Botulinum Neurotoxins as Two-Faced Janus Proteins
Abstract
:1. Introduction
2. Genetics, Structure, and Mechanism of Action of BoNT
3. Spreading of Clostridia in the Animal World
4. BoNT for Therapeutic or Cosmetic Use
- Treatment of overactive bladder (OAB) with symptoms of urinary incontinence, urgency, and frequency, in adults who have an inadequate response to or are intolerant of an anticholinergic medication;
- Treatment of urinary incontinence due to detrusor overactivity associated with a neurologic condition, e.g., spinal cord injury (SCI), multiple sclerosis (MS), etc., in adults who have an inadequate response to or are intolerant of an anticholinergic medication;
- Treatment of neurogenic detrusor overactivity (NDO) in pediatric patients 5 years of age and older who have an inadequate response to or are intolerant of anticholinergic medication;
- Prophylaxis of headaches in adult patients with chronic migraine (≥ 15 days per month with headache lasting 4 h a day or longer);
- Treatment of spasticity in patients 2 years of age and older;
- Treatment of cervical dystonia in adult patients, to reduce the severity of abnormal head position and neck pain;
- Treatment of severe axillary hyperhidrosis that is inadequately managed by topical agents in adult patients;
- Treatment of blepharospasm associated with dystonia in patients 12 years of age and older;
- Treatment of strabismus in patients 12 years of age and older.
5. Forms of Human Botulism—Epidemiology
5.1. Foodborne Botulism
5.2. Infant Botulism
5.3. Wound Botulism
5.4. Adult Intestinal Botulism
5.5. Iatrogenic Botulism
5.6. Inhalational Botulism
5.7. BoNT as a Biological Weapon
5.8. Epidemiology
6. Diagnosis
7. Prophylaxis and Therapy
7.1. Vaccines
7.2. Passive Immunotherapy
7.2.1. Human Botulism Immune Globulin Intravenous (BIG-IV or BabyBIG)
7.2.2. Heptavalent Botulism Antitoxin (HBAT)
7.2.3. Monoclonal Antibodies
7.2.4. Camelid Nanobodies
7.3. Small-Molecule Inhibitors
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rawson, A.M.; Dempster, A.W.; Humphreys, C.M.; Minton, N.P. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023, 14, 2205251. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Cenciarelli, O.; Riley, P.W.; Baka, A. Biosecurity Threat Posed by Botulinum Toxin. Toxins 2019, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Burke, G.S. Notes on Bacillus botulinus. J. Bacteriol. 1919, 4, 555–570.1. [Google Scholar] [CrossRef]
- Giménez, D.F.; Ciccarelli, A.S. Another type of Clostridium botulinum. Zentralbl Bakteriol Orig. 1970, 215, 221–224. [Google Scholar] [PubMed]
- Smith, T.J.; Lou, J.; Geren, I.N.; Forsyth, C.M.; Tsai, R.; Laporte, S.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Smith, L.A.; et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun. 2005, 73, 5450–5457. [Google Scholar] [CrossRef] [PubMed]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef] [PubMed]
- Tehran, D.A.; Pirazzini, M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins 2018, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Dover, N.; Barash, J.R.; Hill, K.K.; Xie, G.; Arnon, S.S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect Dis. 2014, 209, 192–202. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef] [PubMed]
- Gregg, B.M.; Matsumura, T.; Wentz, T.G.; Tepp, W.H.; Bradshaw, M.; Stenmark, P.; Johnson, E.A.; Fujinaga, Y.; Pellett, S. Botulinum neurotoxin X lacks potency in mice and in human neurons. mBio 2024, 15, e0310623. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Lista, F.; Montecucco, C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol. 2019, 21, e13037. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Fabris, F.; Montecucco, C. Botulinum Neurotoxins: Mechanism of Action. Handb. Exp. Pharmacol. 2021, 263, 35–47. [Google Scholar] [CrossRef]
- Harper, C.B.; Martin, S.; Nguyen, T.H.; Daniels, S.J.; Lavidis, N.A.; Popoff, M.R.; Hadzic, G.; Mariana, A.; Chau, N.; McCluskey, A.; et al. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J. Biol. Chem. 2011, 286, 35966–35976. [Google Scholar] [CrossRef]
- Rummel, A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr. Top. Microbiol. Immunol. 2013, 364, 61–90. [Google Scholar] [CrossRef]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef]
- Setlow, P. Spore Resistance Properties. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J.; the Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for Disinfection and Sterilization in Healthcare Facilities. 2008; CDC. Available online: https://stacks.cdc.gov/view/cdc/11560 (accessed on 15 December 2024).
- Sehulster, L.; Chinn, R.Y.; CDC; HICPAC. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm. Rep. 2003, 52, 1–42. [Google Scholar] [PubMed]
- Spotts Whitney, E.A.; Beatty, M.E.; Taylor, T.H., Jr.; Weyant, R.; Sobel, J.; Arduino, M.J.; Ashford, D.A. Inactivation of Bacillus anthracis spores. Emerg. Infect Dis. 2003, 9, 623–627. [Google Scholar] [CrossRef]
- Munir, M.T.; Mtimet, N.; Guillier, L.; Meurens, F.; Fravalo, P.; Federighi, M.; Kooh, P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023, 12, 1580. [Google Scholar] [CrossRef]
- Jabbari, B. History of Botulinum Toxin Treatment in Movement Disorders. Tremor. Other Hyperkinet Mov. 2016, 6, 394. [Google Scholar] [CrossRef]
- Jankovic, J.; Brin, M.F. Therapeutic uses of botulinum toxin. N Engl. J. Med. 1991, 324, 1186–1194. [Google Scholar] [CrossRef]
- Scott, A.B.; Fahn, S.; Brin, M.F. Treatment of strabismus and blepharospasm with Botox (onabotulinumtoxinA): Development, insights, and impact. Medicine 2023, 102, e32374. [Google Scholar] [CrossRef]
- Becker, W.J. Botulinum Toxin in the Treatment of Headache. Toxins 2020, 12, 803. [Google Scholar] [CrossRef]
- Brin, M.F.; James, C.; Maltman, J. Botulinum toxin type A products are not interchangeable: A review of the evidence. Biologics 2014, 8, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.J.; Dayan, S.H. Comparison and overview of currently available neurotoxins. J. Clin. Aesthet. Dermatol. 2014, 7, 31–39. [Google Scholar] [PubMed]
- Camargo, C.P.; Xia, J.; Costa, C.S.; Gemperli, R.; Tatini, M.D.; Bulsara, M.K.; Riera, R. Botulinum toxin type A for facial wrinkles. Cochrane Database Syst. Rev. 2021, 7, CD011301. [Google Scholar] [CrossRef]
- Pickett, A.; Mewies, M. Serious issues relating to the clinical use of unlicensed botulinum toxin products. J. Am. Acad. Dermatol. 2009, 61, 149–150. [Google Scholar] [CrossRef]
- Botulism. Available online: https://www.who.int/news-room/fact-sheets/detail/botulism/ (accessed on 20 December 2024).
- Lonati, D.; Schicchi, A.; Crevani, M.; Buscaglia, E.; Scaravaggi, G.; Maida, F.; Cirronis, M.; Petrolini, V.M.; Locatelli, C.A. Foodborne Botulism: Clinical Diagnosis and Medical Treatment. Toxins 2020, 12, 509. [Google Scholar] [CrossRef]
- Botulism, Exposure and Transmission. Available online: https://www.who.int/news-room/fact-sheets/detail/botulism/#:~:text=The%20botulinum%20toxin%20has%20been%20found%20in%20a,and%20meat%20products%2C%20such%20as%20ham%20and%20sausage (accessed on 15 December 2024).
- CDC. About Botulism. Available online: https://www.cdc.gov/botulism/about/ (accessed on 15 December 2024).
- Carter, A.T.; Peck, M.W. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef]
- Arnon, S.S.; Midura, T.F.; Damus, K.; Thompson, B.; Wood, R.M.; Chin, J. Honey and other environmental risk factors for infant botulism. J. Pediatr. 1979, 94, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.K.; Keet, C.A.; Strober, J.B. Recent advances in infant botulism. Pediatr. Neurol. 2005, 32, 149–154. [Google Scholar] [CrossRef]
- Wong, D.M.; Young-Perkins, K.E.; Merson, R.L. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Appl. Environ. Microbiol. 1988, 54, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.B.; Mattman, L.H.; Wiley, M. Clostridium botulinum in a fatal wound infection. JAMA 1951, 146, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Merson, M.H.; Dowell, V.R., Jr. Epidemiologic, clinical and laboratory aspects of wound botulism. N Engl. J. Med. 1973, 289, 1005–1010. [Google Scholar] [CrossRef]
- Kuehn, B. Wound Botulism Outbreak. JAMA 2019, 321, 538. [Google Scholar] [CrossRef]
- Harris, R.A.; Anniballi, F.; Austin, J.W. Adult Intestinal Toxemia Botulism. Toxins 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, R.K.; Mishra, S.; Tuglo, L.S. Surge in iatrogenic botulism cases in Europe: Threat perceptions and salient countering measures. New Microbes New Infect. 2023, 53, 101142. [Google Scholar] [CrossRef]
- Biological and chemical terrorism: Strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm. Rep. 2000, 49, 1–14. [Google Scholar]
- Tatu, L.; Feugeas, J.P. Botulinum Toxin in WW2 German and Allied Armies: Failures and Myths of Weaponization. Eur. Neurol. 2021, 84, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Villar, R.G.; Elliott, S.P.; Davenport, K.M. Botulism: The many faces of botulinum toxin and its potential for bioterrorism. Infect Dis. Clin. North Am. 2006, 20, 313–327. [Google Scholar] [CrossRef] [PubMed]
- ECDC. SURVEILLANCE REPORT. Botulism. Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/BOTU_AER_2022_Report%20FINAL.pdf (accessed on 21 December 2024).
- Learoyd, T.P. Underreporting or Failed Notification? Global Botulism Reporting, 2000–2022. Health Secur. 2024, 22, 203–209. [Google Scholar] [CrossRef]
- Anniballi, F.; Auricchio, B.; Fiore, A.; Lonati, D.; Locatelli, C.A.; Lista, F.; Fillo, S.; Mandarino, G.; De Medici, D. Botulism in Italy, 1986 to 2015. Euro Surveill. 2017, 22, 30550. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. National Botulism Surveillance Summary. 2019. Available online: https://www.cdc.gov/botulism/php/national-botulism-surveillance/2019.html (accessed on 15 December 2024).
- Anniballi, F. Lessons from a recent multicountry iatrogenic botulism outbreak. Euro Surveill. 2023, 28, 2300280. [Google Scholar] [CrossRef] [PubMed]
- WHO. Medical Product Alert N°4/2022: Falsified DYSPORT. Available online: https://www.who.int/news/item/19-08-2022-medical-product-alert-n-4-2022-falsified-dysport# (accessed on 10 December 2024).
- Rashid, E.A.M.A.; El-Mahdy, N.M.; Kharoub, H.S.; Gouda, A.S.; ElNabarawy, N.A.; Mégarbane, B. Iatrogenic Botulism Outbreak in Egypt due to a Counterfeit Botulinum Toxin A Preparation—A Descriptive Series of Patient Features and Outcome. Basic Clin. Pharmacol. Toxicol. 2018, 123, 622–627. [Google Scholar] [CrossRef]
- Bach, K.; Simman, R. The Multispecialty Toxin: A Literature Review of Botulinum Toxin. Plast Reconstr. Surg. Glob. Open. 2022, 10, e4228. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, F.J.; Cer, R.Z.; Mudunuri, U.; Stephens, R.; Singh, B.R.; Adler, M. The zinc-dependent protease activity of the botulinum neurotoxins. Toxins 2010, 2, 978–997. [Google Scholar] [CrossRef]
- Garland, M.; Babin, B.M.; Miyashita, S.I.; Loscher, S.; Shen, Y.; Dong, M.; Bogyo, M. Covalent modifiers of botulinum neurotoxin counteract toxin persistence. ACS Chem. Biol. 2019, 14, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Azarnia Tehran, D.; Zanetti, G.; Leka, O.; Lista, F.; Fillo, S.; Binz, T.; Shone, C.C.; Rossetto, O.; Montecucco, C.; Paradisi, C.; et al. A novel inhibitor prevents the peripheral neuroparalysis of botulinum neurotoxins. Sci. Rep. 2015, 5, 17513. [Google Scholar] [CrossRef]
- Caratelli, V.; Fillo, S.; D’Amore, N.; Rossetto, O.; Pirazzini, M.; Moccia, M.; Avitabile, C.; Moscone, D.; Lista, F.; Arduini, F. Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosens Bioelectron. 2021, 183, 113210. [Google Scholar] [CrossRef]
- Gupta, S.; Pellett, S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins 2023, 15, 563. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. MMWR Morb. Mortal Wkly Rep. 2011, 60, 1454–1455. [Google Scholar]
- Rusnak, J.M.; Smith, L.A. Botulinum neurotoxin vaccines: Past history and recent developments. Hum. Vaccin. 2009, 5, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Torii, Y.; Tokumaru, Y.; Kawaguchi, S.; Izumi, N.; Maruyama, S.; Mukamoto, M.; Kozaki, S.; Takahashi, M. Production and immunogenic efficacy of botulinum tetravalent (A, B, E, F) toxoid. Vaccine 2002, 20, 2556–2561. [Google Scholar] [CrossRef] [PubMed]
- Torii, Y.; Sugimoto, N.; Kohda, T.; Kozaki, S.; Morokuma, K.; Horikawa, Y.; Ginnaga, A.; Yamamoto, A.; Takahashi, M. Clinical Study of New Tetravalent (Type A, B, E, and F) Botulinum Toxoid Vaccine Derived from M Toxin in Japan. Jpn J. Infect Dis. 2017, 70, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Khouri, J.M.; Motter, R.N.; Arnon, S.S. Safety and immunogenicity of investigational recombinant botulinum vaccine, rBV A/B, in volunteers with pre-existing botulinum toxoid immunity. Vaccine 2018, 36, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.P.; Smith, T.J.; Smith, L.A.; Wright, P.M.; Guernieri, R.L.; Brown, J.L.; Skerry, J.C. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human botulism immune globulin for the treatment of infant botulism. N Engl. J. Med. 2006, 354, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.K.; Sobel, J.; Chatham-Stephens, K.; Luquez, C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm. Rep. 2021, 70, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Dembek, Z.F.; Smith, L.A.; Rusnak, J.M. Botulism: Cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Med. Public Health Prep. 2007, 1, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Zeninskaya, N.A.; Ryabko, A.K.; Marin, M.A.; Kombarova, T.I.; Shkuratova, M.A.; Rogozin, M.M.; Silkina, M.V.; Romanenko, Y.O.; Ivashchenko, T.A.; Shemyakin, I.G.; et al. Selection of Candidate Monoclonal Antibodies for Therapy of Botulinum Toxin Type A Intoxications. Toxins 2024, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- Snow, D.M.; Cobb, R.R.; Martinez, J.; Finger-Baker, I.; Collins, L.; Terpening, S.; Syar, E.S.; Niemuth, N.; Kobs, D.; Barnewall, R.; et al. A Monoclonal Antibody Combination against both Serotypes A and B Botulinum Toxin Prevents Inhalational Botulism in a Guinea Pig Model. Toxins 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Thanongsaksrikul, J.; Chaicumpa, W. Botulinum neurotoxins and botulism: A novel therapeutic approach. Toxins 2011, 3, 469–488. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; Ondeck, C.A.; Tremblay, J.M.; Archer, J.; Debatis, M.; Foss, A.; Awata, J.; Erasmus, J.H.; McNutt, P.M.; Shoemaker, C.B. Intramuscular delivery of formulated RNA encoding six linked nanobodies is highly protective for exposures to three Botulinum neurotoxin serotypes. Sci. Rep. 2022, 12, 11664. [Google Scholar] [CrossRef]
- Pirazzini, M.; Bordin, F.; Rossetto, O.; Shone, C.C.; Binz, T.; Montecucco, C. The thioredoxin reductase-thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett. 2013, 587, 150–155. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, L.; Song, Y.; Wang, B.; Zhang, B.; Cui, X.; Hu, G.; Liu, Y.; Wu, J.; Fang, J. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol. Med. 2012, 52, 257–265. [Google Scholar] [CrossRef]
- Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280, 25284–25290. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. Selenoproteins. J. Biol. Chem. 2009, 284, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Papp, L.V.; Fang, J.; Rodriguez-Nieto, S.; Zhivotovsky, B.; Holmgren, A. Inhibition of Mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anticancer activity. Cancer Res. 2006, 66, 4410–4418. [Google Scholar] [CrossRef]
- Omata, Y.; Folan, M.; Shaw, M.; Messer, R.L.; Lockwood, P.E.; Hobbs, D.; Bouillaguet, S.; Sano, H.; Lewis, J.B.; Wataha, J.C. Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol. Vitro 2006, 20, 882–890. [Google Scholar] [CrossRef]
- Rackham, O.; Shearwood, A.M.; Thyer, R.; McNamara, E.; Davies, S.M.; Callus, B.A.; Miranda-Vizuete, A.; Berners-Price, S.J.; Cheng, Q.; Arnér, E.S.; et al. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Free Radic Biol. Med. 2011, 50, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Azarnia Tehran, D.; Zanetti, G.; Megighian, A.; Scorzeto, M.; Fillo, S.; Shone, C.C.; Binz, T.; Rossetto, O.; Lista, F.; et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014, 8, 1870–1878. [Google Scholar] [CrossRef]
- Zanetti, G.; Azarnia Tehran, D.; Pirazzini, M.; Binz, T.; Shone, C.C.; Fillo, S.; Lista, F.; Rossetto, O.; Montecucco, C. Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochem. Pharmacol. 2015, 98, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Kil, J.; Lobarinas, E.; Spankovich, C.; Griffiths, S.K.; Antonelli, P.J.; Lynch, E.D.; Le Prell, C.G. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2017, 390, 969–979. [Google Scholar] [CrossRef]
- Sharpley, A.L.; Williams, C.; Holder, A.A.; Godlewska, B.R.; Singh, N.; Shanyinde, M.; MacDonald, O.; Cowen, P.J. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology 2020, 237, 3773–3782. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 1998, 29, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Masaki, C.; Sharpley, A.L.; Godlewska, B.R.; Berrington, A.; Hashimoto, T.; Singh, N.; Vasudevan, S.R.; Emir, U.E.; Churchill, G.C.; Cowen, P.J. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: A magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology 2016, 233, 1097–1104. [Google Scholar] [CrossRef]
- Beckman, J.A.; Goldfine, A.B.; Leopold, J.A.; Creager, M.A. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: A randomized, crossover trial. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H1431–H1436. [Google Scholar] [CrossRef]
- Johnson, E.A.; Montecucco, C. Botulism. Handb Clin Neurol. 2008, 91, 333–368. [Google Scholar] [CrossRef] [PubMed]
C. botulinum Groups | BoNT Serotypes | Subtypes | Associated Botulism |
---|---|---|---|
Group I C. botulinum (proteolytic) | A, proteolytic B, F, H | A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, B5(Ba), B6, B7, F1, F2, F3, F4, F5, Ab, Af, Bf, A(B), FA | Human |
Group II C. botulinum (non-proteolytic) | E, non-proteolytic B, F | B4, E1, E2, E3, E6, E7, E8, E9, E10, E11, F6 | Human |
Group III C. botulinum | C, D | C, D, CD, DC | Animals only (C = birds; D = cattle) |
Group IV C. argentinense (proteolytic) | G | G | Environmentally isolated only |
C. baratii | F | F7 | Human |
C. butyricum | E | E4, E5 | Human |
Category | Indications | FDA-Approved Products | Notes |
---|---|---|---|
Therapeutic Use |
|
|
|
Esthetic Use |
|
|
|
Forms of Botulism | Source of Contamination | Epidemiology | Incubation Time | Lethality |
---|---|---|---|---|
Foodborne | Ingestion of BoNT-contaminated food | The most frequent but not in the USA | 12–72 h | 5–10% |
Infant | Ingestion of spore-contaminated food in infants up to 1 year of age | The most frequent in the USA | 18–36 h | Very low |
Adult intestinal | Intestinal colonization in >1-year-old children and adults | Very rare | Unknown | 33% |
Wound | Wound contamination by spores, mainly in IDU | Increasing frequency among IDU | 4–14 days | 11% |
Iatrogenic | Improper excessive amount of toxin administration | Increasing frequency mainly for cosmetic use | Unknown | Very low |
Inhalational | Accidental or intentional as biological weapon | Very rare | 72 h | Unknown |
Method | LOD | Turnaround Time | Serotypes Detected | Advantages | Limitations |
---|---|---|---|---|---|
Mouse bioassay | ~0.1 LD50/mL | 24–48 h | A–G | High sensitivity, gold standard | Ethical concerns, slow |
Endopep-MS | 0.05–0.1 ng/mL | 4–6 h | A, B, E, F | Rapid, serotype-specific | Requires specialized equipment |
RT-PCR | ~100 copies | 2–4 h | A, B, E, F | Gene-specific, fast | Cannot confirm toxin activity |
ELISA | 10–50 pg/mL | 2–4 h | A, B, E, F | Ethical, cost-effective | Antibody cross reactivity |
NMJ models | ~0.1 ng/mL | 4–6 h | A, B | Ethical, high-throughput | Limited validation |
Experimental paper-based sensor | 0.5–1 nM | 1–4 h | A, C | Rapid, cost-effective, smartphone-assisted device, serotype-specific | In validation, a shelf-life of 21 days |
Therapy | Mechanism | FDA Approval | Target Serotypes | Patient Effects | Limitations |
---|---|---|---|---|---|
Pentavalent Vaccine | Active immunization | No | A–E | Provides long-term immunity for high-risk individuals | Indicated for exposed personnel (laboratory workers and the military) |
BIG-IV (BabyBIG) | Neutralizes circulating toxins | Yes | A, B | Shortens hospital stays, reduces ventilator dependency, prevents paralysis | Restricted to infants; no effect on internalized toxins |
HBAT | Neutralizes circulating toxins | Yes | A–G | Mitigates systemic progression, reduces respiratory failure risk | Reactogenicity (risk of hypersensitivity and serum sickness) |
Monoclonal Abs | Targets BoNT specific epitopes | No | A, B, E (potentially all the serotypes) | Neutralizes circulating toxins, improves survival in animal models | Developmental preclinical stage |
Ebselen | Irreversibly inhibits protease | No | Not serotype-specific | Reduces neuroparalysis, delays paralysis onset | Preclinical stage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimienti, S.; Di Spirito, M.; Molinari, F.; Rozov, O.; Lista, F.; D’Amelio, R.; Salemi, S.; Fillo, S. Botulinum Neurotoxins as Two-Faced Janus Proteins. Biomedicines 2025, 13, 411. https://doi.org/10.3390/biomedicines13020411
Chimienti S, Di Spirito M, Molinari F, Rozov O, Lista F, D’Amelio R, Salemi S, Fillo S. Botulinum Neurotoxins as Two-Faced Janus Proteins. Biomedicines. 2025; 13(2):411. https://doi.org/10.3390/biomedicines13020411
Chicago/Turabian StyleChimienti, Silvia, Maria Di Spirito, Filippo Molinari, Orr Rozov, Florigio Lista, Raffaele D’Amelio, Simonetta Salemi, and Silvia Fillo. 2025. "Botulinum Neurotoxins as Two-Faced Janus Proteins" Biomedicines 13, no. 2: 411. https://doi.org/10.3390/biomedicines13020411
APA StyleChimienti, S., Di Spirito, M., Molinari, F., Rozov, O., Lista, F., D’Amelio, R., Salemi, S., & Fillo, S. (2025). Botulinum Neurotoxins as Two-Faced Janus Proteins. Biomedicines, 13(2), 411. https://doi.org/10.3390/biomedicines13020411