Williams, P.; Shi, Q.; Tan, C.; Yi, X.; Bhandari, B.; Abboud, H.E. NADPH Oxidase 4 Induces Cardiac Fibrosis and Hypertrophy through Activating Akt/mTOR and NFκB Signaling Pathways. Circulation 2015, 131, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wu, Z.; Yang, K.; Han, Y.; Chen, Y.; Zhao, W.; Huang, F.; Jin, Y.; Jin, W. BMI1 Promotes Cardiac Fibrosis in Ischemia-Induced Heart Failure via the PTEN-PI3K/Akt-mTOR Signaling Pathway. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H61–H69. [Google Scholar] [CrossRef]
- Yang, C.-F. Clinical Manifestations and Basic Mechanisms of Myocardial Ischemia/Reperfusion Injury. Ci Ji Yi Xue Za Zhi 2018, 30, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bellanti, F. Hypoxia-Inducible Factor-1 in Myocardial Ischaemia/Reperfusion Injury. Acta Physiol. 2017, 221, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-X.; Li, H.; He, J.-S.; Chu, H.-J.; Zhang, X.-T.; Yin, L. Remote Ischemic Postconditioning Alleviates Myocardial Ischemia/Reperfusion Injury by up-Regulating ALDH2. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6475–6484. [Google Scholar] [CrossRef]
- Aoyagi, T.; Kusakari, Y.; Xiao, C.-Y.; Inouye, B.T.; Takahashi, M.; Scherrer-Crosbie, M.; Rosenzweig, A.; Hara, K.; Matsui, T. Cardiac mTOR Protects the Heart against Ischemia-Reperfusion Injury. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H75–H85. [Google Scholar] [CrossRef] [PubMed]
- Shimada, B.K.; Yorichika, N.; Higa, J.K.; Baba, Y.; Kobayashi, M.; Aoyagi, T.; Suhara, T.; Matsui, T. mTOR-Mediated Calcium Transients Affect Cardiac Function in Ex Vivo Ischemia-Reperfusion Injury. Physiol. Rep. 2021, 9, e14807. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ma, M.; Zheng, Y.; Pan, Y.; Lin, X. mTOR and Beclin1: Two Key Autophagy-related Molecules and Their Roles in Myocardial Ischemia/Reperfusion Injury. J. Cell. Physiol. 2019, 234, 12562–12568. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Kong, F.; Nong, H.; Cai, L.; Tian, Y.; Hou, H.; Wang, L.; Qiu, X. Ammonium Persulfate-Loaded Carboxylic Gelatin-Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial-Mesenchymal Transition via Autophagy and the mTOR Pathway. ACS Nano 2023, 17, 20246–20261. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, M.; Zhou, L.; Jin, S.; Cheng, H.; Li, X.; Shi, Y.; Xiang, T.; Zhang, Z.; Liu, Z.; et al. Mitochondria Transplantation Alleviates Cardiomyocytes Apoptosis through Inhibiting AMPKα-mTOR Mediated Excessive Autophagy. FASEB J. 2024, 38, e23655. [Google Scholar] [CrossRef]
- Gao, G.; Chen, W.; Yan, M.; Liu, J.; Luo, H.; Wang, C.; Yang, P. Rapamycin Regulates the Balance between Cardiomyocyte Apoptosis and Autophagy in Chronic Heart Failure by Inhibiting mTOR Signaling. Int. J. Mol. Med. 2020, 45, 195–209. [Google Scholar] [CrossRef]
- Rockhold, J.D.; Marszalkowski, H.; Sannella, M.; Gibney, K.; Murphy, L.; Zukowski, E.; Kalantar, G.H.; SantaCruz-Calvo, S.; Hart, S.N.; Kuhn, M.K.; et al. Everolimus Alleviates CD4+ T Cell Inflammation by Regulating Autophagy and Cellular Redox Homeostasis. GeroScience 2024, 46, 5681–5699. [Google Scholar] [CrossRef]
- Choi, J.C.; Muchir, A.; Wu, W.; Iwata, S.; Homma, S.; Morrow, J.P.; Worman, H.J. Temsirolimus Activates Autophagy and Ameliorates Cardiomyopathy Caused by Lamin A/C Gene Mutation. Sci. Transl. Med. 2012, 4, 144ra102. [Google Scholar] [CrossRef]
- Iglesias, J.F.; Roffi, M.; Losdat, S.; Muller, O.; Degrauwe, S.; Kurz, D.J.; Haegeli, L.; Weilenmann, D.; Kaiser, C.; Tapponnier, M.; et al. Long-Term Outcomes with Biodegradable Polymer Sirolimus-Eluting Stents versus Durable Polymer Everolimus-Eluting Stents in ST-Segment Elevation Myocardial Infarction: 5-Year Follow-up of the BIOSTEMI Randomised Superiority Trial. Lancet 2023, 402, 1979–1990. [Google Scholar] [CrossRef]
- Cha, B.-H.; Jung, M.; Kim, A.S.; Lepak, V.C.; Colson, B.A.; Bull, D.A.; Won, Y. AZD2014, a Dual mTOR Inhibitor, Attenuates Cardiac Hypertrophy in Vitro and in Vivo. J. Biol. Eng. 2021, 15, 24. [Google Scholar] [CrossRef]
- Tan, X.; Chen, Y.; Zou, S.; Wang, W.; Zhang, N.; Sun, Z.-Y.; Xian, W.; Li, X.; Tang, B.; Wang, H.; et al. ALDH2 Attenuates Ischemia and Reperfusion Injury through Regulation of Mitochondrial Fusion and Fission by PI3K/AKT/mTOR Pathway in Diabetic Cardiomyopathy. Free Radic. Biol. Med. 2023, 195, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Boudina, S.; Abel, E.D. Diabetic Cardiomyopathy, Causes and Effects. Rev. Endocr. Metab. Disord. 2010, 11, 31–39. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Hu, F.; Wang, P.; Xie, Y.; Li, F.; Guo, B. Neuregulin-4 Attenuates Diabetic Cardiomyopathy by Regulating Autophagy via the AMPK/mTOR Signalling Pathway. Cardiovasc. Diabetol. 2022, 21, 205. [Google Scholar] [CrossRef] [PubMed]
- Selvarani, R.; Mohammed, S.; Richardson, A. Effect of Rapamycin on Aging and Age-Related Diseases—Past and Future. GeroScience 2020, 43, 1135. [Google Scholar] [CrossRef]
- Cohen, E.E.W. mTOR: The Mammalian Target of Replication. J. Clin. Oncol. 2008, 26, 348–349. [Google Scholar] [CrossRef]
- Quarles, E.; Basisty, N.; Chiao, Y.A.; Merrihew, G.; Gu, H.; Sweetwyne, M.T.; Fredrickson, J.; Nguyen, N.-H.; Razumova, M.; Kooiker, K.; et al. Rapamycin Persistently Improves Cardiac Function in Aged, Male and Female Mice, Even Following Cessation of Treatment. Aging Cell 2019, 19, e13086. [Google Scholar] [CrossRef] [PubMed]
- Soefje, S.A.; Karnad, A.; Brenner, A.J. Common Toxicities of Mammalian Target of Rapamycin Inhibitors. Target. Oncol. 2011, 6, 125–129. [Google Scholar] [CrossRef]
- Rini, B.I. Temsirolimus, an Inhibitor of Mammalian Target of Rapamycin. Clin. Cancer Res. 2008, 14, 1286–1290. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, H. Everolimus in Pituitary Tumor: A Review of Preclinical and Clinical Evidence. Front. Endocrinol. 2024, 15, 1456922. [Google Scholar] [CrossRef] [PubMed]
- Toniato de Rezende Freschi, J.; Cristelli, M.P.; Viana, L.A.; Ficher, K.N.; Nakamura, M.R.; Proença, H.; Dreige, Y.C.; de Marco, R.; de Lima, M.G.; Foresto, R.D.; et al. A Head-to-Head Comparison of De Novo Sirolimus or Everolimus Plus Reduced-Dose Tacrolimus in Kidney Transplant Recipients: A Prospective and Randomized Trial. Transplantation 2024, 108, 261–275. [Google Scholar] [CrossRef]
- Willems, L.M.; Rosenow, F.; Schubert-Bast, S.; Kurlemann, G.; Zöllner, J.P.; Bast, T.; Bertsche, A.; Bettendorf, U.; Ebrahimi-Fakhari, D.; Grau, J.; et al. Efficacy, Retention and Tolerability of Everolimus in Patients with Tuberous Sclerosis Complex: A Survey-Based Study on Patients’ Perspectives. CNS Drugs 2021, 35, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiu, Q.; Yang, D.; Cao, C.; Lu, Y.; Zeng, Y.; Jiang, W.; Shen, Y.; Ye, Y. Clinical Research Progress of Ridaforolimus (AP23573, MK8668) over the Past Decade: A Systemic Review. Front. Pharmacol. 2024, 15, 1173240. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, T.; Lin, Z.; Fang, Y.; Li, L.; Huang, D.; Wu, J.; Zhao, Y.; Zhang, X. AZD8055 Is More Effective Than Rapamycin in Inhibiting Proliferation and Promoting Mitochondrial Clearance in Erythroid Differentiation. Anal. Cell. Pathol. 2024, 2024, 2639464. [Google Scholar] [CrossRef] [PubMed]
- Chresta, C.M.; Davies, B.R.; Hickson, I.; Harding, T.; Cosulich, S.; Critchlow, S.E.; Vincent, J.P.; Ellston, R.; Jones, D.; Sini, P.; et al. AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with in Vitro and in Vivo Antitumor Activity. Cancer Res. 2010, 70, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Urdzikova, L.M.; Cimermanova, V.; Karova, K.; Dominguez, J.; Stepankova, K.; Petrovicova, M.; Havelikova, K.; Gandhi, C.D.; Jhanwar-Uniyal, M.; Jendelova, P. The Role of Green Tea Catechin Epigallocatechin Gallate (EGCG) and Mammalian Target of Rapamycin (mTOR) Inhibitor PP242 (Torkinib) in the Treatment of Spinal Cord Injury. Antioxidants 2023, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Fantus, D.; Thomson, A.W. The Ups and Downs of TORKinibs in Transplantation. Transplantation 2015, 99, e117–e118. [Google Scholar] [CrossRef]
- Choi, S.; Kim, K.; Cha, M.; Kim, M.; Lee, B.H. mTOR Signaling Intervention by Torin1 and XL388 in the Insular Cortex Alleviates Neuropathic Pain. Neurosci. Lett. 2020, 718, 134742. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.G.; Jeong, S.W.; Gillick, J.L.; Sursal, T.; Murali, R.; Gandhi, C.D.; Jhanwar-Uniyal, M. Targeting the mTOR Pathway Using Novel ATP-competitive Inhibitors, Torin1, Torin2 and XL388, in the Treatment of Glioblastoma. Int. J. Oncol. 2021, 59, 83. [Google Scholar] [CrossRef]
- Lin, F.; Buil, L.; Sherris, D.; Beijnen, J.H.; Van Tellingen, O. Dual mTORC1 and mTORC2 Inhibitor Palomid 529 Penetrates the Blood–Brain Barrier without Restriction by ABCB1 and ABCG2. Intl. J. Cancer 2013, 133, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.; Nguewa, P.A.; Diaz-Gonzalez, J.A.; Hamel, E.; Gonzalez-Moreno, O.; Catena, R.; Serrano, D.; Redrado, M.; Sherris, D.; Calvo, A. The Novel Akt Inhibitor Palomid 529 (P529) Enhances the Effect of Radiotherapy in Prostate Cancer. Br. J. Cancer 2009, 100, 932–940. [Google Scholar] [CrossRef]
- Yang, G.; Francis, D.; Krycer, J.R.; Larance, M.; Zhang, Z.; Novotny, C.J.; Diaz-Vegas, A.; Shokat, K.M.; James, D.E. Dissecting the Biology of mTORC1 beyond Rapamycin. Sci. Signal. 2021, 14, eabe0161. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Aksoy, O.; Wong, R.A.; Ilkhanizadeh, S.; Novotny, C.J.; Gustafson, W.C.; Truong, A.Y.-Q.; Cayanan, G.; Simonds, E.F.; Haas-Kogan, D.; et al. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 2017, 31, 424–435. [Google Scholar] [CrossRef]
- Dawood, A.F.; Alzamil, N.M.; Hewett, P.W.; Momenah, M.A.; Dallak, M.; Kamar, S.S.; Abdel Kader, D.H.; Yassin, H.; Haidara, M.A.; Maarouf, A.; et al. Metformin Protects against Diabetic Cardiomyopathy: An Association between Desmin–Sarcomere Injury and the iNOS/mTOR/TIMP-1 Fibrosis Axis. Biomedicines 2022, 10, 984. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Fang, X.; Green, C.D.; Das, A. mTORC1 and SGLT2 Inhibitors—A Therapeutic Perspective for Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 15078. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Qiu, Q.; Wang, L.; Li, X.-R.; Zhou, S.; Wang, H.; Jiang, W.-D.; Geng, J.-Y.; Qin, G.; Tang, B.; et al. Quercetin Ameliorates Myocardial Injury in Diabetic Rats by Regulating Autophagy and Apoptosis through AMPK/mTOR Signaling Pathway. Am. J. Chin. Med. 2024, 52, 841–864. [Google Scholar] [CrossRef]
- Packer, M. Longevity Genes, Cardiac Ageing, and the Pathogenesis of Cardiomyopathy: Implications for Understanding the Effects of Current and Future Treatments for Heart Failure. Eur. Heart J. 2020, 41, 3856–3861. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Z.; Li, Y.; Liu, X.; Sun, Y.; Hong, J.; Ding, Y.; Zheng, W.; Qian, L.; Xu, D. Cardioprotection of Klotho against Myocardial Infarction-Induced Heart Failure through Inducing Autophagy. Mech. Ageing Dev. 2022, 207, 111714. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.-H.; Zhang, Z.-M.; Wang, P.; Zhu, H.-P.; Li, Z.-Q. Yangxinkang Tablet Protects against Cardiac Dysfunction and Remodelling after Myocardial Infarction in Rats through Inhibition of AMPK/mTOR-Mediated Autophagy. Pharm. Biol. 2020, 58, 321–327. [Google Scholar] [CrossRef]
- Ma, Z.-G.; Dai, J.; Zhang, W.-B.; Yuan, Y.; Liao, H.-H.; Zhang, N.; Bian, Z.-Y.; Tang, Q.-Z. Protection against Cardiac Hypertrophy by Geniposide Involves the GLP-1 Receptor/AMPKα Signalling Pathway. Br. J. Pharmacol. 2016, 173, 1502–1516. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Ma, Q.; Xia, R.; Gao, B.; Zhu, G.; Wang, J. Moxibustion Improves Chronic Heart Failure by Inhibiting Autophagy and Inflammation via Upregulation of mTOR Expression. Evid. Based Complement. Altern. Med. 2021, 2021, 6635876. [Google Scholar] [CrossRef]
- Yang, B.; Xu, B.; Zhao, H.; Wang, Y.-B.; Zhang, J.; Li, C.-W.; Wu, Q.; Cao, Y.-K.; Li, Y.; Cao, F. Dioscin Protects against Coronary Heart Disease by Reducing Oxidative Stress and Inflammation via Sirt1/Nrf2 and P38 MAPK Pathways. Mol. Med. Rep. 2018, 18, 973–980. [Google Scholar] [CrossRef]
- Yuan, L.; Ji, H.; Yan, X.; Liu, M.; Ding, Y.; Chen, X. Dioscin Ameliorates Doxorubicin-induced Heart Failure via Inhibiting Autophagy and Apoptosis by Controlling the PDK1-mediated Akt/mTOR Signaling Pathway. Kaohsiung J. Med. Scie 2023, 39, 1022–1029. [Google Scholar] [CrossRef]
- Wan, M.; Yin, K.; Yuan, J.; Ma, S.; Xu, Q.; Li, D.; Gao, H.; Gou, X. YQFM Alleviated Cardiac Hypertrophy by Apoptosis Inhibition and Autophagy Regulation via PI3K/AKT/mTOR Pathway. J. Ethnopharmacol. 2022, 285, 114835. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, X.; Cheng, C.; Chen, J.; Huang, S.; Xu, M.; Liu, S. Berberine Attenuates Cardiac Hypertrophy Through Inhibition of mTOR Signaling Pathway. Cardiovasc. Drugs Ther. 2020, 34, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Liao, M.; Jin, W.; Liu, W.; Li, Z.; Fan, Z.; Zou, L.; Chen, S.; Zhu, L.; Zhao, Q.; et al. 2-APQC, a Small-Molecule Activator of Sirtuin-3 (SIRT3), Alleviates Myocardial Hypertrophy and Fibrosis by Regulating Mitochondrial Homeostasis. Sigal Transduct. Target. Ther. 2024, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Sun, Z.-M.; Wang, N.; Zhou, J.; Luo, L.-F.; Zhao, Y.-S.; Ji, E.-S. Resveratrol Prevents Chronic Intermittent Hypoxia-Induced Cardiac Hypertrophy by Targeting the PI3K/AKT/mTOR Pathway. Life Sci. 2019, 233, 116748. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, F.; Gonzalo, N.; Rivero, F.; Escaned, J. The Year in Cardiovascular Medicine 2020: Interventional Cardiology. Eur. Heart J. 2021, 42, 985–1003. [Google Scholar] [CrossRef]
- Ramya, V.; Shyam, K.P.; Kowsalya, E.; Balavigneswaran, C.K.; Kadalmani, B. Dual Roles of Coconut Oil and Its Major Component Lauric Acid on Redox Nexus: Focus on Cytoprotection and Cancer Cell Death. Front. Neurosci. 2022, 16, 833630. [Google Scholar] [CrossRef]
- Li, Y.; Lu, R.; Niu, Z.; Wang, D.; Wang, X. Suxiao Jiuxin Pill Alleviates Myocardial Ischemia–Reperfusion Injury through the ALKBH5/GSK3β/mTOR Pathway. Chin. Med. 2023, 18, 31. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Chen, H.; Cen, H.; Yang, H.; Liu, P.; Liu, F.; Ma, L.; Chen, Q.; Wang, L. Tongguan Capsule for Treating Myocardial Ischemia-Reperfusion Injury: Integrating Network Pharmacology and Mechanism Study. Pharm. Biol. 2023, 61, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.-Y.; Fu, T.; He, S.-M.; Fu, L.; Li, X.-Z.; Xu, L.; Du, L.; Yang, T.-T.; Zhu, X.; Wang, C.; et al. 16α-OHE1, a Novel Oestrogen Metabolite, Attenuates Dysfunction of Left Ventricle Contractility via Regulation of Autophagy after Myocardial Ischemia and Reperfusion. Int. J. Cardiol. 2023, 388, 131123. [Google Scholar] [CrossRef]
- Tong, Z.; Li, G.; Su, C.; Zhou, L.; Zhang, L.; Chen, Q.; Xia, Q. L-Borneol 7-O-[β-d-Apiofuranosyl-(1→6)]-β-d-Glucopyranoside Alleviates Myocardial Ischemia-Reperfusion Injury in Rats and Hypoxic/Reoxygenated Injured Myocardial Cells via Regulating the PI3K/AKT/mTOR Signaling Pathway. J. Immunol. Res. 2022, 2022, 5758303. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Zeng, N.; Li, H.; Hua, B. Panax Notoginseng Saponins Dually Modulates Autophagy in Gastric Precancerous Lesions Complicated with Myocardial Ischemia-Reperfusion Injury Model through the PI3K/AKT/mTOR Pathway. Biomed. Pharmacother. 2024, 178, 117268. [Google Scholar] [CrossRef] [PubMed]
mTORC1 | mTORC2 | |
---|---|---|
Composition | mTOR, mLST8 (also known as GβL), Raptor, and DEPTOR | mTOR, mLST8, DEPTOR, Tel2-interacting protein 1, and specific subunits such as Rictor, Rictor-associated protein 1, and mSIN1 |
Function | Nutritional and growth factor sensing, promotion of anabolism, and regulation of autophagy | Promoting cell survival and proliferation by insulin/PI3K signaling, cytoskeletal regulation, and ion transport and growth |
Upstream regulatory mechanisms | Activation of PI3K and its downstream effector Akt, inhibition of mTORC1 by AMPK and PTEN | Inhibition of mTORC2 by rapamycin, activation of mTORC2 by Wnt3A, sNAIL1, growth factors (Insulin/PI3K Signaling), and acute energy stress (AMPK) |
Downstream regulatory mechanisms | Upon activation, mTORC1 phosphorylates 4EBP1 (which releases eIF4E), activates S6K, and regulates autophagy by inhibiting the transcription factor EB and phosphorylating ULK1 and autophagy-related protein 13 | Regulation of Akt, PKC, and SGK1(through the phosphorylation of their hydrophobic motif (HM) and turn motif (TM)) |
mTOR Inhibitor | Cardiopathy | Phase | Statues | Trail Identifier |
---|---|---|---|---|
Metformin | Heart failure | II | Terminated | NCT03331861 |
Everolimus | Heart infarction | IV | complete | NCT01347554 |
Everolimus | Coronary heart disease | III | complete | NCT00180479 |
Sirolimus | Ischemic heart disease | III | complete | NCT00476957 |
Rapamycin | Heart failure | I | complete | NCT04996719 |
Metformin | Ischemic heart disease | IV | complete | NCT01438723 |
Cardiopathy | Signal Pathways | Drugs | References |
---|---|---|---|
Diabetic cardiomyopathy | PI3K/Akt/mTOR | ALDH2 | [121] |
Diabetic cardiomyopathy | AMPK/mTOR | Neuregulin-4; SGLT2is; Quercetin | [123,144,145] |
Diabetic cardiomyopathy | INOS/mTOR/TIMP-1 | Metformin | [143] |
Heart failure | PI3K/Akt/mTOR | Dioscin | [147,152] |
Heart failure | AMPK/mTOR | Effect of Yangxinkang Tablets; geniposide | [148,149] |
Myocardial Hypertrophy | PI3K/Akt/mTOR | YQFM; Resveratrol | [151] |
Myocardial Hypertrophy | AMPK/mTOR | Resveratrol | [154] |
Myocardial Hypertrophy | Akt/mTOR/p70S6K | Berberine; 2-APQC | [154,155] |
Myocardial ischemia/reperfusion injury | ALKBH5/GSK3β/mTOR | SJP | [159] |
Myocardial ischemia/reperfusion injury | AMPK/mTOR | 16α-OHE1 | [161] |
Myocardial ischemia/reperfusion injury | PI3K/Akt/mTOR | LBAG; PNS; Radix Ophiopogonis; TGC | [160,162,163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, Y.; Wang, Z.; Liu, J.; Liu, Z.; Yang, J.; He, Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines 2025, 13, 397. https://doi.org/10.3390/biomedicines13020397
Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines. 2025; 13(2):397. https://doi.org/10.3390/biomedicines13020397
Chicago/Turabian StyleWang, Jieyu, Yuxuan Huang, Zhaoxia Wang, Jing Liu, Zhijian Liu, Jinfeng Yang, and Zuping He. 2025. "The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease" Biomedicines 13, no. 2: 397. https://doi.org/10.3390/biomedicines13020397
APA StyleWang, J., Huang, Y., Wang, Z., Liu, J., Liu, Z., Yang, J., & He, Z. (2025). The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines, 13(2), 397. https://doi.org/10.3390/biomedicines13020397