Performance of the Baseline Sport Concussion Assessment Tool in Male and Female Spanish Amateur Rugby Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Instruments
- Step 1:
- Background information on the athlete.
- Step 2:
- Subjective symptom evaluation includes 22 items representing common concussion symptoms, graded on a scale from 0 (none) to 6 (severe), based on how the athlete is currently feeling. The symptom number score is of a possible 22 points, while the symptom severity score is of a possible 132 points.
- Step 3:
- Cognitive screening (based on standardized assessment of concussion; SAC). The SAC is a measure of cognitive functioning that assesses 4 domains: (1) orientation to time, (2) immediate memory using the 10-word list, (3) concentration, and (4) delayed recall. Responses on the SAC are dichotomous (i.e., 0 = incorrect; 1 = correct) and result in a score between 0 and 30, with lower scores representing greater cognitive deficits.
- Step 4:
- Neurological screen includes neck examination, the modified Balance Error Scoring System (m-BESS) Examination, and a Coordination Examination.
- Step 5:
- Delayed recall is part of the SCA and should be performed after 5 min have elapsed since the end of the immediate memory section (Figure 1).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Prien, A.; Grafe, A.; Rössler, R.; Junge, A.; Verhagen, E. Epidemiology of Head Injuries Focusing on Concussions in Team Contact Sports: A Systematic Review. Sports Med. 2018, 48, 953–969. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.; Kemp, S.; Smith, A.; Trewartha, G.; Stokes, K. Professional Rugby Union players have a 60% greater risk of time loss injury after concussion: A 2-season prospective study of clinical outcomes. Br. J. Sports Med. 2016, 50, 926–931. [Google Scholar] [CrossRef]
- Cross, M.J.; Tucker, R.; Raftery, M.; Hester, B.; Williams, S.; Stokes, K.A.; Ranson, C.; Mathema, P.; Kemp, S. Tackling concussion in professional rugby union: A case-control study of tackle-based risk factors and recommendations for primary prevention. Br. J. Sports Med. 2019, 53, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nagai, S.; Iwai, K.; Furukawa, T.; Mukai, N.; Miyakawa, S.; Takemura, M. Characteristics and factors of concussion events for tacklers in collegiate rugby union. Scand. J. Med. Sci. Sports 2020, 30, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Raftery, M.; Kemp, S.; Brown, J.; Fuller, G.; Hester, B.; Cross, M.; Quarrie, K. Risk factors for head injury events in professional rugby union: A video analysis of 464 head injury events to inform proposed injury prevention strategies. Br. J. Sports Med. 2017, 51, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.J.; Iverson, G.L.; Williams, W.H.; Baker, S.; Stanwell, P. A systematic review and meta-analysis of concussion in rugby union. Sports Med. 2014, 44, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, T.L.; Tatman, J.; Suzuki, S.; Horodyski, M.; Reisman, D.S.; Bauer, R.M.; Clugston, J.R.; Herman, D.C. Impaired motor control after sport-related concussion could increase risk for musculoskeletal injury: Implications for clinical management and rehabilitation. J. Sport Health Sci. 2021, 10, 154–161. [Google Scholar] [CrossRef]
- Engelhardt, J.; Brauge, D.; Loiseau, H. Second Impact Syndrome. Myth or reality? Neurochirurgie 2021, 67, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ashina, H.; Porreca, F.; Anderson, T.; Amin, F.M.; Ashina, M.; Schytz, H.W.; Dodick, D.W. Post-traumatic headache: Epidemiology and pathophysiological insights. Nat. Rev. Neurol. 2019, 15, 607–617. [Google Scholar] [CrossRef]
- Berry, J.A.D.; Elia, C.; Sweiss, R.; Lawandy, S.; Bowen, I.; Zampella, B.; Saini, H.; Brazdzionis, J.; Miulli, D. Pathophysiologic Mechanisms of Concussion, Development of Chronic Traumatic Encephalopathy, and Emerging Diagnostics: A Narrative Review. J. Am. Osteopath. Assoc. 2020, 120, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.P.; Priemer, D.S.; Perl, D.P.; Filley, C.M. Sports Concussion and Chronic Traumatic Encephalopathy: Finding a Path Forward. Ann. Neurol. 2023, 93, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.S.; Ardern, C.L.; Hislop, M.D.; Aubry, M.; Bloomfield, P.; Broderick, C.; Clifton, P.; Echemendia, R.J.; Ellenbogen, R.G.; Falvey, É.C.; et al. Implementation of the 2017 Berlin Concussion in Sport Group Consensus Statement in contact and collision sports: A joint position statement from 11 national and international sports organisations. Br. J. Sports Med. 2018, 52, 635–641. [Google Scholar] [CrossRef]
- Salmon, D.M.; Sullivan, S.J.; Murphy, I.; Mihalik, J.K.R.; Dougherty, B.; McCrory, G. Square peg round hole—Time to customise a concussion assessment tools for primary care: The New Zealand experience? A call for a GP-SCAT. Brain Inj. 2020, 34, 1794–1795. [Google Scholar] [CrossRef]
- World-Rugby. Head Injury Assessment Protocol. Available online: https://resources.worldrugby-rims.pulselive.com/worldrugby/document/2024/01/17/7cf72fa9-eb2e-4046-a5a8-1d3068d4503f/HIA-protocol-2024.pdf (accessed on 5 January 2024).
- World-Rugby. Graduated Return to Play (GRTP) for the Community Game. Available online: https://www.world.rugby/the-game/player-welfare/medical/concussion/concussion-guidelines (accessed on 5 January 2024).
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. Br. J. Sports Med. 2017, 51, 848–850. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Brett, B.L.; Broglio, S.; Davis, G.A.; Giza, C.C.; Guskiewicz, K.M.; Harmon, K.G.; Herring, S.; Howell, D.R.; Master, C.; et al. Sport concussion assessment tool—6 (SCAT6). Br. J. Sports Med. 2023, 57, 622–631. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Brett, B.L.; Broglio, S.; Davis, G.A.; Giza, C.C.; Guskiewicz, K.M.; Harmon, K.G.; Herring, S.; Howell, D.R.; Master, C.L.; et al. Introducing the Sport Concussion Assessment Tool 6 (SCAT6). Br. J. Sports Med. 2023, 57, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Falvey, E.; Fuller, G.; Brown, J.; Raftery, M. Baseline SCAT Performance in Men and Women: Comparison of Baseline Concussion Screens Between 6288 Elite Men’s and 764 Women’s Rugby Players. Clin. J. Sport Med. 2021, 31, e398–e405. [Google Scholar] [CrossRef]
- Salmon, D.M.; Chua, J.; Sullivan, S.J.; Whatman, C.; Brown, J.; Register-Mihalik, J.; Murphy, I.; Walters, S.; Clacy, A.; Sole, G.; et al. Baseline concussion assessment performance of community-based senior rugby players: A cross-sectional study. Brain Inj. 2021, 35, 1433–1442. [Google Scholar] [CrossRef]
- Shehata, N.; Wiley, J.P.; Richea, S.; Benson, B.W.; Duits, L.; Meeuwisse, W.H. Sport concussion assessment tool: Baseline values for varsity collision sport athletes. Br. J. Sports Med. 2009, 43, 730–734. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Black, A.M.; Miutz, L.N.; Kv, V.W.; Schneider, K.J.; Yeates, K.O.; Emery, C.A. Baseline Performance of High School Rugby Players on the Sport Concussion Assessment Tool 5. J. Athl. Train. 2020, 55, 116–123. [Google Scholar] [CrossRef]
- Petit, K.M.; Savage, J.L.; Bretzin, A.C.; Anderson, M.; Covassin, T. The Sport Concussion Assessment Tool-5 (SCAT5): Baseline Assessments in NCAA Division I Collegiate Student-Athletes. Int. J. Exerc. Sci. 2020, 13, 1143–1155. [Google Scholar] [CrossRef]
- Ibrahim, A.K.; Kelly, S.J.; Adams, C.E.; Glazebrook, C. A systematic review of studies of depression prevalence in university students. J. Psychiatr. Res. 2013, 47, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Owoeye, O.B.A.; Neme, J.R.; Buchanan, P.; Esposito, F.; Breitbach, A.P. Absence of Injury Is Not Absence of Pain: Prevalence of Preseason Musculoskeletal Pain and Associated Factors in Collegiate Soccer and Basketball Student Athletes. Int. J. Environ. Res. Public Health 2022, 19, 9128. [Google Scholar] [CrossRef]
- Malam Moussa Ahmet, H.; Bika Lele, E.C.; Guessogo, W.R.; Bian, W.M.; Guyot, J.; Ahmadou; Assomo-Ndemba, P.B.; Ayina, C.N.; Kojom Foko, L.P.; Dupré, C.; et al. Musculoskeletal pains among amateur and professional athletes of five disciplines in Senegal: A preliminary study. BMC Musculoskelet. Disord. 2023, 24, 210. [Google Scholar] [CrossRef]
- Nutt, S.; McKay, M.J.; Gillies, L.; Peek, K. Neck strength and concussion prevalence in football and rugby athletes. J. Sci. Med. Sport 2022, 25, 632–638. [Google Scholar] [CrossRef]
- Norheim, N.; Kissinger-Knox, A.; Cheatham, M.; Webbe, F. Performance of college athletes on the 10-item word list of SCAT5. BMJ Open Sport Exerc. Med. 2018, 4, e000412. [Google Scholar] [CrossRef] [PubMed]
- Covassin, T.; Swanik, C.B.; Sachs, M.; Kendrick, Z.; Schatz, P.; Zillmer, E.; Kaminaris, C. Sex differences in baseline neuropsychological function and concussion symptoms of collegiate athletes. Br. J. Sports Med. 2006, 40, 923–927. [Google Scholar] [CrossRef]
- Schneider, K.J.; Emery, C.A.; Kang, J.; Schneider, G.M.; Meeuwisse, W.H. Examining Sport Concussion Assessment Tool ratings for male and female youth hockey players with and without a history of concussion. Br. J. Sports Med. 2010, 44, 1112–1117. [Google Scholar] [CrossRef]
- Kerr, Z.Y.; Register-Mihalik, J.K.; Kroshus, E.; Baugh, C.M.; Marshall, S.W. Motivations Associated With Nondisclosure of Self-Reported Concussions in Former Collegiate Athletes. Am. J. Sports Med. 2016, 44, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Findlay, R.J.; Macrae, E.H.R.; Whyte, I.Y.; Easton, C.; Forrest Née Whyte, L.J. How the menstrual cycle and menstruation affect sporting performance: Experiences and perceptions of elite female rugby players. Br. J. Sports Med. 2020, 54, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Taim, B.C.; Catháin, C.Ó.; Renard, M.; Elliott-Sale, K.J.; Madigan, S.; Chéilleachair, N.N. The Prevalence of Menstrual Cycle Disorders and Menstrual Cycle-Related Symptoms in Female Athletes: A Systematic Literature Review. Sports Med. 2023, 53, 1963–1984. [Google Scholar] [CrossRef]
- Büttner, F.; Howell, D.R.; Ardern, C.L.; Doherty, C.; Blake, C.; Ryan, J.; Catena, R.; Chou, L.S.; Fino, P.; Rochefort, C.; et al. Concussed athletes walk slower than non-concussed athletes during cognitive-motor dual-task assessments but not during single-task assessments 2 months after sports concussion: A systematic review and meta-analysis using individual participant data. Br. J. Sports Med. 2020, 54, 94–101. [Google Scholar] [CrossRef]
- Matthews, M.; Johnston, W.; Bleakley, C.M.; Davies, R.J.; Rankin, A.T.; Webb, M.; Caulfield, B.C.; Archbold, H.A.P. Concussion History and Balance Performance in Adolescent Rugby Union Players. Am. J. Sports Med. 2021, 49, 1348–1354. [Google Scholar] [CrossRef]
- Howell, D.R.; Lynall, R.C.; Buckley, T.A.; Herman, D.C. Neuromuscular Control Deficits and the Risk of Subsequent Injury After a Concussion: A Scoping Review. Sports Med. 2018, 48, 1097–1115. [Google Scholar] [CrossRef]
- McCann, R.; Schussler, E.; Martinez, J.; Ramirez, V. The Effect of Concussion History on Lower Extremity Injury Risk in College Athletes: A Systematic Review and Meta-Analysis. Int. J. Sports Phys. Ther. 2022, 17, 753–765. [Google Scholar] [CrossRef] [PubMed]
Men (n = 138) | Women (n = 81) | |
---|---|---|
Mean ± SD | Mean ± SD | |
Age | 23.7 ± 4.3 | 23.3 ± 3.3 |
Weight (kg) | 89.8 ± 13.7 | 67.0 ± 10.2 |
Height (cm) | 180.3 ± 6.1 | 166.5 ± 6.4 |
Years playing rugby | 11.6 ± 4.1 | 5.8 ± 2.7 |
Previous concussions | n (%) | n (%) |
0 | 66 (47.82) | 58 (71.60) |
1 | 36 (26.00) | 9 (11.11) |
2 | 19 (13.76) | 10 (12.34) |
3 | 6 (4.34) | 2 (2.46) |
> 3 | 10 (7.24) | 2 (2.46) |
Hospitalized for prior head injury? | ||
No | 109 (79.0) | 70 (86.4) |
Yes | 29 (21.0) | 11 (13.6) |
Diagnosed or treated for headache disorder or migraines? | ||
No | 129 (93.5) | 66 (81.5) |
Yes | 9 (6.5) | 15 (18.5) |
Diagnosed with a learning disability or dyslexia? | ||
No | 131 (94.9) | 75 (92.6) |
Yes | 7 (5.1) | 6 (7.4) |
Diagnosed with attention-deficit hyperactivity disorder? | ||
No | 134 (97.1) | 75 (92.6) |
Yes | 4 (2.9) | 6 (7.4) |
Diagnosed with depression, anxiety, or other psychiatric disorder? | ||
No | 135 (82.6) | 68 (90.1) |
Yes | 3 (17.4) | 13 (9.9) |
Pharmacotherapy | ||
No | 126 (75.4) | 52 (93.8) |
Yes | 12 (24.6) | 29 (6.2) |
Symptoms worsen with physical exercise? | ||
No | 114 (97.8) | 73 (84.0) |
Yes | 24 (2.2) | 8 (16.0) |
Symptoms worsen with intellectual activity? | ||
No | 104 (91.3) | 76 (64.2) |
Yes | 34(8.7) | 24(35.8) |
Summary Statistics | Men (n =138) | Women (n = 81) | p Value | Effect Size |
---|---|---|---|---|
Total No. of Symptoms (of 22) | ||||
Median (min–max) | 3 (0–21) | 5 (0–18) | 0.001 † | 0.39 |
Mean ± SD; 95% CI | 4.32 ± 4.47; 95% CI 3.52–5.11 | 6.02 ± 4.50; 95% CI 5.02–7.02 | ||
Percentile (25–75)(10–90)(2–98) | (0.7–7.0)(0.0–10.0)(0.0–16.6) | (2.0–9.0) (1.0–12.8) (0.0–16.0) | ||
Total severity score (of 132) | ||||
Median (min–max) | 4 (0–32) | 8 (0–35) | 0.001 † | 0.37 |
Mean ± SD; 95% CI | 6.94 ± 7.95; 95% CI 5.53–8.35 | 10.03 ± 8.62; 95% CI 8.11–11.95 | ||
Percentile (25–75)(10–90)(2–98) | (0.7–10.0)(0.0–20.2)(0.0–31.0) | (3.0–14.0)(1.0–22.0)(0.0–33.0) | ||
Tandem test completion time | ||||
Median (min–max) | 11 (7.6–16.0) | 11.93 (9.42–18.0) | <0.001 * | 0.66 |
Mean ± SD; 95% CI | 10.87 ± 1.67; 95% CI 10.58–11.17 | 11.91 ± 1.26; 95% CI 11.62–12.19 | ||
Percentile (25–75)(10–90)(2–98) | (9.5–12.0)(9.0–13.4)(7.6–14.4) | (10.9–12.9)(10.2–13.6)(9.4–14.0) | ||
Orientation | ||||
Median (min–max) | 5 (0–5) | 5 (3–5) | 0.352 † | 0.16 |
Mean ± SD; 95% CI | 4.75 ± 0.93; 95% CI 4.58–4.91 | 4.62 ± 0.34; 95% CI 4.84–5.0 | ||
Percentile (25–75)(10–90)(2–98) | (5.0–5.0)(4.5–5.0)(0.0–5.0) | (5.0–5.0)(5.0–5.0)(3.0–5.0) | ||
Lazy Memory 10 | ||||
Median (min–max) | 8 (0–10) | 8 (4–10) | 0.563 † | 0.13 |
Mean ± SD; 95% CI | 7.32 ± 2.07; 95% CI 6.96–7.68 | 7.51 ± 1.75; 95% CI 7.12–7.90 | ||
Percentile (25–75)(10–90)(2–98) | (6.0–9.0)(4.0–10.0)(2.0–10.0) | (6.0–9.0)(5.0–10.0)(4.0–10.0) | ||
Deferred Memory 30 | ||||
Median (min–max) | 22 (15–30) | 24 (16–29) | 0.125 † | 0.22 |
Mean ± SD; 95% CI | 22.34 ± 3.45; 95% CI 21.73–22.95 | 23.08 ± 3.79; 95% CI 22.24–23.93 | ||
Percentile (25–75)(10–90)(2–98) | (20.0–25.0)(17.1–27.0)(15.0–30.0) | (20.0–27.0)(18.0–28.0)(16.0–29.0) | ||
Concentration | ||||
Median (min–max) | 3 (0–5) | 3 (1–5) | 0.471 † | 0.06 |
Mean ± SD; 95% CI | 2.92 ± 1.42; 95% CI 2.66–3.17 | 2.95 ± 0.99; 95% CI 2.72–3.17 | ||
Percentile (25–75)(10–90)(2–98) | (2.0–4.0)(0.0–4.0)(0.0–5.0) | (2.2–4.0)(1.0–4.0)(1.0–5.0) | ||
Balance Errors | ||||
Median (min–max) | 3 (0–15) | 2 (0–11) | 0.175 † | 0.07 |
Mean ± SD; 95% CI | 3.95 ± 3.16; 95% CI 3.39–4.51 | 3.23 ± 2.82; 95% CI 2.60–3.86 | ||
Percentile (25–75)(10–90)(2–98) | (1.0–6.0)(0.0–8.1)(0.0–12.4) | (1.0–6.0)(0.0–7.0)(0.0–10.3) |
Symptoms | Men (n = 138) | Women (n = 81) | p Value | Efect Size |
---|---|---|---|---|
Headache | 28.8% | 38.3% | 0.010 * | −0.21 |
Head pressure | 13.8% | 23.5% | 0.158 * | −0.12 |
Neck pain | 40.6% | 48.1% | 0.355 * | −0.07 |
Nausea or Vomiting | 0.7% | 7.4% | 0.045 † | −0.18 |
Dizziness | 6.5% | 9.9% | 0.265 † | −0.06 |
Blurry Vision | 8.0% | 9.9% | 0.726 * | −0.03 |
Balance problems | 7.2% | 17.3% | 0.022 * | −0.15 |
Hypersensitivity to Light | 11.6% | 24.7% | 0.031 * | −0.17 |
Noise hypersensitivity | 4.3% | 13.6% | 0.032 † | −0.16 |
Feeling Slow | 13.0% | 11.1% | 0.417 | 0.02 |
Feeling Dazed | 5.1% | 13.6% | 0.027 † | −0.15 |
I don’t feel well | 18.8% | 24.7% | 0.233 * | −0.06 |
Difficult to focus | 32.6% | 55.7% | 0.054 * | −0.13 |
Difficulty remembering | 23.2% | 35.8% | 0.044 * | −0.13 |
Fatigue or Lack of Energy | 39.1% | 56.8% | 0.033 * | −0.17 |
Confusion | 8.7% | 4.9% | 0.141 * | 0.07 |
Drowsiness | 34.8% | 30.9% | 0.474 * | 0.04 |
Difficulty due to Fatigue | 26.1% | 42.0% | 0.031 * | −0.16 |
More Emotional | 18.8% | 33.3% | 0.004 * | −0.16 |
Irritability | 25.4% | 30.9% | 0.236 * | −0.06 |
Sad | 22.3% | 28.4% | 0.003 * | −0.20 |
Nervous or Anxious | 43.5% | 44.4% | 0.169 * | −0.00 |
Summary Statistics | Men Not Concussed (n = 72) | Men Concussed (n = 66) | p Value | Efect Size |
---|---|---|---|---|
Total No. of Symptoms (of 22) | ||||
Median (min–max) | 4 (0–13) | 3 (0–21) | 0.239 † | 0.20 |
Mean ± SD; 95% CI | 3.81 ± 3.32; 95% CI 2.99–4.63 | 4.80 ± 5.41; 95% CI 3.4–6.19 | ||
Percentile (25–75)(10–90)(2–98) | (0.25–6.0)(0.0–9.0)(0.0–13.5) | (0.75–8.0)(0.0–14.0)(0.0–20.3) | ||
Total severity score (of 132) | ||||
Median (min–max) | 4 (0–24) | 4 (0–32) | 0.316 † | 0.17 |
Mean ± SD; 95% CI | 6.0 ±6.16; 95% CI 4.48–7.54 | 7.83 ± 9.43; 95% CI 5.41–10.25 | ||
Percentile (25–75)(10–90)(2–98) | (0.25–10.0)(0.0–18.4)(0.0–27.7) | (0.75–11.25)(0.0–24.3)(0.0–31.6) | ||
Tandem test completion time | ||||
Median (min–max) | 11.0 (7.6–16) | 10.7 (10.3–11.1) | 0.266 * | 0.19 |
Mean ± SD; 95% CI | 11.0 ± 1.76; 95% CI 10.6–11.4 | 10.7 ± 1.60; 95% CI 10.3–11.1 | ||
Percentile (25–75)(10–90)(2–98) | (9.7–12.1)(9.0–13.3)(7.6–15.7) | (9.3–12.0)(8.9–13.5)(7.8–14.0) | ||
Orientation | ||||
Median (min–max) | 5 (0–5) | 5 (0–5) | 0.456 † | 0.07 |
Mean ± SD; 95% CI | 4.78 ± 0.89; 95% CI 4.56–5.00 | 4.65 ± 1.07; 95% CI 4.37–4.93 | ||
Percentile (25–75)(10–90)(2–98) | (5.0–5.0)(5.0–5.0)(0.0–5.0) | (5.0–5.0)(4.0–5.0)(0.0–5.0) | ||
Lazy Memory 10 | ||||
Median (min–max) | 8 (0–10) | 8 (2–10) | 0.527 † | 0.11 |
Mean ± SD; 95% CI | 7.24 ± 2.18; 95% CI 6.70–7.78 | 7.39 ± 1.87; 95% CI 6.91–7.87 | ||
Percentile (25–75)(10–90)(2–98) | (6.0–9.0)(4.0–10.0)(0.7–10.0) | (6.0–9.0)(4.0–10.0)(2.5–10.0) | ||
Deferred Memory 30 | ||||
Median (min–max) | 22 (15–29) | 21 (16–30) | 0.901 † | 0.02 |
Mean ± SD; 95% CI | 22.38 ± 3.60; 95% CI 21.49–23.27 | 22.21 ± 3.35; 95% CI 21.3–23.07 | ||
Percentile (25–75)(10–90)(2–98) | (20.0–25.0)(17.0–27.2)(15.0–28.6) | (20.0–25.0)(17.4–27.0)(16.0–30.0) | ||
Concentration | ||||
Median (min–max) | 3 (0–5) | 4 (0–5) | 0.520 † | 0.11 |
Mean ± SD; 95% CI | 2.81 ± 1.35; 95% CI 2.47–3.15 | 3.01 ± 1.49; 95% CI 2.63–3.40 | ||
Percentile (25–75)(10–90)(2–98) | (2.0–4.0)(0.0–4.0)(0.0–5.0) | (2.0–4.0)(0.0–4.0)(0.0–5.0) | ||
Balance Errors | ||||
Median (min–max) | 4 (0–15) | 3 (0–12) | 0.866 † | 0.03 |
Mean ± SD; 95% CI | 3.98 ± 3.42; 95% CI 3.13–4.83 | 4.04 ± 3.04; 95% CI 3.26–4.82 | ||
Percentile (25–75)(10–90)(2–98) | (1.0–5.7)(0.0–8.7)(0.0–14.5) | (1.7–6.0)(0.7–8.3)(0.0–12.0) |
Summary Statistics | Females Not Cocussed (n = 58) | Females Concussed (n = 23) | p Value | Efect Size |
---|---|---|---|---|
Total No. of Symptoms (of 22) | ||||
Median (range) | 4 (0–15) | 6 (0–18) | 0.064 † | 0.37 |
Mean ± SD 95% CI | 4.78 ± 4.02; 95% CI 3.04–6.52 | 6.52 ± 4.62; 95% CI 5.30–7.75 | ||
Percentile (25–75)(10–90)(2–98) | (2.0–8.0)(1.0–11.0)(0.0-/) | (2.0–10.0)(0.0–14.0)(0.0–17.4) | ||
Total severity score (of 132) | ||||
Median (range) | 5 (0–28) | 10 (0–35) | 0.093 † | 0.48 |
Mean ± SD 95% CI | 7.04 ± 6.73; 95% CI 4.12–9.95 | 11.24 ± 9.04; 95% CI 8.84–13.64 | ||
Percentile (25–75)(10–90)(2–98) | (3.0–10.0)(1.0–17.6)(0.0-/) | (3.7–18.2)(0.0–23.1)(0.0–34.4) | ||
Tandem test completion time | ||||
Median (range) | 11.8 (9.8–14.0) | 12 (9.4–14) | 0.643 * | 0.11 |
Mean ± SD 95% CI | 11.8 ± 1.3; 95% CI 11.2–12.3 | 11.95 ± 1.24; 95% CI 11.6–12.2 | ||
Percentile (25–75)(10–90)(2–98) | (10.3–13.0)(10.0–13.9)(0.0-/) | (11.1–12.9)(10.2–13.6)(9.4–14.0) | ||
Orientation | ||||
Median (range) | 5 (3–5) | 5 (4–5) | 0.506 † | 0.34 |
Mean ± SD 95% CI | 4.82± 0.57; 95% CI 4.57–5.07 | 4.96 ± 0.18; 95% CI 4.91–5.01 | ||
Percentile (25–75)(10–90)(2–98) | (5.0–5.0)(3.8–5.0)(3.0-/) | (5.0–5.0)(5.0–5.0)(4.0–5.0) | ||
Lazy Memory 10 | ||||
Median (range) | 8 (5–10) | 7 (4–10) | 0.425 † | 0.21 |
Mean ± SD 95% CI | 7.78 ± 1.53; 95% CI 7.11–8.44 | 7.40 ± 1.83; 95% CI 6.91–7.88 | ||
Percentile (25–75)(10–90)(2–98) | (7.0–9.0)(5.0–9.0)(5.0-/) | (6.0–9.0)(5.0–10.0)(4.0–10.0) | ||
Deferred Memory 30 | ||||
Median (range) | 25 (16–29) | 23 (16–29) | 0.062 † | 0.43 |
Mean ± SD 95% CI | 24.21 ± 4.04; 95% CI 22.46–25.96 | 22.63 ± 3.62; 95% CI 21.67–23.59 | ||
Percentile (25–75)(10–90)(2–98) | (21.0–28.0)(18.0–28.0)(16.0-/) | (20.0–25.2)(17.0–27.1)(16.1–29.0) | ||
Concentration | ||||
Median (range) | 3 (1–4) | 3 (1–5) | 0.317 † | 0.30 |
Mean ± SD 95% CI | 2.73 ± 1.05; 95% CI 2.28–3.19 | 3.03 ± 0.96; 95% CI 2.77–3.29 | ||
Percentile (25–75)(10–90)(2–98) | (2.0–4.0)(1.0–4.0)(1.0-/) | (3.0–4.0)(1.8–4.0)(1.0–5.0) | ||
Balance Errors | ||||
Median (range) | 1 (0–9) | 4 (0–11) | 0.001 † | 0.82 |
Mean ± SD 95% CI | 1.69 ± 2.20; 95% CI 0.74–2.64 | 3.85 ± 2.83; 95% CI 3.10–4.61 | ||
Percentile (25–75)(10–90)(2–98) | (0.0–2.0)(0.0–5.2)(0.0-/) | (1.0–6.0)(0.0–8.0)(0.0–10.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís-Mencía, C.; Ramos-Álvarez, J.J.; Maté-Muñoz, J.L.; Montoya-Miñano, J.J.; Martín, L.; García-Horcajo, P.; Requeno-Conde, C.; Oliva-Iglesias, E.; De Sousa-De Sousa, L.; García-Fernández, P. Performance of the Baseline Sport Concussion Assessment Tool in Male and Female Spanish Amateur Rugby Players. Biomedicines 2025, 13, 419. https://doi.org/10.3390/biomedicines13020419
Solís-Mencía C, Ramos-Álvarez JJ, Maté-Muñoz JL, Montoya-Miñano JJ, Martín L, García-Horcajo P, Requeno-Conde C, Oliva-Iglesias E, De Sousa-De Sousa L, García-Fernández P. Performance of the Baseline Sport Concussion Assessment Tool in Male and Female Spanish Amateur Rugby Players. Biomedicines. 2025; 13(2):419. https://doi.org/10.3390/biomedicines13020419
Chicago/Turabian StyleSolís-Mencía, Cristian, Juan José Ramos-Álvarez, José Luis Maté-Muñoz, Juan José Montoya-Miñano, Laura Martín, Pablo García-Horcajo, Carlota Requeno-Conde, Elena Oliva-Iglesias, Luis De Sousa-De Sousa, and Pablo García-Fernández. 2025. "Performance of the Baseline Sport Concussion Assessment Tool in Male and Female Spanish Amateur Rugby Players" Biomedicines 13, no. 2: 419. https://doi.org/10.3390/biomedicines13020419
APA StyleSolís-Mencía, C., Ramos-Álvarez, J. J., Maté-Muñoz, J. L., Montoya-Miñano, J. J., Martín, L., García-Horcajo, P., Requeno-Conde, C., Oliva-Iglesias, E., De Sousa-De Sousa, L., & García-Fernández, P. (2025). Performance of the Baseline Sport Concussion Assessment Tool in Male and Female Spanish Amateur Rugby Players. Biomedicines, 13(2), 419. https://doi.org/10.3390/biomedicines13020419