Identification of Potential Drug Targets for Immunoglobulin A Nephropathy: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source
2.3. Selection of Instrumental Variables
2.4. Statistical Analysis
2.4.1. MR Analysis and Sensitivity Analysis
2.4.2. Bayesian Colocalization Analysis
2.4.3. Mediation Analysis
3. Results
3.1. Available Druggable Gene Data
3.2. Mendelian Randomization Analysis Identified Potential Drug Targets for IgAN
3.3. Colocalization Analysis
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence interval |
CpG | Cytosine-phosphate-guanine |
DNAm | DNA methylation |
DNA mQTL | DNA methylation quantitative trait loci |
eQTL | Expression quantitative trait loci |
FDR | False discovery rate |
GWAS | Genome-wide association study |
IgAN | Immunoglobulin A nephropathy |
IV | Instrumental variable |
IVW | Inverse variance weighted |
MR | Mendelian randomization |
OR | Odds ratio |
PPs | Posterior probabilities |
SLE | Systemic lupus erythematosus |
SNPs | Single nucleotide polymorphisms |
RA | Rheumatoid arthritis |
References
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef]
- Lai, K.N.; Tang, S.C.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Primers 2016, 2, 16001. [Google Scholar] [CrossRef] [PubMed]
- Stamellou, E.; Seikrit, C.; Tang, S.C.W.; Boor, P.; Tesař, V.; Floege, J.; Barratt, J.; Kramann, R. IgA nephropathy. Nat. Rev. Dis. Primers 2023, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H. Current understanding and new insights in the treatment of IgA nephropathy. Nephrology 2024, 29 (Suppl. S2), 75–79. [Google Scholar] [CrossRef]
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef]
- Lafayette, R.; Kristensen, J.; Stone, A.; Floege, J.; Tesař, V.; Trimarchi, H.; Zhang, H.; Eren, N.; Paliege, A.; Reich, H.N.; et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 2023, 402, 859–870. [Google Scholar] [CrossRef]
- Lv, J.; Liu, L.; Hao, C.; Li, G.; Fu, P.; Xing, G.; Zheng, H.; Chen, N.; Wang, C.; Luo, P.; et al. Randomized Phase 2 Trial of Telitacicept in Patients with IgA Nephropathy with Persistent Proteinuria. Kidney Int. Rep. 2023, 8, 499–506. [Google Scholar] [CrossRef]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G.; et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. JASN 2011, 22, 1795–1803. [Google Scholar] [CrossRef]
- Feehally, J.; Farrall, M.; Boland, A.; Gale, D.P.; Gut, I.; Heath, S.; Kumar, A.; Peden, J.F.; Maxwell, P.H.; Morris, D.L.; et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. JASN 2010, 21, 1791–1797. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Kiryluk, K.; Choi, M.; Li, Y.; Hou, P.; Xie, J.; Sanna-Cherchi, S.; Men, C.J.; Julian, B.A.; Wyatt, R.J.; et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 43, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Li, M.; Zhang, H.; Low, H.Q.; Wei, X.; Wang, J.Q.; Sun, L.D.; Sim, K.S.; Li, Y.; Foo, J.N.; et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 44, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Younesian, S.; Mohammadi, M.H.; Younesian, O.; Momeny, M.; Ghaffari, S.H.; Bashash, D. DNA methylation in human diseases. Heliyon 2024, 10, e32366. [Google Scholar] [CrossRef] [PubMed]
- Coit, P.; Dozmorov, M.G.; Merrill, J.T.; McCune, W.J.; Maksimowicz-McKinnon, K.; Wren, J.D.; Sawalha, A.H. Epigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Non-Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares. Arthritis Rheumatol. 2016, 68, 2200–2209. [Google Scholar] [CrossRef]
- Gorelik, G.; Fang, J.Y.; Wu, A.; Sawalha, A.H.; Richardson, B. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J. Immunol. 2007, 179, 5553–5563. [Google Scholar] [CrossRef]
- Mok, A.; Rhead, B.; Holingue, C.; Shao, X.; Quach, H.L.; Quach, D.; Sinclair, E.; Graf, J.; Imboden, J.; Link, T.; et al. Hypomethylation of CYP2E1 and DUSP22 Promoters Associated with Disease Activity and Erosive Disease Among Rheumatoid Arthritis Patients. Arthritis Rheumatol. 2018, 70, 528–536. [Google Scholar] [CrossRef]
- Sekula, P.; Del Greco, M.F.; Pattaro, C.; Köttgen, A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J. Am. Soc. Nephrol. JASN 2016, 27, 3253–3265. [Google Scholar] [CrossRef]
- Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925–1926. [Google Scholar] [CrossRef]
- Finan, C.; Gaulton, A.; Kruger, F.A.; Lumbers, R.T.; Shah, T.; Engmann, J.; Galver, L.; Kelley, R.; Karlsson, A.; Santos, R.; et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 2017, 9, eaag1166. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Yazar, S.; et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021, 53, 1300–1310. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Min, J.L.; Hemani, G.; Hannon, E.; Dekkers, K.F.; Castillo-Fernandez, J.; Luijk, R.; Carnero-Montoro, E.; Lawson, D.J.; Burrows, K.; Suderman, M.; et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 2021, 53, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Gkatzionis, A.; Burgess, S.; Newcombe, P.J. Statistical methods for cis-Mendelian randomization with two-sample summary-level data. Genet. Epidemiol. 2023, 47, 3–25. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef]
- Pierce, B.L.; Ahsan, H.; Vanderweele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011, 40, 740–752. [Google Scholar] [CrossRef]
- Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 2017, 26, 2333–2355. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Yavorska, O.O.; Burgess, S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef]
- Cohen, J.F.; Chalumeau, M.; Cohen, R.; Korevaar, D.A.; Khoshnood, B.; Bossuyt, P.M.M. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J. Clin. Epidemiol. 2015, 68, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Robson, K.J.; Ooi, J.D.; Holdsworth, S.R.; Rossjohn, J.; Kitching, A.R. HLA and kidney disease: From associations to mechanisms. Nat. Rev. Nephrol. 2018, 14, 636–655. [Google Scholar] [CrossRef]
- Saeed, M.; Beggs, M.L.; Walker, P.D.; Larsen, C.P. PLA2R-associated membranous glomerulopathy is modulated by common variants in PLA2R1 and HLA-DQA1 genes. Genes Immun. 2014, 15, 556–561. [Google Scholar] [CrossRef]
- Woroniecka, K.I.; Park, A.S.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011, 60, 2354–2369. [Google Scholar] [CrossRef]
- Ma, F.; Sun, T.; Wu, M.; Wang, W.; Xu, Z. Identification of key genes for diabetic kidney disease using biological informatics methods. Mol. Med. Rep. 2017, 16, 7931–7938. [Google Scholar] [CrossRef]
- Chen, Z.; Lan, R.; Ye, K.; Chen, H.; Chen, C.; Xu, Y. Prioritization of Diagnostic and Prognostic Biomarkers for Lupus Nephritis Based on Integrated Bioinformatics Analyses. Front. Bioeng. Biotechnol. 2021, 9, 717234. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Sun, G.; Dai, W.; Jie, X.; Du, Y.; Huang, R.; Zhang, J. Promising targets and drugs in rheumatoid arthritis: A module-based and cumulatively scoring approach. Bone Jt. Res. 2020, 9, 501–514. [Google Scholar] [CrossRef]
- Janakiraman, V.; Sudhan, M.; Alzahrani, K.J.; Alshammeri, S.; Ahmed, S.; Patil, S. Dynamics of TUBB protein with five majorly occurring natural variants: A risk of cortical dysplasia. J. Mol. Model. 2023, 29, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, W.; Huo, S.; Huang, T.; Cao, X.; Zhang, Y. TUBB, a robust biomarker with satisfying abilities in diagnosis, prognosis, and immune regulation via a comprehensive pan-cancer analysis. Front. Mol. Biosci. 2024, 11, 1365655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Yu, Y.; Fang, Y.; Li, J.; Li, J. Promotion of Inflammation, Apoptosis, and Inhibition of Autophagy by Overexpression of lncRNA SNHG12 in Acute Kidney Injury. Iran. J. Kidney Dis. 2024, 1, 45–55. [Google Scholar] [PubMed]
- Zhang, Q.; Zhang, K.; Zhu, Y.; Yuan, G.; Yang, J.; Zhang, M. Exploring genes for immunoglobulin A nephropathy: A summary data-based mendelian randomization and FUMA analysis. BMC Med. Genom. 2023, 16, 16. [Google Scholar] [CrossRef]
- Park, S.; Yang, S.H.; Jeong, C.W.; Moon, K.C.; Kim, D.K.; Joo, K.W.; Kim, Y.S.; Lee, J.W.; Lee, H. RNA-Seq profiling of microdissected glomeruli identifies potential biomarkers for human IgA nephropathy. Am. J. Physiol. Ren. Physiol. 2020, 319, F809–F821. [Google Scholar] [CrossRef]
- Deng, B.Q.; Li, M.Y.; Fu, X.; Luo, Y.; Qiao, Q.; Liu, J.Y. Targeted Metabolomics Study of Human Plasma Revealed Activation of the Cytochrome P450 Epoxygenase/Epoxide Hydrolase Axis in Patients with IgA Nephropathy. J. Proteome Res. 2022, 21, 2969–2978. [Google Scholar] [CrossRef]
- Xu, X.; Miao, C.; Yang, S.; Xiao, L.; Gao, Y.; Wu, F.; Xu, J. Investigating potential drug targets for IgA nephropathy and membranous nephropathy through multi-queue plasma protein analysis: A Mendelian randomization study based on SMR and co-localization analysis. BioData Min. 2024, 17, 49. [Google Scholar] [CrossRef]
- Tang, C.; Chen, P.; Xu, L.L.; Lv, J.C.; Shi, S.F.; Zhou, X.J.; Liu, L.J.; Zhang, H. Circulating Proteins and IgA Nephropathy: A Multiancestry Proteome-Wide Mendelian Randomization Study. J. Am. Soc. Nephrol. JASN 2024, 35, 1045–1057. [Google Scholar] [CrossRef]
CpG | Beta1 (95% CI) | Beta2 (95% CI) | Beta All (95% CI) | Indirect Effect (95% CI) | Proportion Mediated (95% CI) |
---|---|---|---|---|---|
cg01140143 | −1.197 (−2.331, −0.062) | 0.061 (0.035, 0.087) | −0.215 (−0.358, −0.072) | −0.072 (−0.157, −0.004) | 33.74% (1.64, 73.27) |
cg08898074 | −1.124 (−1.513, −0.735) | 0.061 (0.035, 0.087) | −0.163 (−0.232, −0.094) | −0.068 (−0.109, −0.034) | 41.67% (20.78, 66.97) |
cg12168509 | −1.855 (−2.181, −1.529) | 0.061 (0.035, 0.087) | −0.223 (−0.339, −0.107) | −0.112 (−0.167, −0.062) | 50.34% (27.89, 74.76) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Zhang, H.; Guo, Y.; Tao, Y. Identification of Potential Drug Targets for Immunoglobulin A Nephropathy: A Mendelian Randomization Study. Biomedicines 2025, 13, 581. https://doi.org/10.3390/biomedicines13030581
Xiong L, Zhang H, Guo Y, Tao Y. Identification of Potential Drug Targets for Immunoglobulin A Nephropathy: A Mendelian Randomization Study. Biomedicines. 2025; 13(3):581. https://doi.org/10.3390/biomedicines13030581
Chicago/Turabian StyleXiong, Limei, Hui Zhang, Yannan Guo, and Yuhong Tao. 2025. "Identification of Potential Drug Targets for Immunoglobulin A Nephropathy: A Mendelian Randomization Study" Biomedicines 13, no. 3: 581. https://doi.org/10.3390/biomedicines13030581
APA StyleXiong, L., Zhang, H., Guo, Y., & Tao, Y. (2025). Identification of Potential Drug Targets for Immunoglobulin A Nephropathy: A Mendelian Randomization Study. Biomedicines, 13(3), 581. https://doi.org/10.3390/biomedicines13030581