Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Routine Laboratory Measurements
2.3. Measurement of Anthropometric Parameters
2.4. Determination of Serum AGE and sRAGE
2.5. PGRN, ADMA, sICAM-1, sVCAM-1, TNFα, oxLDL, and VEGF Measurement
2.6. Assay for Nitrite Concentration
2.7. Assessment of Autonomic and Peripheral Nerve Function
2.8. Statistical Methods
3. Results
4. Discussion
4.1. Mechanistic Insights
4.2. Clinical Implications
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab. J. 2019, 43, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Mohammedi, K.; Woodward, M.; Marre, M.; Colagiuri, S.; Cooper, M.; Harrap, S.; Mancia, G.; Poulter, N.; Williams, B.; Zoungas, S.; et al. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef]
- Sloan, G.; Shillo, P.; Selvarajah, D.; Wu, J.; Wilkinson, I.D.; Tracey, I.; Anand, P.; Tesfaye, S. A new look at painful diabetic neuropathy. Diabetes Res. Clin. Pract. 2018, 144, 177–191. [Google Scholar] [CrossRef]
- Prasad, K. AGE-RAGE Stress and Coronary Artery Disease. Int. J. Angiol. 2021, 30, 4–14. [Google Scholar] [CrossRef]
- Mengstie, M.A.; Chekol Abebe, E.; Behaile Teklemariam, A.; Tilahun Mulu, A.; Agidew, M.M.; Teshome Azezew, M.; Zewde, E.A.; Agegnehu Teshome, A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front. Mol. Biosci. 2022, 9, 1002710. [Google Scholar] [CrossRef]
- Ghelani, H.; Razmovski-Naumovski, V.; Pragada, R.R.; Nammi, S. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. BMC Complement. Altern. Med. 2018, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- McIlduff, C.E.; Rutkove, S.B. Critical appraisal of the use of alpha lipoic acid (thioctic acid) in the treatment of symptomatic diabetic polyneuropathy. Ther. Clin. Risk Manag. 2011, 7, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Bierhaus, A.; Chevion, S.; Chevion, M.; Hofmann, M.; Quehenberger, P.; Illmer, T.; Luther, T.; Berentshtein, E.; Tritschler, H.; Müller, M.; et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997, 46, 1481–1490. [Google Scholar] [CrossRef]
- Kowluru, R.A. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005, 76, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Kunt, T.; Forst, T.; Wilhelm, A.; Tritschler, H.; Pfuetzner, A.; Harzer, O.; Engelbach, M.; Zschaebitz, A.; Stofft, E.; Beyer, J. Alpha-lipoic acid reduces expression of vascular cell adhesion molecule-1 and endothelial adhesion of human monocytes after stimulation with advanced glycation end products. Clin. Sci. 1999, 96, 75–82. [Google Scholar] [CrossRef]
- Wong, A.; Dukic-Stefanovic, S.; Gasic-Milenkovic, J.; Schinzel, R.; Wiesinger, H.; Riederer, P.; Münch, G. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. Eur. J. Neurosci. 2001, 14, 1961–1967. [Google Scholar] [CrossRef]
- Gasic-Milenkovic, J.; Loske, C.; Münch, G. Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. J. Alzheimer’s Dis. 2003, 5, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.Q.; Dong, C.F.; Dong, S.Q.; Dong, X.L.; Hong, Y.; Hou, X.Y.; Luo, D.Z.; Pei, J.J.; Liu, X.P. AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol. Neurobiol. 2012, 32, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.A.; Chen, H.M.; Yao, Y.D.; Hung, C.F.; Tu, C.S.; Liang, Y.J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci. 2012, 47, 875–883. [Google Scholar] [CrossRef]
- Nádró, B.; Lőrincz, H.; Molnár, Á.; Szentpéteri, A.; Zöld, E.; Seres, I.; Páll, D.; Paragh, G.; Kempler, P.; Harangi, M.; et al. Effects of alpha-lipoic acid treatment on serum progranulin levels and inflammatory markers in diabetic neuropathy. J. Int. Med. Res. 2021, 49, 3000605211012213. [Google Scholar] [CrossRef] [PubMed]
- Sztanek, F.; Lőrincz, H.; Molnár, Á.; Szentpéteri, A.; Zöld, E.; Seres, I.; Páll, D.; Harangi, M.; Kempler, P.; Paragh, G. The effect of α-lipoic acid treatment on plasma asymmetric dimethylarginine, a biomarker of endothelial dysfunction in diabetic neuropathy. Arch. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Hwang, H.J.; Jung, T.W.; Hong, H.C.; Choi, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, K.M.; Choi, D.S.; Baik, S.H.; et al. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways. PLoS ONE 2013, 8, e76679. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021, 53, 168–188. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef] [PubMed]
- Münch, G.; Keis, R.; Wessels, A.; Riederer, P.; Bahner, U.; Heidland, A.; Niwa, T.; Lemke, H.D.; Schinzel, R. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Spallone, V.; Morganti, R.; D’Amato, C.; Greco, C.; Cacciotti, L.; Marfia, G.A. Validation of DN4 as a screening tool for neuropathic pain in painful diabetic polyneuropathy. Diabet. Med. 2012, 29, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Bastyr, E.J.; Price, K.L.; Bril, V.; Group, M.S. Development and validity testing of the neuropathy total symptom score-6: Questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin. Ther. 2005, 27, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Matsutomo, R.; Takebayashi, K.; Aso, Y. Assessment of peripheral neuropathy using measurement of the current perception threshold with the neurometer in patients with type 2 diabetes mellitus. J. Int. Med. Res. 2005, 33, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.J.; Clarke, B.F. Diagnosis and management of diabetic autonomic neuropathy. Br. Med. J. (Clin. Res. Ed.) 1982, 285, 916–918. [Google Scholar] [CrossRef]
- Masson, E.A.; Boulton, A.J. The Neurometer: Validation and comparison with conventional tests for diabetic neuropathy. Diabet. Med. 1991, 8, S63–S66. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.W.; Selvin, E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr. Diab Rep. 2019, 19, 86. [Google Scholar] [CrossRef]
- Zilliox, L.A.; Russell, J.W. Physical activity and dietary interventions in diabetic neuropathy: A systematic review. Clin. Auton. Res. 2019, 29, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; Penha-Silva, N. Translating the advanced glycation end products (AGEs) knowledge into real-world nutrition strategies. Eur. J. Clin. Nutr. 2022, 76, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.A.; Canani, L.H.; Lisbôa, H.R.; Tres, G.S.; Gross, J.L. Aggregation of features of the metabolic syndrome is associated with increased prevalence of chronic complications in Type 2 diabetes. Diabet. Med. 2004, 21, 252–255. [Google Scholar] [CrossRef]
- Smith, A.G.; Rose, K.; Singleton, J.R. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J. Neurol. Sci. 2008, 273, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Li, Y.; Ma, J.; Niu, L.; Tay, F.R. Clinical/Translational Aspects of Advanced Glycation End-Products. Trends Endocrinol. Metab. 2019, 30, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Monnier, V.M.; Sell, D.R.; Genuth, S. Glycation products as markers and predictors of the progression of diabetic complications. Ann. N. Y Acad. Sci. 2005, 1043, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Lin, X.; Bu, C.; Zhang, X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr. Metab. 2018, 15, 72. [Google Scholar] [CrossRef]
- Csiha, S.; Molnár, I.; Halmi, S.; Hutkai, D.; Lőrincz, H.; Somodi, S.; Katkó, M.; Harangi, M.; Paragh, G.; Nagy, E.V.; et al. Advanced glycation end products and their soluble receptor (sRAGE) in patients with Hashimoto’s thyroiditis on levothyroxine substitution. Front. Endocrinol. 2023, 14, 1187725. [Google Scholar] [CrossRef]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, S.; Pafili, K.; Trypsianis, G.; Papazoglou, D.; Vadikolias, K.; Papanas, N. Skin Advanced Glycation End Products among Subjects with Type 2 Diabetes Mellitus with or without Distal Sensorimotor Polyneuropathy. J. Diabetes Res. 2021, 2021, 6045677. [Google Scholar] [CrossRef]
- Diallo, A.M.; Jaisson, S.; Barriquand, R.; Lukas, C.; Barraud, S.; Decoudier, B.; Francois, M.; Ly, S.; Mahmoudi, R.; Arndt, C.; et al. Association Between the Tissue and Circulating Advanced Glycation End-Products and the Micro- and Macrovascular Complications in Type 1 Diabetes: The DIABAGE Study. Diabetes Ther. 2022, 13, 1531–1546. [Google Scholar] [CrossRef]
- Magalhães, P.M.; Appell, H.J.; Duarte, J.A. Involvement of advanced glycation end products in the pathogenesis of diabetic complications: The protective role of regular physical activity. Eur. Rev. Aging Phys. Act. 2008, 5, 17–29. [Google Scholar] [CrossRef]
- Kotani, K.; Caccavello, R.; Sakane, N.; Yamada, T.; Taniguchi, N.; Gugliucci, A. Influence of Physical Activity Intervention on Circulating Soluble Receptor for Advanced Glycation end Products in Elderly Subjects. J. Clin. Med. Res. 2011, 3, 252–257. [Google Scholar] [CrossRef]
- Legaard, G.E.; Feineis, C.S.; Johansen, M.Y.; Hansen, K.B.; Vaag, A.A.; Larsen, E.L.; Poulsen, H.E.; Almdal, T.P.; Karstoft, K.; Pedersen, B.K.; et al. Effects of an exercise-based lifestyle intervention on systemic markers of oxidative stress and advanced glycation endproducts in persons with type 2 diabetes: Secondary analysis of a randomised clinical trial. Free Radic. Biol. Med. 2022, 188, 328–336. [Google Scholar] [CrossRef]
- Kanikowska, D.; Kanikowska, A.; Strojny, Z.; Kawka, E.; Zawada, A.; Rutkowski, R.; Litwinowicz, M.; Sato, M.; Grzymisławski, M.; Bręborowicz, A.; et al. Assessment of EN-RAGE, sRAGE, and its isoforms: cRAGE, esRAGE in obese patients treated by moderate caloric restriction combined with physical activity conducted in hospital condition. Cytokine 2024, 180, 156665. [Google Scholar] [CrossRef] [PubMed]
- Aubert, C.E.; Michel, P.L.; Gillery, P.; Jaisson, S.; Fonfrede, M.; Morel, F.; Hartemann, A.; Bourron, O. Association of peripheral neuropathy with circulating advanced glycation end products, soluble receptor for advanced glycation end products and other risk factors in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2014, 30, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Erusalimsky, J.D. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol. 2021, 42, 101958. [Google Scholar] [CrossRef]
- Koyama, H.; Tanaka, S.; Monden, M.; Shoji, T.; Morioka, T.; Fukumoto, S.; Mori, K.; Emoto, M.; Fukui, M.; Fujii, H.; et al. Comparison of effects of pioglitazone and glimepiride on plasma soluble RAGE and RAGE expression in peripheral mononuclear cells in type 2 diabetes: Randomized controlled trial (PioRAGE). Atherosclerosis 2014, 234, 329–334. [Google Scholar] [CrossRef]
- Quade-Lyssy, P.; Kanarek, A.M.; Baiersdörfer, M.; Postina, R.; Kojro, E. Statins stimulate the production of a soluble form of the receptor for advanced glycation end products. J. Lipid Res. 2013, 54, 3052–3061. [Google Scholar] [CrossRef]
- Tam, X.H.; Shiu, S.W.; Leng, L.; Bucala, R.; Betteridge, D.J.; Tan, K.C. Enhanced expression of receptor for advanced glycation end-products is associated with low circulating soluble isoforms of the receptor in Type 2 diabetes. Clin. Sci. 2011, 120, 81–89. [Google Scholar] [CrossRef]
- Singh, V.; Kaur, R.; Kumari, P.; Pasricha, C.; Singh, R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023, 548, 117487. [Google Scholar] [CrossRef]
- Tayebati, S.K.; Tomassoni, D.; Di Cesare Mannelli, L.; Amenta, F. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2016, 38, 30–38. [Google Scholar] [CrossRef] [PubMed]
- McNair, E.D.; Wells, C.R.; Qureshi, A.M.; Basran, R.S.; Pearce, C.; Orvold, J.; Devilliers, J.; Prasad, K. Low levels of soluble receptor for advanced glycation end products in non-ST elevation myocardial infarction patients. Int. J. Angiol. 2009, 18, 187–192. [Google Scholar] [CrossRef]
- Sabbatinelli, J.; Castiglione, S.; Macrì, F.; Giuliani, A.; Ramini, D.; Vinci, M.C.; Tortato, E.; Bonfigli, A.R.; Olivieri, F.; Raucci, A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: A retrospective cohort study. Cardiovasc. Diabetol. 2022, 21, 95. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 2010, 391, 1405–1408. [Google Scholar] [CrossRef]
- Schmidt, A.M.; Hori, O.; Chen, J.X.; Li, J.F.; Crandall, J.; Zhang, J.; Cao, R.; Yan, S.D.; Brett, J.; Stern, D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Investig. 1995, 96, 1395–1403. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, L.; Chen, S.; Yang, Y.; Chen, M.; Luo, J. Effect of advanced glycation end products on the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor proteins in RF/6A cells. Exp. Ther. Med. 2013, 5, 1519–1522. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Liu, Y.; Wang, L.; Du, M.; Zhang, Z.; Guan, Y. sRAGE downregulates the VEGF expression in OHSS ovarian granulosa cells. Gynecol. Endocrinol. 2021, 37, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Dedert, C.; Mishra, V.; Aggarwal, G.; Nguyen, A.D.; Xu, F. Progranulin Preserves Autophagy Flux and Mitochondrial Function in Rat Cortical Neurons Under High Glucose Stress. Front. Cell. Neurosci. 2022, 16, 874258. [Google Scholar] [CrossRef] [PubMed]
- Gewaltig, M.T.; Kojda, G. Vasoprotection by nitric oxide: Mechanisms and therapeutic potential. Cardiovasc. Res. 2002, 55, 250–260. [Google Scholar] [CrossRef]
- Ren, X.; Ren, L.; Wei, Q.; Shao, H.; Chen, L.; Liu, N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc. Diabetol. 2017, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Korolczuk, A.; Bełtowski, J. Progranulin, a New Adipokine at the Crossroads of Metabolic Syndrome, Diabetes, Dyslipidemia and Hypertension. Curr. Pharm. Des. 2017, 23, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
Diabetic Patients with Neuropathy Before ALA | Diabetic Patients with Neuropathy After ALA | Control Diabetic Patients Without Complications | |
---|---|---|---|
Number of patients (male/female) | 54 (22M/32F) | 24 (11M/13F) | |
Age of patients (years) | 64.2 ± 8.7 | 63.6 ± 5.1 | |
Diabetes duration (years) | 12.4 ± 2.3 | 11.3 ± 3.1 | |
Current perception threshold (by Neurometer, mA) | 0.473 ± 0.171 | 0.409 ± 0.154 * | 0.375 ± 0.124 ** |
Composite autonomic score (CAS) | 2.67 ± 1.05 | 1.56 ± 1.24 * | 1.13 ± 0.77 ** |
NTSS-6 | 8.16 (6.99–15.97) | 5.66 (2.99–12.33) * | NA |
DN4 | 3.3 ± 1.4 | 2.6 ± 1.4 * | NA |
BMI (kg/m2) | 30.02 ± 3.29 | 29.95 ± 3.73 | 29.50 ± 2.86 |
Abdominal circumference (cm) | 102.3 ± 12.7 | 102.4 ± 13.2 | 101.0 ± 9.8 |
Glucose (mmol/L) | 7.34 ± 2.18 | 7.51 ± 2.60 | 7.44 ± 1.36 |
HbA1C (%) | 6.94 ± 0.93 | 6.84 ± 1.04 | 6.78 ± 0.75 |
Creatinine (µmol/L) | 72.61 ± 16.97 | 74.75 ± 14.65 | 75.17 ± 20.97 |
Uric acid (µmol/L) | 296.51 ± 76.44 | 304.33 ± 77.69 | 316.13 ± 57.37 |
Total cholesterol (mmol/L) | 4.84 ± 1.16 | 4.76 ± 1.24 | 4.90 ± 1.17 |
HDL-C (mmol/L) | 1.38 ± 0.37 | 1.38 ± 0.44 | 1.26 ± 0.33 |
LDL-C (mmol/L) | 2.98 ± 0.97 | 2.87 ± 1.16 | 2.84 ± 1.07 |
Non-HDL-C (mmol/L) | 3.47 ± 1.08 | 3.38 ± 1.19 | 3.63 ± 1.19 |
hsCRP (mg/L) | 2.1 (0.8–3.36) | 2.8 (0.75–5.15) | 1.25 (0.9–2.25) |
sVCAM-1 (ng/mL) | 820 (660–992) | 836.6 (674.3–929.6) | 729.2 (653.8–847) |
sICAM-1 (ng/mL) | 210.8 (184.4–247.3) | 216.8 (194.4–253.1) | 213.3 (189.4–239.4) |
VEGF (ng/mL) | 62.5 (44.9–93.0) | 72.6 (38.6–96.0) | 18.6 (15.2–96.0) |
Oxidized LDL (U/L) | 63.6 (507–91.1) | 63.36 (45.59–89.77) | 70.76 (59.18–99.46) |
TNFα (pg/mL) | 1.18 ± 0.36 | 1.05 ± 0.50 * | 0.75 ± 0.29 ** |
ADMA (µmol/L) | 0.61 ± 0.11 | 0.53 ± 0.11 * | 0.56 ± 0.10 ** |
NO (µmol/L) | 16.8 ± 11.1 | 21.5 ± 9.0 * | 19.1 ± 10.9 |
PGRN (ng/mL) | 34.89 ± 7.13 | 36.23 ± 7.93 * | 33.13 ± 7.35 |
AGE (AU/μg Protein) | ||||
Before ALA | After ALA | |||
r | p | r | p | |
sVCAM-1 (ng/mL) | −0.25 | 0.068 | 0.38 | 0.007 |
sICAM-1 (ng/mL) | −0.23 | 0.094 | 0.21 | 0.15 |
VEGF (ng/mL) | −0.21 | 0.132 | −0.02 | 0.0872 |
Oxidized LDL (U/L) | −0.14 | 0.326 | −0.28 | 0.049 |
TNFα (pg/mL) | −0.10 | 0.469 | 0.12 | 0.4 |
ADMA (µmol/L) | 0.05 | 0.704 | 0.23 | 0.112 |
NO (µmol/L) | 0.02 | 0.9 | 0.31 | 0.093 |
PGRN (ng/mL) | −0.31 | 0.022 | 0.09 | 0.56 |
sRAGE (pg/mL) | ||||
Before ALA | After ALA | |||
r | p | r | p | |
sVCAM-1 (ng/mL) | 0.18 | 0.196 | 0.28 | 0.045 |
sICAM-1 (ng/mL) | 0.20 | 0.154 | 0.35 | 0.013 |
VEGF (ng/mL) | 0.35 | 0.009 | 0.32 | 0.022 |
Oxidized LDL (U/L) | −0.06 | 0.66 | −0.20 | 0.155 |
TNFα (pg/mL) | 0.20 | 0.16 | −0.20 | 0.17 |
ADMA (µmol/L) | 0.24 | 0.082 | 0.26 | 0.063 |
NO (µmol/L) | 0.51 | 0.002 | 0.33 | 0.05 |
PGRN (ng/mL) | 0.16 | 0.18 | 0.23 | 0.104 |
AGE/sRAGE Ratio (AU/pg) | ||||
Before ALA | After ALA | |||
r | p | r | p | |
sVCAM-1 (ng/mL) | −0.29 | 0.035 | −0.08 | 0.62 |
sICAM-1 (ng/mL) | −0.25 | 0.073 | −0.13 | 0.397 |
VEGF (ng/mL) | −0.38 | 0.005 | −0.28 | 0.062 |
Oxidized LDL (U/L) | 0.03 | 0.834 | 0.08 | 0.585 |
TNFα (pg/mL) | −0.17 | 0.238 | −0.16 | 0.301 |
ADMA (µmol/L) | −0.21 | 0.139 | −0.06 | 0.715 |
NO (µmol/L) | −0.07 | 0.71 | −0.07 | 0.707 |
PGRN (ng/mL) | −0.26 | 0.059 | −0.01 | 0.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csiha, S.; Hernyák, M.; Molnár, Á.; Lőrincz, H.; Katkó, M.; Paragh, G.; Bodor, M.; Harangi, M.; Sztanek, F.; Berta, E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines 2025, 13, 438. https://doi.org/10.3390/biomedicines13020438
Csiha S, Hernyák M, Molnár Á, Lőrincz H, Katkó M, Paragh G, Bodor M, Harangi M, Sztanek F, Berta E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines. 2025; 13(2):438. https://doi.org/10.3390/biomedicines13020438
Chicago/Turabian StyleCsiha, Sára, Marcell Hernyák, Ágnes Molnár, Hajnalka Lőrincz, Mónika Katkó, György Paragh, Miklós Bodor, Mariann Harangi, Ferenc Sztanek, and Eszter Berta. 2025. "Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy" Biomedicines 13, no. 2: 438. https://doi.org/10.3390/biomedicines13020438
APA StyleCsiha, S., Hernyák, M., Molnár, Á., Lőrincz, H., Katkó, M., Paragh, G., Bodor, M., Harangi, M., Sztanek, F., & Berta, E. (2025). Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines, 13(2), 438. https://doi.org/10.3390/biomedicines13020438