Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Reagents
2.2. Bone Preparation
2.3. Immunohistochemistry
2.4. Cell Viability and Cytotoxicity Assay
2.5. RNA Extraction and Real-Time Reverse Transcription–Polymerase Chain Reaction
2.6. Western Blotting
2.7. Statistical Analysis
3. Results
3.1. Multistep Fractionation Ensured Purity of Cell Types in Ex Vivo Culture
3.2. Ang II Impacted RANKL Expression in Ex Vivo-Cultured Osteocytes
3.3. MLO-Y4 Cell Viability and Ang II Cytotoxicity
3.4. Ang II Increased Osteoclastogenic Gene Expression via AT1R
3.5. Ang II Increased RANKL Protein Level and Activated MAPK Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Marahleh, A.; Kitaura, H.; Ohori, F.; Noguchi, T.; Mizoguchi, I. The Osteocyte and Its Osteoclastogenic Potential. Front. Endocrinol. 2023, 14, 1121727. [Google Scholar] [CrossRef] [PubMed]
- Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The Osteocyte: An Endocrine Cell … and More. Endocr. Rev. 2013, 34, 658–690. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Calle, J.; Bellido, T. The Osteocyte as a Signaling Cell. Physiol. Rev. 2022, 102, 379–410. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in Bone Modeling and Remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Guntur, A.R.; Rosen, C.J. Bone as an Endocrine Organ. Endocr. Pract. 2012, 18, 758–762. [Google Scholar] [CrossRef]
- Van Bezooijen, R.L.; Roelen, B.A.J.; Visser, A.; Van Der Wee-Pals, L.; De Wilt, E.; Karperien, M.; Hamersma, H.; Papapoulos, S.E.; Ten Dijke, P.; Löwik, C.W.G.M. Sclerostin Is an Osteocyte-Expressed Negative Regulator of Bone Formation, But Not a Classical BMP Antagonist. J. Exp. Med. 2004, 199, 805–814. [Google Scholar] [CrossRef]
- Shi, T.; Shen, S.; Shi, Y.; Wang, Q.; Zhang, G.; Lin, J.; Chen, J.; Bai, F.; Zhang, L.; Wang, Y.; et al. Osteocyte-Derived Sclerostin Impairs Cognitive Function during Ageing and Alzheimer’s Disease Progression. Nat. Metab. 2024, 6, 531–549. [Google Scholar] [CrossRef]
- Rucci, N.; Capulli, M.; Piperni, S.G.; Cappariello, A.; Lau, P.; Frings-Meuthen, P.; Heer, M.; Teti, A. Lipocalin 2: A New Mechanoresponding Gene Regulating Bone Homeostasis. J. Bone Miner. Res. 2015, 30, 357–368. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Kousteni, S. Lipocalin 2—A Bone-derived Anorexigenic and Β-cell Promoting Signal: From Mice to Humans. J. Diabetes 2024, 16, e13504. [Google Scholar] [CrossRef]
- Pathak, J.L.; Bakker, A.D.; Luyten, F.P.; Verschueren, P.; Lems, W.F.; Klein-Nulend, J.; Bravenboer, N. Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression. Calcif. Tissue Int. 2016, 98, 596–608. [Google Scholar] [CrossRef]
- Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and Inflammation: The Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockade. J. Hum. Hypertens. 2007, 21, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Luo, W.; Chen, L.; Zhuang, Z.; Yang, D.; Qian, J.; Khan, Z.A.; Guan, X.; Wang, Y.; Li, X.; et al. Ang II (Angiotensin II)–Induced FGFR1 (Fibroblast Growth Factor Receptor 1) Activation in Tubular Epithelial Cells Promotes Hypertensive Kidney Fibrosis and Injury. Hypertension 2022, 79, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- Ishikane, S.; Takahashi-Yanaga, F. The Role of Angiotensin II in Cancer Metastasis: Potential of Renin-Angiotensin System Blockade as a Treatment for Cancer Metastasis. Biochem. Pharmacol. 2018, 151, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, T.; Takahashi-Yanaga, F.; Ishikane, S.; Tetsuo, F.; Hosoda, H.; Arioka, M.; Kitazono, T.; Sasaguri, T. Angiotensin II Promotes Primary Tumor Growth and Metastasis Formation of Murine TNBC 4T1 Cells through the Fibroblasts around Cancer Cells. Eur. J. Pharmacol. 2021, 909, 174415. [Google Scholar] [CrossRef]
- Ferrario, C.M. The Renin–Angiotensin System Biomolecular Cascade: A 2022 Update of Newer Insights and Concepts. Kidney Int. Suppl. 2022, 12, 36–47. [Google Scholar] [CrossRef]
- Zhao, J. The Skeletal Renin-Angiotensin System: A Potential Therapeutic Target for the Treatment of Osteoarticular Diseases. Int. Immunopharmacol. 2019, 72, 258–263. [Google Scholar] [CrossRef]
- Ye, Z.; Lu, H.; Liu, P. Association between Essential Hypertension and Bone Mineral Density: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 68916–68927. [Google Scholar] [CrossRef]
- Do Carmo, L.; Harrison, D.G. Hypertension and Osteoporosis: Common Pathophysiological Mechanisms. Med. Nov. Technol. Devices 2020, 8, 100047. [Google Scholar] [CrossRef]
- Du, X.-P.; Zheng, M.-L.; Yang, X.-C.; Zheng, M.-L. High Blood Pressure Is Associated with Increased Risk of Future Fracture, but Not Vice Versa. Sci. Rep. 2024, 14, 8005. [Google Scholar] [CrossRef]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. The Relationship between Metabolic Syndrome and Osteoporosis: A Review. Nutrients 2016, 8, 347. [Google Scholar] [CrossRef]
- Chin, K.-Y.; Wong, S.K.; Ekeuku, S.O.; Pang, K.-L. Relationship Between Metabolic Syndrome and Bone Health—An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes Metab. Syndr. Obes. 2020, 13, 3667–3690. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xia, C.; Song, Y.; Zhao, X.; Wong, M.-S.; Zhang, Y. Impairing Effects of Angiotensin-Converting Enzyme Inhibitor Captopril on Bone of Normal Mice. Eur. J. Pharmacol. 2016, 771, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Grover, M.; Sibai, T.; Black, J.; Rianon, N.; Rajagopal, A.; Munivez, E.; Bertin, T.; Dawson, B.; Chen, Y.; et al. Losartan Increases Bone Mass and Accelerates Chondrocyte Hypertrophy in Developing Skeleton. Mol. Genet. Metab. 2015, 115, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hatton, R.; Stimpel, M.; Chambers, T.J. Angiotensin II Is Generated from Angiotensin I by Bone Cells and Stimulates Osteoclastic Bone Resorption In Vitro. J. Endocrinol. 1997, 152, 5–10. [Google Scholar] [CrossRef]
- Shimizu, H.; Nakagami, H.; Osako, M.K.; Hanayama, R.; Kunugiza, Y.; Kizawa, T.; Tomita, T.; Yoshikawa, H.; Ogihara, T.; Morishita, R. Angiotensin II Accelerates Osteoporosis by Activating Osteoclasts. FASEB J. 2008, 22, 2465–2475. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Chen, X.; Yu, M.; Wang, C.; Chen, X.; Shi, J.; Liu, T.; Wang, H. Angiotensin II/Angiotensin II Receptor Blockade Affects Osteoporosis via the AT1/AT2-Mediated cAMP-Dependent PKA Pathway. Cells Tissues Organs 2017, 204, 25–37. [Google Scholar] [CrossRef]
- Bellido, T.; Delgado-Calle, J. Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus 2020, 4, jbm4.10345. [Google Scholar] [CrossRef]
- Pramusita, A.; Kitaura, H.; Ohori, F.; Noguchi, T.; Marahleh, A.; Nara, Y.; Kinjo, R.; Ma, J.; Kanou, K.; Tanaka, Y.; et al. Salt-Sensitive Hypertension Induces Osteoclastogenesis and Bone Resorption via Upregulation of Angiotensin II Type 1 Receptor Expression in Osteoblasts. Front. Cell Dev. Biol. 2022, 10, 816764. [Google Scholar] [CrossRef]
- Ohori, F.; Kitaura, H.; Marahleh, A.; Kishikawa, A.; Ogawa, S.; Qi, J.; Shen, W.-R.; Noguchi, T.; Nara, Y.; Mizoguchi, I. Effect of TNF- α -Induced Sclerostin on Osteocytes during Orthodontic Tooth Movement. J. Immunol. Res. 2019, 2019, 9716758. [Google Scholar] [CrossRef]
- Marahleh, A.; Kitaura, H.; Ohori, F.; Kishikawa, A.; Ogawa, S.; Shen, W.-R.; Qi, J.; Noguchi, T.; Nara, Y.; Mizoguchi, I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front. Immunol. 2019, 10, 2925. [Google Scholar] [CrossRef]
- Ren, J.; Kitaura, H.; Noguchi, T.; Ohori, F.; Marahleh, A.; Ma, J.; Kanou, K.; Fan, Z.; Mizoguchi, I. Exogenous Angiotensin-(1–7) Provides Protection Against Inflammatory Bone Resorption and Osteoclastogenesis by Inhibition of TNF-α Expression in Macrophages. Calcif. Tissue Int. 2024, 115, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Asaba, Y.; Ito, M.; Fumoto, T.; Watanabe, K.; Fukuhara, R.; Takeshita, S.; Nimura, Y.; Ishida, J.; Fukamizu, A.; Ikeda, K. Activation of Renin-Angiotensin System Induces Osteoporosis Independently of Hypertension. J. Bone Miner. Res. 2009, 24, 241–250. [Google Scholar] [CrossRef] [PubMed]
- De Sá, G.A.; Dos Santos, A.C.P.M.; Nogueira, J.M.; Dos Santos, D.M.; Amaral, F.A.; Jorge, E.C.; Caliari, M.V.; Queiroz-Junior, C.M.; Ferreira, A.J. Angiotensin II Triggers Knee Joint Lesions in Experimental Osteoarthritis. Bone 2021, 145, 115842. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, J.-Y.; Ahn, M.-J.; Jang, H.; Song, S.; Choi, S.H.; Park, Y.-S.; Jo, S.; Kim, T.-H.; Shim, S.C. Angiotensin Receptor Blockers, but Not Angiotensin-Converting Enzyme Inhibitors, Inhibit Abnormal Bone Changes in Spondyloarthritis. Exp. Mol. Med. 2023, 55, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- Bonewald, L.F. The Amazing Osteocyte. J. Bone Miner. Res. 2011, 26, 229–238. [Google Scholar] [CrossRef]
- Motoyoshi, K. Biological Activities and Clinical Application of M-CSF. Int. J. Hematol. 1998, 67, 109. [Google Scholar] [CrossRef]
- Kato, Y.; Windle, J.J.; Koop, B.A.; Mundy, G.R.; Bonewald, L.F. Establishment of an Osteocyte-like Cell Line, MLO-Y4. J. Bone Miner. Res. 1997, 12, 2014–2023. [Google Scholar] [CrossRef]
- Kalajzic, I.; Matthews, B.G.; Torreggiani, E.; Harris, M.A.; Divieti Pajevic, P.; Harris, S.E. In Vitro and In Vivo Approaches to Study Osteocyte Biology. Bone 2013, 54, 296–306. [Google Scholar] [CrossRef]
- Zhao, S.; Kato, Y.; Zhang, Y.; Harris, S.; Ahuja, S.S.; Bonewald, L.F. MLO-Y4 Osteocyte-Like Cells Support Osteoclast Formation and Activation. J. Bone Miner. Res. 2002, 17, 2068–2079. [Google Scholar] [CrossRef]
- Kulkarni, R.N.; Bakker, A.D.; Everts, V.; Klein-Nulend, J. Inhibition of Osteoclastogenesis by Mechanically Loaded Osteocytes: Involvement of MEPE. Calcif. Tissue Int. 2010, 87, 461–468. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, H.; Song, Q.; Wang, Z.; Yuan, W.; Ren, Y.; Zhao, Z.; Wang, C. Angiotensin II Inhibits Osteogenic Differentiation of Isolated Synoviocytes by Increasing DKK-1 Expression. Int. J. Biochem. Cell Biol. 2020, 121, 105703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Marahleh, A.; Ma, J.; Ohori, F.; Noguchi, T.; Fan, Z.; Hu, J.; Narita, K.; Lin, A.; Kitaura, H. Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation. Biomedicines 2025, 13, 426. https://doi.org/10.3390/biomedicines13020426
Ren J, Marahleh A, Ma J, Ohori F, Noguchi T, Fan Z, Hu J, Narita K, Lin A, Kitaura H. Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation. Biomedicines. 2025; 13(2):426. https://doi.org/10.3390/biomedicines13020426
Chicago/Turabian StyleRen, Jiayi, Aseel Marahleh, Jinghan Ma, Fumitoshi Ohori, Takahiro Noguchi, Ziqiu Fan, Jin Hu, Kohei Narita, Angyi Lin, and Hideki Kitaura. 2025. "Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation" Biomedicines 13, no. 2: 426. https://doi.org/10.3390/biomedicines13020426
APA StyleRen, J., Marahleh, A., Ma, J., Ohori, F., Noguchi, T., Fan, Z., Hu, J., Narita, K., Lin, A., & Kitaura, H. (2025). Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation. Biomedicines, 13(2), 426. https://doi.org/10.3390/biomedicines13020426