Midkine Serum Levels in Inflammatory and Non-Inflammatory Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Study Design
2.2. ELISA
2.3. Glomerular Filtration Rate (GFR)
2.4. Immunohistochemical Analysis
2.5. Cardiac Parameter
2.6. Viral Load EMB
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef]
- Kitahara, T.; Shishido, T.; Suzuki, S.; Katoh, S.; Sasaki, T.; Ishino, M.; Nitobe, J.; Miyamoto, T.; Miyashita, T.; Watanabe, T.; et al. Serum midkine as a predictor of cardiac events in patients with chronic heart failure. J. Card. Fail. 2010, 16, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Majaj, M.; Weckbach, L.T. Midkine-A novel player in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 1003104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kadomatsu, K.; Huang, R.P.; Suganuma, T.; Murata, F.; Muramatsu, T. A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis. J. Cell Biol. 1990, 110, 607–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muramatsu, T. Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 410–425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krzystek-Korpacka, M.; Mierzchala, M.; Neubauer, K.; Durek, G.; Gamian, A. Midkine, a multifunctional cytokine, in patients with severe sepsis and septic shock: A pilot study. Shock 2011, 35, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, D.A.; Pires Da Silva, J.; Garcia, A.M.; Jiang, X.; Karimpour-Fard, A.; Toni, L.S.; Lanzicher, T.; Peña, B.; Miyano, C.A.; Nunley, K.; et al. Serum circulating proteins from pediatric patients with dilated cardiomyopathy cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight 2021, 6, e148637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weckbach, L.T.; Grabmaier, U.; Uhl, A.; Gess, S.; Boehm, F.; Zehrer, A.; Pick, R.; Salvermoser, M.; Czermak, T.; Pircher, J.; et al. Midkine drives cardiac inflammation by promoting neutrophil trafficking and NETosis in myocarditis. J. Exp. Med. 2019, 216, 350–368. [Google Scholar] [CrossRef] [PubMed]
- Kindermann, I.; Kindermann, M.; Kandolf, R.; Klingel, K.; Bultmann, B.; Muller, T.; Lindinger, A.; Böhm, M. Predictors of outcome in patients with suspected myocarditis. Circulation 2008, 118, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648, 2648a–2648d. [Google Scholar] [CrossRef]
- Novotny, W.F.; Maffi, T.; Mehta, R.L.; Milner, P.G. Identification of novel heparin-releasable proteins, as well as the cytokines midkine and pleiotrophin, in human postheparin plasma. Arterioscler. Thromb. 1993, 13, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Riad, A.; Weitmann, K.; Herda, L.R.; Empen, K.; Gross, S.; Nauck, M.; Dörr, M.; Klingel, K.; Kandolf, R.; Hoffmann, W.; et al. Initial white blood cell count is an independent risk factor for survival in patients with dilated cardiomyopathy. Int. J. Cardiol. 2013, 168, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B.; American Heart Association; et al. Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006, 113, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Cheitlin, M.D.; Alpert, J.S.; Armstrong, W.F.; Aurigemma, G.P.; Beller, G.A.; Bierman, F.Z.; Davidson, T.W.; Davis, J.L.; Douglas, P.S.; Gillam, L.D. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 1997, 95, 1686–1744. [Google Scholar] [CrossRef] [PubMed]
- Mahrholdt, H.; Wagner, A.; Deluigi, C.C.; Kispert, E.; Hager, S.; Meinhardt, G.; Vogelsberg, H.; Fritz, P.; Dippon, J.; Bock, C.T.; et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 2006, 114, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Russo, M.A.; Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: The TIMIC study. Eur. Heart J. 2009, 30, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, C.; Russo, M.A.; Frustaci, A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur. Heart J. 2022, 43, 3463–3473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tatman, P.D.; Woulfe, K.C.; Karimpour-Fard, A.; Jeffrey, D.A.; Jaggers, J.; Cleveland, J.C.; Nunley, K.; Taylor, M.R.; Miyamoto, S.D.; Stauffer, B.L.; et al. Pediatric dilated cardiomyopathy hearts display a unique gene expression profile. JCI Insight 2017, 2, e94249. [Google Scholar] [CrossRef] [PubMed]
- Kemik, O.; Sumer, A.; Kemik, A.S.; Hasirci, I.; Purisa, S.; Dulger, A.C.; Demiriz, B.; Tuzun, S. The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J. Surg. Oncol. 2010, 8, 85. [Google Scholar] [CrossRef]
- Rice, G.E.; Edgell, T.A.; Autelitano, D.J. Evaluation of midkine and anterior gradient 2 in a multimarker panel for the detection of ovarian cancer. J. Exp. Clin. Cancer Res. 2010, 29, 62. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.; Fujimori, H.; Ueda, M.; Shiniriki, S.; Kudo, M.; Jono, H.; Fukuyoshi, Y.; Yamamoto, Y.; Sugiuchi, H.; Iwase, H.; et al. Midkine as a prognostic biomarker in oral squamous cell carcinoma. Br. J. Cancer 2008, 99, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.H.; Muramatsu, H.; Shimizu, E.; Hashimoto, K.; Ohgake, S.; Watanabe, H.; Komatsu, N.; Okamura, N.; Koike, K.; Shinoda, N.; et al. Increased midkine levels in sera from patients with Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Ibusuki, M.; Fujimori, H.; Yamamoto, Y.; Ota, K.; Ueda, M.; Shinriki, S.; Taketomi, M.; Sakuma, S.; Shinohara, M.; Iwase, H.; et al. Midkine in plasma as a novel breast cancer marker. Cancer Sci. 2009, 100, 1735–1739. [Google Scholar] [CrossRef]
- Fairweather, D.; Beetler, D.J.; Musigk, N.; Heidecker, B.; Lyle, M.A.; Cooper, L.T.; Bruno, K.A. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front. Cardiovasc. Med. 2023, 10, 1129348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | All Patients (n = 54) | DCM (n = 29) | DCMi (n = 25) | p-Value |
---|---|---|---|---|
Age, mean ± SD | 54.0 ± 8.8 | 55.0 ± 8.1 | 52.9 ± 9.5 | 0.404 |
Duration of symptoms in days, median [IQR] | 54 [28–130] | 55 [29–122] | 51 [23–148] | 0.910 |
Male sex, n (%) | 52 (96.3) | 28 (96.6) | 24 (96.0) | 0.915 |
Glomerular filtration rate, mean ± SD, mL/min | 80.8 ± 12.4 | 80.5 ± 10.6 | 81.1 ± 14.4 | 0.849 |
NYHA functional class, n | 0.971 | |||
I | 2 | 1 | 1 | |
II | 30 | 17 | 13 | |
III | 18 | 9 | 9 | |
IV | 4 | 2 | 2 | |
NT-proBNP in pg/mL, median [IQR]; (n) | 1706 [1075–3868] (30) | 1594 [1139–2991] (15) | 2032 [900–3973] (15) | 0.604 |
Echo parameters, mean ± SD; | ||||
LVEF, % | 29.5 ± 5.7 | 29.6 ± 5.8 | 29.4 ± 5.8 | 0.904 |
LVEDD, mm | 67.8 ± 5.5 | 67.4 ± 5.1 | 68.3 ± 5.9 | 0.578 |
Immunohistological parameters | ||||
MHC-II upregulation, n | 23 | 0 | 23 | <0.001 |
CD68+ macrophages per mm2, median [IQR] | 13 [10–22] | 11 [9–12] | 22 [19–26] | <0.001 |
CD3+ T cells per mm2, median [IQR] | 1 [0–4] | 0 [0–2] | 4 [2–7] | <0.001 |
Evidence of viral genome (PCR of EMB), n (%) | 17 (31.5) | 2 (6.9) | 15 (60) | <0.001 |
Patients with >1 virus, n | 3 | 1 | 2 | |
Adenovirus, n | 1 | 0 | 1 | |
EBV, n | 2 | 1 | 1 | |
HHV-6, n | 8 | 1 | 7 | |
Parvovirus B19, n | 10 | 1 | 9 |
Survival | All Patients (n = 54) | DCM (n = 29) | DCMi (n = 25) | p-Value |
---|---|---|---|---|
Death, n (%) | 9 (16.7) | 4 (13.8) | 5 (20) | 0.542 |
Echo parameters at follow-up 1 # | All Patients (n = 40–44) | DCM (n = 19–23) | DCMi (n = 21) | p-value |
LVEF in %, mean ± SD | 38.5 ± 8.6 | 38.0 ± 9.0 | 39.0 ± 8.2 | 0.717 |
ΔLVEF in %, mean ± SD | 9.3 ± 8.5 | 8.9 ± 8.6 | 9.7 ± 8.6 | 0.773 |
LVEDD in mm, mean ± SD | 64.8 ± 7.1 | 64.0 ± 7.0 | 65.5 ± 7.3 | 0.504 |
ΔLVEDD in mm, median [IQR] | −2.0 [−6.0–1.0] | −2.0 [−7.0–1.0] | −2.0 [−2.0–0.0] | 0.587 |
Echo parameters at follow-up 2 * | All Patients (n = 33–34) | DCM (n = 17–18) | DCMi (n = 16) | p-value |
LVEF in %, mean ± SD | 43.1 ± 8.6 | 43.2 ± 9.4 | 43.1 ± 8.0 | 0.970 |
ΔLVEF in %, mean ± SD | 13.5 ± 8.6 | 13.2 ± 7.6 | 13.8 ± 9.8 | 0.866 |
LVEDD in mm, mean ± SD | 62.8 ± 8.3 | 63.3 ± 5.9 | 62.2 ± 10.5 | 0.693 |
ΔLVEDD in mm, median [IQR] | −3.5 [−7.3–(−0.5)] | −3.0 [−6.0–(−1.3)] | −4.6 [−13.3–0.95] | 0.275 |
Baseline Parameters | Pearson’s R | p-Value |
---|---|---|
NYHA functional class | −0.230 | 0.094 |
NT-proBNP in pg/mL | −0.064 | 0.735 |
LVEF | 0.018 | 0.899 |
LVEDD | 0.075 | 0.588 |
Viral genome detection | −0.005 | 0.971 |
Follow-up parameters | Pearson’s R | p-value |
LVEF at follow-up 1 #, n = 44 | −0.023 | 0.883 |
ΔLVEF at follow-up 1 #, n = 44 | −0.031 | 0.844 |
LVEDD at follow-up 1 #, n = 40 | −0.273 | 0.088 |
ΔLVEDD at follow-up 1 #, n = 40 | −0.150 | 0.355 |
LVEF at follow-up 2 *, n = 33 | 0.348 | 0.047 |
ΔLVEF at follow-up 2 *, n = 33 | 0.199 | 0.268 |
LVEDD at follow-up 2 *, n = 34 | −0.103 | 0.568 |
ΔLVEDD at follow-up 2 *, n = 34 | −0.020 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabmaier, U.; Ferraro, B.; Lehnert, K.; Petersmann, A.; Felix, S.B.; Weckbach, L.T. Midkine Serum Levels in Inflammatory and Non-Inflammatory Dilated Cardiomyopathy. Biomedicines 2025, 13, 504. https://doi.org/10.3390/biomedicines13020504
Grabmaier U, Ferraro B, Lehnert K, Petersmann A, Felix SB, Weckbach LT. Midkine Serum Levels in Inflammatory and Non-Inflammatory Dilated Cardiomyopathy. Biomedicines. 2025; 13(2):504. https://doi.org/10.3390/biomedicines13020504
Chicago/Turabian StyleGrabmaier, Ulrich, Bartolo Ferraro, Kristin Lehnert, Astrid Petersmann, Stephan B. Felix, and Ludwig T. Weckbach. 2025. "Midkine Serum Levels in Inflammatory and Non-Inflammatory Dilated Cardiomyopathy" Biomedicines 13, no. 2: 504. https://doi.org/10.3390/biomedicines13020504
APA StyleGrabmaier, U., Ferraro, B., Lehnert, K., Petersmann, A., Felix, S. B., & Weckbach, L. T. (2025). Midkine Serum Levels in Inflammatory and Non-Inflammatory Dilated Cardiomyopathy. Biomedicines, 13(2), 504. https://doi.org/10.3390/biomedicines13020504