The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Data Curation
2.3. Differential Expression Across Organisms
2.4. Functional Analysis with GO Enrichment
2.5. Differential Expression Between Streptococcus and Lactobacillus
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; Arora, A.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding Dental Caries as a Non-Communicable Disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- Spatafora, G.; Li, Y.; He, X.; Cowan, A.; Tanner, A.C.R. The Evolving Microbiome of Dental Caries. Microorganisms 2024, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Imlay, J.A. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front. Immunol. 2021, 12, 667343. [Google Scholar] [CrossRef]
- Yu, S.; Ma, Q.; Li, Y.; Zou, J. Molecular and Regulatory Mechanisms of Oxidative Stress Adaptation in Streptococcus Mutans. Mol. Oral Microbiol. 2023, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.; Varghese, R.M.; Subramanian, A.K.; Shanmugam, R. Evaluation of Antibacterial Effects of an Oral Rinse Containing Ocimum Tenuiflorum and Ocimum Gratissimum on Streptococcus Mutans and Lactobacillus Species. Cureus 2024, 16, e67975. [Google Scholar] [CrossRef] [PubMed]
- Pidamale, R.; Chauhan, P.S.; Singh, R.; Imran, M.; Prakash, R.; Kuppusamy, K. Diet and Caries-Associated Bacteria in Severe Early Childhood Caries An In Vitro Study. J. Pharm. Bioallied Sci. 2024, 16, S2664–S2666. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.J.; Michalek, S.M.; Zhu, M.; Drake, D.; Qian, F.; Banas, J.A. Cariogenicity of Streptococcus Mutans Glucan-Binding Protein Deletion Mutants. Oral Health Dent. Manag. 2013, 12, 191–199. [Google Scholar] [PubMed]
- Marsh, P.D. Dental Plaque as a Biofilm and a Microbial Community—Implications for Health and Disease. BMC Oral Health 2006, 6, S14. [Google Scholar] [CrossRef]
- Stefanovska, E.; Zabokova Bilbilova, E. Introductory Chapter: Dental Biofilms Associated with Caries. In Dental Caries; Zabokova Bilbilova, E., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83968-114-1. [Google Scholar]
- Simón-Soro, A.; Mira, A. Solving the Etiology of Dental Caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Helbling, D.E.; Ackermann, M.; Fenner, K.; Kohler, H.-P.E.; Johnson, D.R. The Activity Level of a Microbial Community Function Can Be Predicted from Its Metatranscriptome. ISME J. 2012, 6, 902–904. [Google Scholar] [CrossRef] [PubMed]
- Raghavachari, N.; Garcia-Reyero, N. (Eds.) Overview of Gene Expression Analysis: Transcriptomics. In Gene Expression Analysis; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1783, pp. 1–6. ISBN 978-1-4939-7833-5. [Google Scholar]
- Jorth, P.; Turner, K.H.; Gumus, P.; Nizam, N.; Buduneli, N.; Whiteley, M. Metatranscriptomics of the Human Oral Microbiome during Health and Disease. mBio 2014, 5, e01012-14. [Google Scholar] [CrossRef] [PubMed]
- Solbiati, J.; Frias-Lopez, J. Metatranscriptome of the Oral Microbiome in Health and Disease. J. Dent. Res. 2018, 97, 492–500. [Google Scholar] [CrossRef]
- Yost, S.; Duran-Pinedo, A.E.; Teles, R.; Krishnan, K.; Frias-Lopez, J. Functional Signatures of Oral Dysbiosis during Periodontitis Progression Revealed by Microbial Metatranscriptome Analysis. Genome Med. 2015, 7, 27. [Google Scholar] [CrossRef]
- Westreich, S.T.; Treiber, M.L.; Mills, D.A.; Korf, I.; Lemay, D.G. SAMSA2: A Standalone Metatranscriptome Analysis Pipeline. BMC Bioinform. 2018, 19, 175. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A Fast and Accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Kopylova, E.; Noé, L.; Touzet, H. SortMeRNA: Fast and Accurate Filtering of Ribosomal RNAs in Metatranscriptomic Data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- McLaren, M.R. Silva SSU Taxonomic Training Data Formatted for DADA2 (Silva Version 138); Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI Reference Sequences (RefSeq): A Curated Non-Redundant Sequence Database of Genomes, Transcripts and Proteins. Nucleic Acids Res. 2007, 35, D61–D65. [Google Scholar] [CrossRef] [PubMed]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; Da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A Web-Based Tool for the Analysis of Sets through Venn Diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.G.; Nishiyama, R.R.; Trigo, C.A.C.; Mattos-Guaraldi, A.L.; Dávila, A.M.R.; Jardim, R.; Aguiar, F.H.B. Core of the Saliva Microbiome: An Analysis of the MG-RAST Data. BMC Oral Health 2021, 21, 351. [Google Scholar] [CrossRef] [PubMed]
- Izzeldien, R.; Abdulaziz, S.; Ahmed, A.; Noma, M. In Vitro Antibacterial Effect of Commiphora Myrrha Oil against Dental Pathogens. bioRxiv 2020. [Google Scholar] [CrossRef]
- Espinoza, J.L.; Torralba, M.; Leong, P.; Saffery, R.; Bockmann, M.; Kuelbs, C.; Singh, S.; Hughes, T.; Craig, J.M.; Nelson, K.E.; et al. Differential Network Analysis of Oral Microbiome Metatranscriptomes Identifies Community Scale Metabolic Restructuring in Dental Caries. PNAS Nexus 2022, 1, pgac239. [Google Scholar] [CrossRef]
- Gross, E.L.; Beall, C.J.; Kutsch, S.R.; Firestone, N.D.; Leys, E.J.; Griffen, A.L. Beyond Streptococcus Mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis. PLoS ONE 2012, 7, e47722. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Frese, C.; Schoilew, K.; Dalpke, A.; Wolff, B.; Boutin, S. Amplicon-Based Microbiome Study Highlights the Loss of Diversity and the Establishment of a Set of Species in Patients with Dentin Caries. PLoS ONE 2019, 14, e0219714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Chu, C.-H.; Yu, O.Y. Oral Microbiome and Dental Caries Development. Dent. J. 2022, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.L.; Leys, E.J.; Gasparovich, S.R.; Firestone, N.D.; Schwartzbaum, J.A.; Janies, D.A.; Asnani, K.; Griffen, A.L. Bacterial 16S Sequence Analysis of Severe Caries in Young Permanent Teeth. J. Clin. Microbiol. 2010, 48, 4121–4128. [Google Scholar] [CrossRef] [PubMed]
- Matsui, R.; Cvitkovitch, D. Acid Tolerance Mechanisms Utilized by Streptococcus Mutans. Future Microbiol. 2010, 5, 403–417. [Google Scholar] [CrossRef]
- Moye, Z.D.; Zeng, L.; Burne, R.A. Fueling the Caries Process: Carbohydrate Metabolism and Gene Regulation by Streptococcus Mutans. J. Oral Microbiol. 2014, 6, 24878. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Feng, S.; Tong, Y.; Zhang, H.; Yang, H. Adaptive Defensive Mechanism of Bioleaching Microorganisms under Extremely Environmental Acid Stress: Advances and Perspectives. Biotechnol. Adv. 2020, 42, 107580. [Google Scholar] [CrossRef]
- Khan, F.; Pham, D.T.N.; Oloketuyi, S.F.; Manivasagan, P.; Oh, J.; Kim, Y.-M. Chitosan and Their Derivatives: Antibiofilm Drugs against Pathogenic Bacteria. Colloids Surf. B Biointerfaces 2020, 185, 110627. [Google Scholar] [CrossRef]
- Douglas, C.W.I.; Naylor, K.; Phansopa, C.; Frey, A.M.; Farmilo, T.; Stafford, G.P. Physiological Adaptations of Key Oral Bacteria. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 65, pp. 257–335. ISBN 978-0-12-800142-4. [Google Scholar]
- Capdevila, D.A.; Wang, J.; Giedroc, D.P. Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. J. Biol. Chem. 2016, 291, 20858–20868. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J. Dental Caries: A Dynamic Disease Process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef]
- Abdelwahed, E.K.; Hussein, N.A.; Moustafa, A.; Moneib, N.A.; Aziz, R.K. Gene Networks and Pathways Involved in Escherichia Coli Response to Multiple Stressors. Microorganisms 2022, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Murínová, S.; Dercová, K. Response Mechanisms of Bacterial Degraders to Environmental Contaminants on the Level of Cell Walls and Cytoplasmic Membrane. Int. J. Microbiol. 2014, 2014, 873081. [Google Scholar] [CrossRef] [PubMed]
- Pennafirme, S.; Lima, I.; Bitencourt, J.; Crapez, M.; Lopes, R. Organic Matter Biodegradation by Bacterial Consortium under Metal Stress. In Biodegradation and Bioremediation of Polluted Systems—New Advances and Technologies; Chamy, R., Rosenkranz, F., Soler, L., Eds.; InTech: London, UK, 2015; ISBN 978-953-51-2238-8. [Google Scholar]
- Kim, B.H.; Gadd, G.M. Bacterial Physiology and Metabolism, 1st ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-84636-3. [Google Scholar]
- Chen, N.H.; Djoko, K.Y.; Veyrier, F.J.; McEwan, A.G. Formaldehyde Stress Responses in Bacterial Pathogens. Front. Microbiol. 2016, 7, 257. [Google Scholar] [CrossRef]
- López-López, A.; Camelo-Castillo, A.; Ferrer, M.D.; Simon-Soro, Á.; Mira, A. Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus Dentisani. Front. Microbiol. 2017, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.C.; Heinemann, C.; Thatcher, B.J.; Martin, B.; Gan, B.S.; Reid, G. Identification of Collagen-Binding Proteins in Lactobacillus spp. with Surface-Enhanced Laser Desorption/Ionization–Time of Flight ProteinChip Technology. Appl. Environ. Microbiol. 2000, 66, 4396–4400. [Google Scholar] [CrossRef] [PubMed]
- Struzycka, I. The Oral Microbiome in Dental Caries. Pol. J. Microbiol. 2014, 63, 127–135. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takeshita, T. The Oral Microbiome and Human Health. J. Oral Sci. 2017, 59, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Carabetta, V.J.; Hardouin, J. Editorial: Bacterial Post-Translational Modifications. Front. Microbiol. 2022, 13, 874602. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, Q.; Chen, Y.; Yu, S.; Huang, J.; Liu, Y.; Gong, T.; Li, Y.; Zou, J. Post-Translational Modifications in Oral Bacteria and Their Functional Impact. Front. Microbiol. 2021, 12, 784923. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, S.G.d.; Jardim, R.; Kotowski, N.; Dávila, A.M.R.; Sampaio-Filho, H.R.; Ruiz, K.G.S.; Aguiar, F.H.B. The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria. Biomedicines 2025, 13, 583. https://doi.org/10.3390/biomedicines13030583
Oliveira SGd, Jardim R, Kotowski N, Dávila AMR, Sampaio-Filho HR, Ruiz KGS, Aguiar FHB. The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria. Biomedicines. 2025; 13(3):583. https://doi.org/10.3390/biomedicines13030583
Chicago/Turabian StyleOliveira, Simone G. de, Rodrigo Jardim, Nelson Kotowski, Alberto M. R. Dávila, Hélio R. Sampaio-Filho, Karina G. S. Ruiz, and Flávio H. B. Aguiar. 2025. "The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria" Biomedicines 13, no. 3: 583. https://doi.org/10.3390/biomedicines13030583
APA StyleOliveira, S. G. d., Jardim, R., Kotowski, N., Dávila, A. M. R., Sampaio-Filho, H. R., Ruiz, K. G. S., & Aguiar, F. H. B. (2025). The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria. Biomedicines, 13(3), 583. https://doi.org/10.3390/biomedicines13030583