Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy—A Systematic and Critical Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Published Studies
2.2. Exclusion and Inclusion Criteria
2.3. Data Extraction
2.4. Calculation of Incidence
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
AKI | Acute kidney injury |
AKT | Serine-threonine kinase |
CTLA-4 | Cytotoxic T lymphocyte-associated protein 4 |
FDA | United States Food and Drug Administration |
ICIs | Immune checkpoint inhibitors |
IgG1 | G1 immunoglobulin |
IgG2 | G2 immunoglobulin |
IgG4 | G4 immunoglobulin |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Ligand 1 of programmed cell death protein |
PI3K | Inositolphosphatidyl-3-kinase |
PP2A | Phosphatase protein 2A |
References
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A.; Shirali, A.C. Immune Checkpoint Inhibitor Nephrotoxicity: What Do We Know and What Should We Do? Kidney Int. 2020, 97, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Twomey, J.D.; Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Approves Tremelimumab in Combination with Durvalumab and Platinum-Based Chemotherapy for Metastatic Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tremelimumab-combination-durvalumab-and-platinum-based-chemotherapy-metastatic-non (accessed on 4 March 2025).
- Seethapathy, H.; Herrmann, S.M.; Sise, M.E. Immune Checkpoint Inhibitors and Kidney Toxicity: Advances in Diagnosis and Management. Kidney Med. 2021, 3, 1074–1081. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Previously Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23. [Google Scholar] [CrossRef] [PubMed]
- Barquín-García, A.; Molina-Cerrillo, J.; Garrido, P.; Garcia-Palos, D.; Carrato, A.; Alonso-Gordoa, T. New Oncologic Emergencies: What Is There to Know about Inmunotherapy and Its Potential Side Effects? Eur. J. Intern. Med. 2019, 66, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Jiang, T.; Ren, S.; Zhou, C. Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non–Small-Cell Lung Cancer: Where Do We Stand? Clin. Lung Cancer 2018, 19, 1–11. [Google Scholar] [CrossRef]
- Franzin, R.; Netti, G.S.; Spadaccino, F.; Porta, C.; Gesualdo, L.; Stallone, G.; Castellano, G.; Ranieri, E. The Use of Immune Checkpoint Inhibitors in Oncology and the Occurrence of AKI: Where Do We Stand? Front. Immunol. 2020, 11, 574271. [Google Scholar] [CrossRef]
- Cortazar, F.B.; Marrone, K.A.; Troxell, M.L.; Ralto, K.M.; Hoenig, M.P.; Brahmer, J.R.; Le, D.T.; Lipson, E.J.; Glezerman, I.G.; Wolchok, J.; et al. Clinicopathological Features of Acute Kidney Injury Associated with Immune Checkpoint Inhibitors. Kidney Int. 2016, 90, 638–647. [Google Scholar] [CrossRef]
- Cortazar, F.B.; Kibbelaar, Z.A.; Glezerman, I.G.; Abudayyeh, A.; Mamlouk, O.; Motwani, S.S.; Murakami, N.; Herrmann, S.M.; Manohar, S.; Shirali, A.C.; et al. Clinical Features and Outcomes of Immune Checkpoint Inhibitor–Associated AKI: A Multicenter Study. J. Am. Soc. Nephrol. 2020, 31, 435–446. [Google Scholar] [CrossRef]
- Isik, B.; Alexander, M.P.; Manohar, S.; Vaughan, L.; Kottschade, L.; Markovic, S.; Lieske, J.; Kukla, A.; Leung, N.; Herrmann, S.M. Biomarkers, Clinical Features, and Rechallenge for Immune Checkpoint Inhibitor Renal Immune-Related Adverse Events. Kidney Int. Rep. 2021, 6, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wei, W.; Yang, L.; Li, J.; Yi, C.; Pu, Y.; Yin, T.; Na, F.; Zhang, L.; Fu, P.; et al. Incidence and Risk Factors of Acute Kidney Injury in Cancer Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front. Immunol. 2023, 14, 1173952. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Xiao, S.; Li, X.; Huang, J.; Li, G.; Zhang, Z. Incidence, Mortality, and Risk Factors of Acute Kidney Injury after Immune Checkpoint Inhibitors: Systematic Review and Meta-Analysis of Real-World Evidence. Eur. J. Intern. Med. 2023, 115, 88–95. [Google Scholar] [CrossRef]
- Bahor, Z.; Liao, J.; Currie, G.; Ayder, C.; Macleod, M.; McCann, S.K.; Bannach-Brown, A.; Wever, K.; Soliman, N.; Wang, Q.; et al. Development and Uptake of an Online Systematic Review Platform: The Early Years of the CAMARADES Systematic Review Facility (SyRF). BMJ Open Sci. 2021, 5, e100103. [Google Scholar] [CrossRef] [PubMed]
- Tascón, A.; Casanova, A.G.; Vicente-Vicente, L.; López-Hernández, F.J.; Morales, A.I. Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy. A Systematic and Critical Review INPLASY Protocol 202510053. Available online: https://inplasy.com/inplasy-2025-1-0053/ (accessed on 4 March 2025).
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological Index for Non-Randomized Studies (MINORS): Development and Validation of a New Instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Mamlouk, O.; Lin, H.; Lin, J.; Page, V.; Abdel-Wahab, N.; Swan, J.; Selamet, U.; Yee, C.; Diab, A.; et al. Incidence, Predictors, and Survival Impact of Acute Kidney Injury in Patients with Melanoma Treated with Immune Checkpoint Inhibitors: A 10-Year Single-Institution Analysis. Oncoimmunology 2021, 10, 1927313. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab Alone and Nivolumab plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef]
- Apolo, A.B.; Ellerton, J.A.; Infante, J.R.; Agrawal, M.; Gordon, M.S.; Aljumaily, R.; Gourdin, T.; Dirix, L.; Lee, K.-W.; Taylor, M.H.; et al. Avelumab as Second-Line Therapy for Metastatic, Platinum-Treated Urothelial Carcinoma in the Phase Ib JAVELIN Solid Tumor Study: 2-Year Updated Efficacy and Safety Analysis. J. Immunother. Cancer 2020, 8, e001246. [Google Scholar] [CrossRef]
- Atkins, M.B.; Hodi, F.S.; Thompson, J.A.; McDermott, D.F.; Hwu, W.-J.; Lawrence, D.P.; Dawson, N.A.; Wong, D.J.; Bhatia, S.; James, M.; et al. Pembrolizumab Plus Pegylated Interferon Alfa-2b or Ipilimumab for Advanced Melanoma or Renal Cell Carcinoma: Dose-Finding Results from the Phase Ib KEYNOTE-029 Study. Clin. Cancer Res. 2018, 24, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M.C.; et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naïve Patients with Advanced Non-Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort B). J. Immunother. Cancer 2023, 11, e004780. [Google Scholar] [CrossRef] [PubMed]
- Blas, L.; Shiota, M.; Tsukahara, S.; Nagakawa, S.; Matsumoto, T.; Eto, M. Adverse Events of Cabozantinib Plus Nivolumab Versus Ipilimumab Plus Nivolumab. Clin. Genitourin. Cancer 2024, 22, e122–e127.e1. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.T.; Matin, S.F.; Tam, A.L.; Sheth, R.A.; Ahrar, K.; Tidwell, R.S.; Rao, P.; Karam, J.A.; Wood, C.G.; Tannir, N.M.; et al. Pilot Study of Tremelimumab with and without Cryoablation in Patients with Metastatic Renal Cell Carcinoma. Nat. Commun. 2021, 12, 6375. [Google Scholar] [CrossRef]
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; et al. Nivolumab plus Ipilimumab with or without Live Bacterial Supplementation in Metastatic Renal Cell Carcinoma: A Randomized Phase 1 Trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
- Espi, M.; Teuma, C.; Novel-Catin, E.; Maillet, D.; Souquet, P.J.; Dalle, S.; Koppe, L.; Fouque, D. Renal Adverse Effects of Immune Checkpoints Inhibitors in Clinical Practice: ImmuNoTox Study. Eur. J. Cancer 2021, 147, 29–39. [Google Scholar] [CrossRef]
- Flippot, R.; Dalban, C.; Laguerre, B.; Borchiellini, D.; Gravis, G.; Négrier, S.; Chevreau, C.; Joly, F.; Geoffrois, L.; Ladoire, S.; et al. Safety and Efficacy of Nivolumab in Brain Metastases From Renal Cell Carcinoma: Results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. JCO 2019, 37, 2008–2016. [Google Scholar] [CrossRef]
- George, D.J.; Spigel, D.R.; Gordan, L.N.; Kochuparambil, S.T.; Molina, A.M.; Yorio, J.; Rezazadeh Kalebasty, A.; McKean, H.; Tchekmedyian, N.; Tykodi, S.S.; et al. Safety and Efficacy of First-Line Nivolumab plus Ipilimumab Alternating with Nivolumab Monotherapy in Patients with Advanced Renal Cell Carcinoma: The Non-Randomised, Open-Label, Phase IIIb/IV CheckMate 920 Trial. BMJ Open 2022, 12, e058396. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.; et al. Pembrolizumab for Management of Patients with NSCLC and Brain Metastases: Long-Term Results and Biomarker Analysis from a Non-Randomized, Open-Label, Phase 2 Trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef]
- Grimm, M.-O.; Grünwald, V.; Müller-Huesmann, H.; Ivanyi, P.; Schostak, M.; von der Heyde, E.; Schultze-Seemann, W.; Belz, H.; Bögemann, M.; Wang, M.; et al. Real-World Data on the Use of Nivolumab Monotherapy in the Treatment of Advanced Renal Cell Carcinoma after Prior Therapy: Interim Results from the Noninterventional NORA Study. Eur. Urol. Focus 2022, 8, 1289–1299. [Google Scholar] [CrossRef]
- Gul, A.; Stewart, T.F.; Mantia, C.M.; Shah, N.J.; Gatof, E.S.; Long, Y.; Allman, K.D.; Ornstein, M.C.; Hammers, H.J.; McDermott, D.F.; et al. Salvage Ipilimumab and Nivolumab in Patients With Metastatic Renal Cell Carcinoma After Prior Immune Checkpoint Inhibitors. J. Clin. Oncol. 2020, 38, 3088–3094. [Google Scholar] [CrossRef] [PubMed]
- Hammers, H.J.; Plimack, E.R.; Infante, J.R.; Rini, B.I.; McDermott, D.F.; Lewis, L.D.; Voss, M.H.; Sharma, P.; Pal, S.K.; Razak, A.R.A.; et al. Safety and Efficacy of Nivolumab in Combination With Ipilimumab in Metastatic Renal Cell Carcinoma: The CheckMate 016 Study. J. Clin. Oncol. 2017, 35, 3851–3858. [Google Scholar] [CrossRef]
- Hofmann, L.; Forschner, A.; Loquai, C.; Goldinger, S.M.; Zimmer, L.; Ugurel, S.; Schmidgen, M.I.; Gutzmer, R.; Utikal, J.S.; Göppner, D.; et al. Cutaneous, Gastrointestinal, Hepatic, Endocrine, and Renal Side-Effects of Anti-PD-1 Therapy. Eur. J. Cancer 2016, 60, 190–209. [Google Scholar] [CrossRef]
- Izumi, K.; Inoue, M.; Washino, S.; Shirotake, S.; Kagawa, M.; Takeshita, H.; Miura, Y.; Hyodo, Y.; Oyama, M.; Kawakami, S.; et al. Clinical Outcomes of Nivolumab plus Ipilimumab in Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma: Real-World Data from a Japanese Multicenter Retrospective Study. Int. J. Urol. 2023, 30, 714–721. [Google Scholar] [CrossRef]
- Julien, K.; Leung, H.T.; Fuertes, C.; Mori, M.; Wang, M.; Teo, J.; Weiss, L.; Hamilton, S.; DiFebo, H.; Noh, Y.J.; et al. Nivolumab in Advanced Hepatocellular Carcinoma: Safety Profile and Select Treatment-Related Adverse Events From the CheckMate 040 Study. Oncologist 2020, 25, e1532–e1540. [Google Scholar] [CrossRef] [PubMed]
- Kanz, B.A.; Pollack, M.H.; Johnpulle, R.; Puzanov, I.; Horn, L.; Morgans, A.; Sosman, J.A.; Rapisuwon, S.; Conry, R.M.; Eroglu, Z.; et al. Safety and Efficacy of Anti-PD-1 in Patients with Baseline Cardiac, Renal, or Hepatic Dysfunction. J. Immunother. Cancer 2016, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.J.; Hamieh, L.; McKay, R.R.; Harshman, L.C.; Brandao, R.; Norton, C.K.; Steinharter, J.A.; Krajewski, K.M.; Gao, X.; Schutz, F.A.; et al. Durable Clinical Benefit in Metastatic Renal Cell Carcinoma Patients Who Discontinue PD-1/PD-L1 Therapy for Immune-Related Adverse Events. Cancer Immunol. Res. 2018, 6, 402–408. [Google Scholar] [CrossRef]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti–Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients with Advanced Urothelial Bladder Cancer. J. Clin. Oncol. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- McFarlane, J.J.; Kochenderfer, M.D.; Olsen, M.R.; Bauer, T.M.; Molina, A.; Hauke, R.J.; Reeves, J.A.; Babu, S.; Van Veldhuizen, P.; Somer, B.; et al. Safety and Efficacy of Nivolumab in Patients with Advanced Clear Cell Renal Cell Carcinoma: Results from the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 469–476.e4. [Google Scholar] [CrossRef]
- Meraz-Muñoz, A.; Amir, E.; Ng, P.; Avila-Casado, C.; Ragobar, C.; Chan, C.; Kim, J.; Wald, R.; Kitchlu, A. Acute Kidney Injury Associated with Immune Checkpoint Inhibitor Therapy: Incidence, Risk Factors and Outcomes. J. Immunother. Cancer 2020, 8, e000467. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Mourey, L.; Rainho, L.T.; Dalban, C.; Carril-Ajuria, L.; Negrier, S.; Chevreau, C.; Gravis, G.; Thibault, C.; Laguerre, B.; Barthelemy, P.; et al. Safety and Efficacy of Nivolumab in Elderly Patients with Metastatic Clear Cell Renal Cell Carcinoma: Analysis of the NIVOREN GETUG-AFU 26 Study. Eur. J. Cancer 2024, 201, 113589. [Google Scholar] [CrossRef] [PubMed]
- Noronha, V.; Abraham, G.; Patil, V.; Joshi, A.; Menon, N.; Mahajan, A.; Janu, A.; Jain, S.; Talreja, V.T.; Kapoor, A.; et al. A Real-world Data of Immune Checkpoint Inhibitors in Solid Tumors from India. Cancer Med. 2021, 10, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, A.; Hughes, P.; Mann, J.; Lai, Z.; Teh, J.J.; Mclean, E.; Edmonds, K.; Lingard, K.; Chauhan, D.; Lynch, J.; et al. An Immunotherapy Survivor Population: Health-Related Quality of Life and Toxicity in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. Support. Care Cancer 2020, 28, 561–570. [Google Scholar] [CrossRef]
- Polkowska, M.; Ekk-Cierniakowski, P.; Czepielewska, E.; Kozłowska-Wojciechowska, M. Efficacy and Safety of BRAF Inhibitors and Anti-CTLA4 Antibody in Melanoma Patients—Real-World Data. Eur. J. Clin. Pharmacol. 2019, 75, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.-L.; De Giorgi, U.; et al. Durvalumab Alone and Durvalumab plus Tremelimumab versus Chemotherapy in Previously Untreated Patients with Unresectable, Locally Advanced or Metastatic Urothelial Carcinoma (DANUBE): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
- Powles, T.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Symeonides, S.N.; Hajek, J.; Gurney, H.; Chang, Y.-H.; Lee, J.L.; et al. Pembrolizumab versus Placebo as Post-Nephrectomy Adjuvant Therapy for Clear Cell Renal Cell Carcinoma (KEYNOTE-564): 30-Month Follow-up Analysis of a Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2022, 23, 1133–1144. [Google Scholar] [CrossRef]
- Raghav, K.P.; Stephen, B.; Karp, D.D.; Piha-Paul, S.A.; Hong, D.S.; Jain, D.; Chudy Onwugaje, D.O.; Abonofal, A.; Willett, A.F.; Overman, M.; et al. Efficacy of Pembrolizumab in Patients with Advanced Cancer of Unknown Primary (CUP): A Phase 2 Non-Randomized Clinical Trial. J. Immunother. Cancer 2022, 10, e004822. [Google Scholar] [CrossRef]
- Rassy, E.; Dalban, C.; Colomba, E.; Derosa, L.; Alves Costa Silva, C.; Negrier, S.; Chevreau, C.; Gravis, G.; Oudard, S.; Laguerre, B.; et al. Efficacy and Safety of Concomitant Proton Pump Inhibitor and Nivolumab in Renal Cell Carcinoma: Results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. Clin. Genitourin. Cancer 2022, 20, 488–494. [Google Scholar] [CrossRef]
- Ready, N.E.; Audigier-Valette, C.; Goldman, J.W.; Felip, E.; Ciuleanu, T.-E.; Rosario García Campelo, M.; Jao, K.; Barlesi, F.; Bordenave, S.; Rijavec, E.; et al. First-Line Nivolumab plus Ipilimumab for Metastatic Non-Small Cell Lung Cancer, Including Patients with ECOG Performance Status 2 and Other Special Populations: CheckMate 817. J. Immunother. Cancer 2023, 11, e006127. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Stein, M.; Shannon, P.; Eddy, S.; Tyler, A.; Stephenson, J.J., Jr.; Catlett, L.; Huang, B.; Healey, D.; Gordon, M. Phase 1 Dose-Escalation Trial of Tremelimumab plus Sunitinib in Patients with Metastatic Renal Cell Carcinoma. Cancer 2011, 117, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Seethapathy, H.; Zhao, S.; Chute, D.F.; Zubiri, L.; Oppong, Y.; Strohbehn, I.; Cortazar, F.B.; Leaf, D.E.; Mooradian, M.J.; Villani, A.-C.; et al. The Incidence, Causes, and Risk Factors of Acute Kidney Injury in Patients Receiving Immune Checkpoint Inhibitors. Clin. J. Am. Soc. Nephrol. 2019, 14, 1692–1700. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; de Braud, F.; Morse, M.; et al. Nivolumab Monotherapy in Recurrent Metastatic Urothelial Carcinoma (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef]
- Spillane, S.; Baxi, S.; Torres, A.Z.; Lenis, D.; Freedman, A.N.; Mariotto, A.B.; Sharon, E. Organ Dysfunction in Patients with Advanced Melanoma Treated with Immune Checkpoint Inhibitors. Oncologist 2020, 25, e1753–e1762. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Loriot, Y.; James, N.; Choy, E.; Castellano, D.; Lopez-Rios, F.; Banna, G.L.; De Giorgi, U.; Masini, C.; Bamias, A.; et al. Primary Results from SAUL, a Multinational Single-Arm Safety Study of Atezolizumab Therapy for Locally Advanced or Metastatic Urothelial or Nonurothelial Carcinoma of the Urinary Tract. Eur. Urol. 2019, 76, 73–81. [Google Scholar] [CrossRef]
- Sukari, A.; Nagasaka, M.; Alhasan, R.; Patel, D.; Wozniak, A.; Ramchandren, R.; Vaishampayan, U.; Weise, A.; Flaherty, L.; Jang, H.; et al. Cancer Site and Adverse Events Induced by Immune Checkpoint Inhibitors: A Retrospective Analysis of Real-Life Experience at a Single Institution. Anticancer. Res. 2019, 39, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, H.; Kondo, T.; Ishihara, H.; Fukuda, H.; Yoshida, K.; Takagi, T.; Izuka, J.; Kobayashi, H.; Tanabe, K. Modest Efficacy of Nivolumab plus Ipilimumab in Patients with Papillary Renal Cell Carcinoma. Jpn. J. Clin. Oncol. 2021, 51, 646–653. [Google Scholar] [CrossRef]
- Tio, M.; Rai, R.; Ezeoke, O.M.; McQuade, J.L.; Zimmer, L.; Khoo, C.; Park, J.J.; Spain, L.; Turajlic, S.; Ardolino, L.; et al. Anti-PD-1/PD-L1 Immunotherapy in Patients with Solid Organ Transplant, HIV or Hepatitis B/C Infection. Eur. J. Cancer 2018, 104, 137–144. [Google Scholar] [CrossRef]
- Tomita, Y.; Fukasawa, S.; Shinohara, N.; Kitamura, H.; Oya, M.; Eto, M.; Tanabe, K.; Saito, M.; Kimura, G.; Yonese, J.; et al. Nivolumab versus Everolimus in Advanced Renal Cell Carcinoma: Japanese Subgroup 3-Year Follow-up Analysis from the Phase III CheckMate 025 Study. Jpn. J. Clin. Oncol. 2019, 49, 506–514. [Google Scholar] [CrossRef]
- Tykodi, S.S.; Gordan, L.N.; Alter, R.S.; Arrowsmith, E.; Harrison, M.R.; Percent, I.; Singal, R.; Van Veldhuizen, P.; George, D.J.; Hutson, T.; et al. Safety and Efficacy of Nivolumab plus Ipilimumab in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma: Results from the Phase 3b/4 CheckMate 920 Trial. J. Immunother. Cancer 2022, 10, e003844. [Google Scholar] [CrossRef]
- Vasudev, N.S.; Ainsworth, G.; Brown, S.; Pickering, L.; Waddell, T.; Fife, K.; Griffiths, R.; Sharma, A.; Katona, E.; Howard, H.; et al. Standard Versus Modified Ipilimumab, in Combination with Nivolumab, in Advanced Renal Cell Carcinoma: A Randomized Phase II Trial (PRISM). J. Clin. Oncol. 2024, 42, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Verhaart, S.L.; Abu-Ghanem, Y.; Mulder, S.F.; Oosting, S.; Van Der Veldt, A.; Osanto, S.; Aarts, M.J.B.; Houtsma, D.; Peters, F.P.J.; Groenewegen, G.; et al. Real-World Data of Nivolumab for Patients With Advanced Renal Cell Carcinoma in the Netherlands: An Analysis of Toxicity, Efficacy, and Predictive Markers. Clin. Genitourin. Cancer 2021, 19, 274.e1–274.e16. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Olsen, M.R.; McFarlane, J.J.; Arrowsmith, E.; Bauer, T.M.; Jain, R.K.; Somer, B.; Lam, E.T.; Kochenderfer, M.D.; Molina, A.; et al. Safety and Efficacy of Nivolumab in Patients with Advanced Non–Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 461–468.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Kumarakulasinghe, N.B.; Muthu, V.; Lee, M.; Walsh, R.; Low, J.L.; Choo, J.; Tan, H.L.; Chong, W.Q.; Ang, Y.; et al. Low-Dose Nivolumab in Renal Cell Carcinoma: A Real-World Experience. Oncology 2021, 99, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Liu, B.; Shen, N.; Fan, X.; Lu, S.; Kong, Z.; Gao, Y.; Lv, Z.; Wang, R. Acute Kidney Injury in Patients Treated with Immune Checkpoint Inhibitors: A Single-Center Retrospective Study. Ren. Fail. 2024, 46, 2326186. [Google Scholar] [CrossRef]
- Belliere, J.; Mazieres, J.; Meyer, N.; Chebane, L.; Despas, F. Renal Complications Related to Checkpoint Inhibitors: Diagnostic and Therapeutic Strategies. Diagnostics 2021, 11, 1187. [Google Scholar] [CrossRef]
- Flynn, M.J.; Larkin, J.M.G. Novel Combination Strategies for Enhancing Efficacy of Immune Checkpoint Inhibitors in the Treatment of Metastatic Solid Malignancies. Expert. Opin. Pharmacother. 2017, 18, 1477–1490. [Google Scholar] [CrossRef]
- Alonso, F.; Martín de Francisco, Á.L.M.; Auñón, P.; García-Carro, C.; García, P.; Gutiérrez, E.; Mcía, M.; Quintana, L.F.; Quiroga, B.; Soler, M.J.; et al. Adverse Renal Effects of Check-Point Inhibitors (ICI) in Cancer Patients: Recommendations of the Onco-Nephrology Working Group of the Spanish Society of Nephrology. Nefrología 2023, 43, 622–635. [Google Scholar] [CrossRef]
- Sancho-Martínez, S.M.; Prieto, L.; Blanco-Gozalo, V.; Fontecha-Barriuso, M.; Vicente-Vicente, L.; Casanova, A.G.; Prieto, M.; Pescador, M.; Morales, A.I.; López-Novoa, J.M.; et al. Acute Tubular Necrosis: An Old Term in Search for a New Meaning within the Evolving Concept of Acute Kidney Injury. N. Horiz. Transl. Med. 2015, 2, 110–117. [Google Scholar] [CrossRef]
- Moledina, D.G.; Perazella, M.A. The Challenges of Acute Interstitial Nephritis: Time to Standardize. Kidney360 2021, 2, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, S.C.; Pisetsky, D.S. Mechanisms of Immune-Related Adverse Events during the Treatment of Cancer with Immune Checkpoint Inhibitors. Rheumatology 2019, 58, vii59–vii67. [Google Scholar] [CrossRef]
- Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H.; Lao, C.D.; et al. Nivolumab versus Chemotherapy in Patients with Advanced Melanoma Who Progressed after Anti-CTLA-4 Treatment (CheckMate 037): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Belliere, J.; Meyer, N.; Mazieres, J.; Ollier, S.; Boulinguez, S.; Delas, A.; Ribes, D.; Faguer, S. Acute Interstitial Nephritis Related to Immune Checkpoint Inhibitors. Br. J. Cancer 2016, 115, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Rotte, A. Combination of CTLA-4 and PD-1 Blockers for Treatment of Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 255. [Google Scholar] [CrossRef]
- Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Mol. Cell Biol. 2005, 25, 9543–9553. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018, 175, 313–326. [Google Scholar] [CrossRef]
- Gupta, S.; Short, S.A.P.; Sise, M.E.; Prosek, J.M.; Madhavan, S.M.; Soler, M.J.; Ostermann, M.; Herrmann, S.M.; Abudayyeh, A.; Anand, S.; et al. Acute Kidney Injury in Patients Treated with Immune Checkpoint Inhibitors. J. Immunother. Cancer 2021, 9, e003467. [Google Scholar] [CrossRef]
- Dumoulin, D.W.; Visser, S.; Cornelissen, R.; van Gelder, T.; Vansteenkiste, J.; von der Thusen, J.; Aerts, J.G.J.V. Renal Toxicity From Pemetrexed and Pembrolizumab in the Era of Combination Therapy in Patients With Metastatic Nonsquamous Cell NSCLC. J. Thorac. Oncol. 2020, 15, 1472–1483. [Google Scholar] [CrossRef]
Study Identification | Design | Location | Duration of Recruitment | Tumor Type and Stage | Number of Patients Initially Included | Patient Characteristics | Drug | Posology | Parameters of Renal Injury | Jadad/MINORS Scale | |
---|---|---|---|---|---|---|---|---|---|---|---|
AKI | Nephritis | ||||||||||
Abdelrahim et al., 2021 [19] | Retrospective study | USA | 1 January 2010 to 12 November 2019 | Metastatic or advanced melanoma | 1664 | Black, Hispanic, Asian, and White ethnicity. Median age 63 years. | Nivolumab, pembrolizumab, atezolizumab, ipilimumab, nivolumab + ipilimumab, pembrolizumab + ipilimumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Antonia et al., 2016 [20] | Multicenter, open-label, two-stage, multi-arm phase 1/2 trial | Finland, Germany, Italy, Spain, UK, and USA | 18 November 2013 to 28 July 2015 | Extensive stage non-small-cell lung cancer | 216 | White, Black or African American, and other ethnicities. Median age 63 years. | Nivolumab, nivolumab + ipilimumab | 3 mg/kg every 2 weeks 1 mg/kg + 1 mg/kg. Depending on tolerability, 1 mg/kg + 3 mg/kg or 3 mg/kg + 1 mg/kg every 3 weeks | Yes | No | 12 of 16 (MINORS) |
Apolo et al., 2020 [21] | Phase 1, open-label, multicohort trial | USA | 3 September 2014 to 15 March 2016 | Advanced or metastatic urothelial cancer | 249 | Ethnicity not specified. Median age 69 years. | Avelumab | 10 mg/kg every 2 weeks | Yes | No | 10 of 16 (MINORS) |
Atkins et al., 2018 [22] | Open-label, multicohort, phase 1b study | USA | 2 April 2014 to 18 November 2014 | Advanced melanoma and advanced renal cell carcinoma | 39 | Ethnicity not specified. Median age 60.5 years. | Pembrolizumab + ipilimumab | 2 mg/kg + 1 mg/kg every 3 weeks | Yes | No | 3 of 5 (Jadad) |
Atkins et al. 2023 [23] | Single-arm, open-label, non-randomized, multicenter, phase 2 study | USA | May 2017 to December 2019 | Metastatic renal cancer | 35 | Ethnicity not specified. Median age 65 years. | Nivolumab nivolumab + ipilimumab | 240 mg every 2 weeks 3 mg/kg and 1 mg/kg i.v. every 12 weeks | Yes | No | 11 of 16 (MINORS) |
Blas et al. 2024 [24] | Retrospective study | USA | 2013 to 2022 | Metastatic renal cancer | 2921 | Ethnicity not specified. Median age 65 years. | Nivolumab + ipilimumab | Not specified | Yes | Yes | 10 of 16 (MINORS) |
Campbell et al., 2021 [25] | Pilot study | USA | 7 November 2016 to 25 October 2018 | Metastatic renal cancer | 30 | Hispanic or Latino and White or Caucasian ethnicity. Median age 64 years. | Tremelimumab | 10 mg/kg every 4 weeks | Yes | No | 2 of 5 (Jadad) |
Cortazar et al., 2020 [11] | Multicenter, retrospective cohort study | USA and Canada | Not specified | Melanoma, lung, genitourinary, others | 414 | White, Black, and Asian ethnicity. Median age 67 years. | Nivolumab, pembrolizumab, ipilimumab | Not specified | Yes | No | 9 of 16 (MINORS) |
Dizman et al., 2022 [26] | Single-center, open-label, investigator-initiated trial | USA | 22 April 2019 to 30 December 2020 | Metastatic renal cancer | 30 | White and Asian ethnicity. Median age 64 years. | Nivolumab + ipilimumab | 3 mg/kg + 1 mg/kg every 3 weeks followed by nivolumab monotherapy at 480 mg monthly | Yes | No | 3 of 5 (Jadad) |
Espi et al., 2021 [27] | Retrospective analysis | France | January 2015 to July 2017 | Advanced melanoma, non-small-cell lung cancer, and urologic cancers | 352 | Ethnicity not specified. Median age 67 years. | Nivolumab, pembrolizumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Flippot et al., 2019 [28] | Phase 2 trial | France | 12 February 2016 to 27 July 2017 | Brain metastases from renal cell carcinoma | 73 | Ethnicity not specified. Median age 59.5 years. | Nivolumab | 3 mg/kg every 2 weeks | Yes | No | 11 of 16 (MINORS) |
George et al., 2022 [29] | Largely community-based, multicohort, open-label, phase 3b/4 trial | USA | January 2017 to March 2018 | Advanced renal cell carcinoma | 106 | White, Black or African American, and other ethnicities. Median age 64.5 years. | Nivolumab + ipilimumab | 6 mg/kg + 1 mg/kg every 8 weeks | Yes | Yes | 13 of 16 (MINORS) |
Goldberg et al., 2020 [30] | Two-arm phase 2 trial | USA | 31 March 2014 to 21 May 2018 | Brain metastases from stage IV non-small cell lung cancer | 42 | Ethnicity not specified. Median age 60 years | Pembrolizumab | 10 mg/kg every 2 weeks | Yes | No | 10 of 16 (MINORS) |
Grimm et al., 2022 [31] | Prospective, observational, multicenter study | Germany | October 2016 to December 2018 | Advanced renal cell carcinoma | 228 | Ethnicity not specified. Median age 70 years | Nivolumab | 3 mg/kg every 2 weeks, 240 mg every 2 weeks, or 480 mg every 4 weeks | Yes | No | 11 of 16 (MINORS) |
Gul et al., 2020 [32] | Retrospective study | USA | Not specified | Metastatic renal cell carcinoma | 45 | Ethnicity not specified. Median age 62 years | Nivolumab + ipilimumab | Not specified | No | Yes | 10 of 16 (MINORS) |
Hammers et al., 2017 [33] | Multicenter, open-label, phase 1 study | Not specified | February 2012 to May 2014 | Metastatic renal cell carcinoma | 194 | White, Asian, Black or African American, and other ethnicities. Median age 55 years. | Nivolumab + ipilimumab | 3 mg/kg + 1 mg/kg, 1 mg/kg + 3 mg/kg, or 3 mg/kg + 3 mg/kg every 3 weeks | Yes | No | 2 of 5 (Jadad) |
Hofmann et al., 2016 [34] | Retrospective study | Germany and Switzerland | Not specified | Metastatic melanoma | 496 | Ethnicity not specified. Median age 59 years. | Nivolumab, pembrolizumab | 3 mg/kg every 2 weeks 2 mg/kg every 3 weeks | No | Yes | 9 of 16 (MINORS) |
Izumi et al. 2023 [35] | Retrospective study | Japan | September 2018 to February 2021 | Metastatic renal cell carcinoma | 131 | Ethnicity not specified. Median age 65 years. | Nivolumab + ipilimumab | 240 mg and 1 mg/kg i.v every 3 weeks | Yes | No | 10 of 16 (MINORS) |
Julien et al., 2020 [36] | Phase 1/2, open-label study | USA, Spain, Hong Kong, and Singapore | Until March 2017 | Advanced hepatocellular carcinoma | 262 | Ethnicity not specified. Median age 63 years. | Nivolumab | 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg, or 10.0 mg/kg every 2 weeks | Yes | Yes | 11 of 16 (MINORS) |
Kanz et al., 2016 [37] | Multicenter, retrospective study | Guyana | 6 January 2013 to 31 December 2015 | Advanced renal cell carcinoma, melanoma, non-small-cell lung cancer, small-cell lung cancer, and urothelial bladder cancer | 27 | Ethnicity not specified. Median age 69 years. | Nivolumab, pembrolizumab | Not specified | No | Yes | 9 of 16 (MINORS) |
Martini et al., 2018 [38] | Retrospective cohort study | USA, Spain, Brazil | Not specified | Metastatic renal cell carcinoma | 19 | Ethnicity not specified. Median age 63 years. | Anti-PD-1 Anti-PD-L1 | Not specified | No | Yes | 7 of 16 (MINORS) |
Massard et al., 2016 [39] | Phase 1/2 multicenter, open-label study | Not specified | 28 August 2014 to 10 November 2015 | Advanced urothelial bladder cancer | 61 | White, Asian, Black or African American, and other ethnicities. Median age 66 years. | Durvalumab | 10 mg/kg every 2 weeks | Yes | No | 11 of 16 (MINORS) |
McFarlane et al., 2020 [40] | Open-label, phase 3b/4 study | USA | December 2015 to December 2016 | Advanced clear-cell renal cell carcinoma | 97 | Ethnicity not specified. Median age 64.7 years. | Nivolumab | 240 mg every 2 weeks | No | Yes | 10 of 16 (MINORS) |
Meraz-Muñoz et al., 2020 [41] | Retrospective cohort study | Canada | 1 January 2010 to 1 January 2017 | Metastatic melanoma, lung, genitourinary, lymphoma, ovarian, and colon cancer | 309 | Ethnicity not specified. Median age 63 years. | Nivolumab, pembrolizumab, ipilimumab, nivolumab + ipilimumab | Not specified | Yes | No | 9 of 16 (MINORS) |
Mok et al., 2019 [42] | Randomized, open-label, controlled, phase 3 trial | Argentina, Brazil, Bulgaria, Canada, Chile, China and Hong Kong Special Administrative Region, Colombia, Czech Republic, Estonia, Guatemala, Hungary, Japan, Latvia, Lithuania, Malaysia, Mexico, Peru, Philippines, Poland, Portugal, Romania, Russia, South Africa, South Korea, Sweden, Switzerland, Taiwan, Thailand, Turkey, Ukraine, and Vietnam | 19 December 2014 to 6 March 2017 | Locally advanced or metastatic non-small-cell lung cancer | 1275 | Ethnicity not specified. Median age 63 years. | Pembrolizumab | 200 mg every 3 weeks | Yes | No | 3 of 5 (Jadad) |
Mourey et al. 2024 [43] | Phase 2 study | France | Not specified | Metastatic renal cancer | 720 | Ethnicity not specified. Median age 70 years. | Nivolumab | 3 mg/kg every 2 weeks | Yes | No | 8 of 16 (MINORS) |
Noronha et al., 2021 [44] | Single-center retrospective analysis | India | August 2015 to November 2018 | Advanced head and neck cancer, lung cancer, adenocarcinoma, squamous cell carcinoma, small-cell lung cancer, renal cell carcinoma, urothelial carcinoma, malignant mesothelioma (advanced non-melanoma solid tumors) | 155 | Ethnicity not specified. Median age 57 years. | Nivolumab, pembrolizumab | 3 mg/kg every 2 weeks/240 mg flat dose every 2 weeks 200 mg flat dose every 3 weeks | No | Yes | 9 of 16 (MINORS) |
O’Reilly et al., 2020 [45] | Retrospective study | United Kingdom | May 2017 to August 2017 | Metastatic melanoma | 84 | Ethnicity not specified. Median age 65 years. | Nivolumab, pembrolizumab, ipilimumab | Not specified | No | Yes | 10 of 16 (MINORS) |
Polkowska et al., 2019 [46] | Retrospective observational study | Poland | March 2013 to October 2016 | Metastatic melanoma | 1170 | Ethnicity not specified. Median age 61 years. | Ipilimumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Powles et al., 2020 [47] | Open-label, randomized, controlled, phase 3 trial | China | 24 November 2015 to 21 March 2017 | Locally advanced or metastatic urothelial carcinoma | 1032 | White or Caucasian, Asian, Black or African American, and other ethnicities. Median age 67.5 years. | Durvalumab, durvalumab + tremelimumab | 1500 mg every 4 weeks 1500 mg + 75 mg every 4 weeks | Yes | No | 3 of 5 (Jadad) |
Powles et al., 2022 [48] | Multicenter, randomized, double blind, placebo-controlled, phase 3 trial | North America, South America, Europe, Asia, and Australia | 30 June 2017 to 20 September 2019 | Advanced clear-cell renal cell carcinoma | 994 | Hispanic or Latino and not Hispanic ethnicity. Median age 60 years. | Pembrolizumab | 200 mg every 3 weeks | Yes | Yes | 5 of 5 (Jadad) |
Raghav et al., 2022 [49] | Phase 2 study, open-label, single-center, multicohort trial. | USA | 29 August 2016 to 29 June 2020 | Advanced solid tumors | 29 | Ethnicity not specified. Median age 59 years. | Pembrolizumab | 200 mg every 3 weeks | Yes | No | 10 of 16 (MINORS) |
Rassy et al., 2022 [50] | Retrospective analysis | France | February 2016 to July 2017 | Advanced renal cell carcinoma | 729 | Ethnicity not specified. Median age 64 years. | Nivolumab | 3 mg/kg every 2 weeks | Yes | No | 10 of 16 (MINORS) |
Ready et al., 2023 [51] | Phase 3B, multicenter, open-label, single-arm, multicohort safety study | North America, Europe, and South America | November 2016 to 19 February 2021 | Metastatic non-small- cell lung cancer | 391 | White and Black ethnicity. Median age 65 years. | Nivolumab + ipilimumab | 240 mg every 2 weeks + 1 mg/kg every 6 weeks | No | Yes | 12 of 16 (MINORS) |
Reck et al., 2016 [52] | Open-label, phase 3 trial | Not specified | 19 September 2014 to 29 October 2015 | Advanced non-small-cell lung cancer | 305 | Ethnicity not specified. Median age 64.5 years. | Pembrolizumab | 200 mg every 3 weeks | Yes | No | 2 of 5 (Jadad) |
Rini et al., 2011 [53] | Phase 1, open-label, multicenter, dose-escalation study | Not specified | December 2006 to January 2009 | Metastatic renal cancer | 28 | Ethnicity not specified. Median age 60 years. | Tremelimumab | 6 mg/kg, 10 mg/kg, or 15 mg/kg every 12 weeks | Yes | No | 11 of 16 (MINORS) |
Seethapathy et al., 2019 [54] | Retrospective observational cohort study | USA | May 2011 to December 2016 | Not specified | 1016 | White, Black, Hispanic, Asian, and other ethnicities. Median age 65 years. | Nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab + ipilimumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Sharma et al., 2016 [55] | Multicenter, open-label, two-stage, multi-arm, phase 1/2 study | Finland, Germany, Spain, UK, and USA | June 2014 to April 2015 | Metastatic urothelial carcinoma | 86 | White, Black or African American, Asian, and other ethnicities. Median age 65.5 years. | Nivolumab | 3 mg/kg every 2 weeks | Yes | No | 11 of 16 (MINORS) |
Spillane et al., 2020 [56] | Retrospective observational study | USA | 1 January 2011 to 31 August 2018 | Metastatic melanoma | 2407 | Ethnicity not specified Median age 73.75 years. | Nivolumab, pembrolizumab, ipilimumab, nivolumab + ipilimumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Sternberg et al., 2019 [57] | Single-arm multicenter international open-label phase 3B safety study | Europe, Asia, South America, Australia, and Canada | November 2016 to March 2018 | Locally advanced or metastatic urothelial or nonurothelial carcinoma of the urinary tract | 997 | Ethnicity not specified. Median age 68 years. | Atezolizumab | 1200 mg every 3 weeks | Yes | No | 10 of 16 (MINORS) |
Sukari et al., 2019 [58] | Retrospective study | USA | 3 August 2011 to 31 August 2016 | Advanced non-small-cell lung cancer, renal cell carcinoma, Hodgkin’s lymphomas, head and neck squamous cell carcinoma, small-cell lung cancer | 168 | Ethnicity not specified. Median age 63 years. | Nivolumab, pembrolizumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Tachibana et al., 2021 [59] | Retrospective study | Japan | December 2015 to May 2020 | Advanced papillary renal cell carcinoma | 30 | Ethnicity not specified. Median age 67 years. | Nivolumab + ipilimumab | Not specified | Yes | No | 10 of 16 (MINORS) |
Tio et al., 2018 [60] | Retrospective cohort study | Not specified | July 2014 to March 2017 | Advanced melanoma, urothelial carcinoma, renal cell carcinoma, mesothelioma, hepatocellular carcinoma, non-small-cell lung cancer, gastric cancer, glioblastoma | 46 | Ethnicity not specified. Median age 60 years. | Nivolumab, pembrolizumab, atezolizumab, nivolumab + ipilimumab, pembrolizumab + ipilimumab | Not specified | Yes | Yes | 9 of 16 (MINORS) |
Tomita et al., 2019 [61] | Phase 3, randomized, open-label study | Japan | 9 October 2012 to 14 March 2014 | Advanced renal cell carcinoma | 821 | Ethnicity and median age not specified. | Nivolumab | 3 mg/kg every 2 weeks | Yes | No | 3 of 5 (Jadad) |
Tykodi et al., 2022 [62] | Non-randomized, open-label, multicohort, phase 3b/4 clinical trial | USA | Not specified | Advanced non-clear-cell renal cell carcinoma | 52 | Ethnicity not specified. Median age 64 years. | Nivolumab + ipilimumab | 3 mg/kg + 1 mg/kg every 3 weeks | No | Yes | 9 of 16 (MINORS) |
Vasudev et al. 2024 [63] | Phase 2, multicenter, randomized, controlled trial | United Kingdom | March 2018 to January 2020 | Advanced renal cell carcinoma | 192 | Ethnicity and median age not specified. | Nivolumab + ipilimumab | 3 mg/kg and 1 mg/kg i.v. every 12 weeks | Yes | No | 3 of 5 (Jadad) |
Verhaart et al., 2021 [64] | Retrospective analysis | The Netherlands | March 2016 to January 2018 | Advanced renal cell carcinoma | 264 | Ethnicity not specified. Median age 65 years. | Nivolumab | 3 mg/kg every 2 weeks | No | Yes | 10 of 16 (MINORS) |
Vogelzang et al., 2020 [65] | Open-label phase 3b/4 study | USA | December 2015 to December 2016 | Advanced non-clear-cell renal cell carcinoma | 44 | Ethnicity not specified Median age 62 years. | Nivolumab | 240 mg every 2 weeks | No | Yes | 10 of 16 (MINORS) |
Zhao et al., 2021 [66] | Retrospective study | Singapore | November 2016 to April 2020 | Advanced renal cell carcinoma | 32 | Chinese, Indian, Malay, and Caucasian ethnicities. Median age 64 years. | Nivolumab | 1.7 mg/kg and 2.7 mg/kg every 2 weeks | No | Yes | 9 of 16 (MINORS) |
Zhou et al. 2024 [67] | Retrospective study | China | December 2018 to October 2022 | Advanced lung, gastrointestinal, urogenital, other cancers | 904 | Ethnicity not specified. Median age 65 years. | Anti-PD-1, anti-PD-L1 | Not specified | Yes | No | 9 of 16 (MINORS) |
Anti-PD-1 | ||||
---|---|---|---|---|
Study Identification | Drug (Posology) | Patients Included | AKI Incidence (%) | Nephritis Incidence (%) |
Abdelrahim et al., 2021 [19] | Nivolumab (not described) | 331 | 3.93 | |
Antonia et al., 2016 [20] | Nivolumab (3 mg/kg every 2 weeks) | 98 | 0.00 | |
Atkins et al., 2023 [23] | Nivolumab (240 mg every 2 weeks) | 35 | 5.71 | |
Espi et al., 2021 [27] | Nivolumab (not described) | 230 | 3.91 | |
Flippot et al., 2019 [28] | Nivolumab (3 mg/kg every 2 weeks) | 73 | 4.11 | |
Grimm et al., 2022 [31] | Nivolumab (3 mg/kg every 2 weeks, 240 mg every 2 weeks, or 480 mg every 4 weeks) | 228 | 1.32 | |
Julien et al., 2020 [36] | Nivolumab (0.1 mg/kg, 0.3 mg/kg, 1 mg/kg, 3 mg/kg, or 10 mg/kg every 2 weeks, then all patients 3 mg/kg every 2 weeks) | 262 | 0.76 | 0.00 |
McFarlane et al., 2020 [40] | Nivolumab (240 mg every 2 weeks) | 97 | 3.09 | |
Meraz-Muñoz et al., 2020 [41] | Nivolumab (not described) | 54 | 9.26 | |
Mourey et al., 2024 [43] | Nivolumab (3 mg/kg every 2 weeks) | 720 | 1.11 | |
Rassy et al., 2022 [50] | Nivolumab (3 mg/kg every 2 weeks) | 511 | 0.39 | |
Sharma et al., 2016 [55] | Nivolumab (3 mg/kg every 2 weeks) | 78 | 1.28 | |
Spillane et al., 2020 [56] | Nivolumab (not described) | 374 | 3.48 | |
Tio et al., 2018 [60] | Nivolumab (not described) | 12 | 8.33 | |
Tomita et al., 2019 [61] | Nivolumab (3 mg/kg every 2 weeks) | 410 | 3.90 | |
Verhaart et al., 2021 [64] | Nivolumab (3 mg/kg every 2 weeks) | 264 | 2.27 | |
Vogelzang et al., 2020 [65] | Nivolumab (240 mg every 2 weeks) | 44 | 2.27 | |
Zhao et al., 2021 [66] | Nivolumab (1.7 mg/kg or 2.7 mg/kg every 2 weeks) | 32 | 3.13 | |
Nivolumab Incidence (weighted average ± SEM) | 2.28 ± 0.03 | 1.57 ± 0.05 | ||
Abdelrahim et al., 2021 [19] | Pembrolizumab (not described) | 436 | 2.06 | |
Espi et al., 2021 [27] | Pembrolizumab (not described) | 70 | 5.71 | |
Goldberg et al., 2020 [30] | Pembrolizumab (10 mg/kg every 2 weeks) | 42 | 2.38 | |
Meraz-Muñoz et al., 2020 [41] | Pembrolizumab (not described) | 36 | 58.33 | |
Mok et al., 2019 [42] | Pembrolizumab (200 mg every 3 weeks) | 636 | 0.47 | |
Powles et al., 2022 [48] | Pembrolizumab (200 mg every 3 weeks) | 488 | 4.10 | 0.20 |
Raghav et al., 2022 [49] | Pembrolizumab (200 mg every 3 weeks) | 25 | 4.00 | |
Reck et al., 2016 [52] | Pembrolizumab (200 mg every 3 weeks) | 154 | 1.95 | |
Spillane et al., 2020 [56] | Pembrolizumab (not described) | 531 | 2.82 | |
Tio et al., 2018 [60] | Pembrolizumab (not described) | 21 | 4.76 | |
Pembrolizumab Incidence (weighted average ± SEM) | 3.18 ± 0.14 | 0.39 ± 0.04 | ||
Cortazar et al., 2020 [11] | Indeterminate (nivolumab/pembrolizumab) | 377 | 33.69 | |
Hofmann et al., 2016 [34] | Indeterminate (nivolumab 3 mg/kg every 2 weeks/pembrolizumab 2 mg/kg every 3 weeks) | 496 | 0.40 | |
Martini et al., 2018 [38] | Indeterminate anti-PD-1 (not described) | 11 | 9.09 | |
Noronha et al., 2021 [44] | Indeterminate (nivolumab 3 mg/kg every 2 weeks/240 mg flat dose every 2 weeks/pembrolizumab 200 mg every 3 weeks) | 155 | 3.87 | |
O’Reilly et al., 2020 [45] | Indeterminate (nivolumab/pembrolizumab) | 17 | 5.88 | |
Seethapathy et al., 2019 [54] | Indeterminate (nivolumab/pembrolizumab) | 701 | 2.28 | |
Sukari et al., 2019 [58] | Indeterminate (nivolumab/pembrolizumab) | 168 | 48.81 | |
Kanz et al., 2016 [37] | Indeterminate (nivolumab/pembrolizumab) | 27 | 7.41 | |
Zhou et al., 2024 [67] | Indeterminate anti-PD-1 (not described) | 884 | 4.98 | |
Anti-PD-1 total incidence (weighted average ± SEM) | 5.32 ± 0.11 | 1.30 ± 0.04 | ||
Anti-PD-L1 | ||||
Abdelrahim et al., 2021 [19] | Atezolizumab (not described) | 22 | 0.00 | |
Sternberg et al., 2019 [57] | Atezolizumab (1200 mg every 3 weeks) | 997 | 6.02 | |
Tio et al., 2018 [60] | Atezolizumab (not described) | 2 | 0.00 | 0.00 |
Atezolizumab Incidence (weighted average ± SEM) | 5.88 ± 0.03 | |||
Apolo et al., 2020 [21] | Avelumab (10 mg/kg every 2 weeks) | 249 | 10.04 | |
Powles et al., 2020 [47] | Durvalumab (1500 mg every 4 weeks) | 345 | 0.58 | |
Massard et al., 2016 [39] | Durvalumab (10 mg/kg every 2 weeks) | 61 | 1.64 | |
Durvalumab Incidence (weighted average ± SEM) | 0.74 ± 0.02 | |||
Martini et al., 2018 [38] | Indeterminate anti-PD-L1 (not described) | 1 | 0.00 | |
Seethapathy et al., 2019 [54] | Indeterminate (atezolizumab, avelumab, durvalumab) | 37 | 2.70 | |
Zhou et al., 2024 [67] | Indeterminate anti-PD-L1 (not described) | 20 | 10.00 | |
Anti-PD-L1 total incidence (weighted average ± SEM) | 5.25 ± 0.07 | 0.00 ± 0.00 | ||
Anti-CTLA-4 | ||||
Abdelrahim et al., 2021 [19] | Ipilimumab (not described) | 474 | 8.23 | |
Cortazar et al., 2020 [11] | Ipilimumab (not described) | 92 | 47.83 | |
Meraz-Muñoz et al., 2020 [41] | Ipilimumab (not described) | 219 | 11.42 | |
O’Reilly et al., 2020 [45] | Ipilimumab (not described) | 59 | 3.39 | |
Polkowska et al., 2019 [46] | Ipilimumab (not described) | 333 | 5.71 | |
Seethapathy et al., 2019 [54] | Ipilimumab (not described) | 249 | 4.82 | |
Spillane et al., 2020 [56] | Ipilimumab (not described) | 590 | 2.54 | |
Ipilimumab Incidence (weighted average ± SEM) | 7.87 ± 0.21 | |||
Campbell et al., 2021 [25] | Tremelimumab (10 mg/kg every 4 weeks) | 14 | 0.00 | |
Rini et al., 2011 [53] | Tremelimumab (6 mg/kg, 10 mg/kg, or 15 mg/kg every 12 weeks) | 9 | 11.11 | |
Tremelimumab Incidence (weighted average ± SEM) | 4.35 ± 1.16 | |||
Anti-CTLA-4 total incidence (weighted average ± SEM) | 7.83 ± 0.21 | |||
Anti-PD-1 + Anti-CTLA-4 | ||||
Abdelrahim et al., 2021 [19] | Nivolumab + ipilimumab (not described) | 159 | 11.32 | |
Antonia et al., 2016 [20] | Nivolumab (1 mg/kg) + ipilimumab (1 mg/kg), then nivolumab (1 mg/kg) + ipilimumab (3 mg/kg) or nivolumab (3 mg/kg) + ipilimumab (1 mg/kg) every 3 weeks | 115 | 0.87 | |
Atkins et al., 2023 [23] | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg, every 3 weeks | 17 | 0.00 | |
Blas et al., 2024 [24] | Nivolumab + ipilimumab (not described) | 2294 | 3.92 | 2.44 |
Dizman et al., 2022 [26] | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg every 3 weeks | 10 | 10.00 | |
George et al., 2022 [29] | Nivolumab 6 mg/kg + ipilimumab 1 mg/kg every 8 weeks | 106 | 11.32 | 1.89 |
Gul et al., 2020 [32] | Nivolumab + ipilimumab (not described) | 45 | 2.22 | |
Hammers et al., 2017 [33] | Nivolumab (3 mg/kg) + ipilimumab (1mg/kg), nivolumab (1 mg/kg) + ipilimumab (3 mg/kg), or nivolumab (3 mg/kg) + ipilimumab (3 mg/kg) every 3 weeks | 100 | 15.00 | |
Izumi et al., 2023 [35] | Nivolumab 240 mg + ipilimumab 1 mg/kg i.v. every 3 weeks | 129 | 5.43 | |
Meraz-Muñoz et al., 2020 [41] | Nivolumab + ipilimumab (not described) | 23 | 17.39 | |
Ready et al., 2023 [51] | Nivolumab 240 mg + ipilimumab 1 mg/kg every 6 weeks | 391 | 0.77 | |
Seethapathy et al., 2019 [54] | Nivolumab + ipilimumab (not described) | 29 | 3.45 | |
Spillane et al., 2020 [56] | Nivolumab + ipilimumab (not described) | 389 | 0.77 | |
Tachibana et al., 2021 [59] | Nivolumab + ipilimumab (not described) | 30 | 6.66 | |
Tio et al., 2018 [60] | Nivolumab + ipilimumab (not described) | 6 | 0.00 | 0.00 |
Tykodi et al., 2022 [62] | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg every 3 weeks | 52 | 3.85 | |
Vasudev et al., 2024 [63] | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg every 12 weeks | 192 | 5.73 | |
Nivolumab + ipilimumab Incidence (weighted average ± SEM) | 4.58 ± 0.05 | 2.21 ± 0.01 | ||
Abdelrahim et al., 2021 [19] | Pembrolizumab + ipilimumab (not described) | 242 | 21.07 | |
Atkins et al., 2018 [22] | Pembrolizumab (2 mg/kg) + ipilimumab (1 mg/kg) every 3 weeks | 22 | 0.00 | |
Tio et al., 2018 [60] | Pembrolizumab + ipilimumab (not described) | 5 | 0.00 | 0.00 |
Pembrolizumab + ipilimumab Incidence (weighted average ± SEM) | 18.96 ± 0.39 | |||
Anti-PD-1 + anti-CTLA-4 total incidence (weighted average ± SEM) | 5.58 ± 0.08 | 2.21 ± 0.01 | ||
Anti-PD-L1 + Anti-CTLA-4 | ||||
Powles et al., 2020 [47] | Durvalumab (1500 mg) + tremelimumab (75 mg) every 4 weeks | 340 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tascón, J.; Casanova, A.G.; Vicente-Vicente, L.; López-Hernández, F.J.; Morales, A.I. Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy—A Systematic and Critical Review. Biomedicines 2025, 13, 711. https://doi.org/10.3390/biomedicines13030711
Tascón J, Casanova AG, Vicente-Vicente L, López-Hernández FJ, Morales AI. Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy—A Systematic and Critical Review. Biomedicines. 2025; 13(3):711. https://doi.org/10.3390/biomedicines13030711
Chicago/Turabian StyleTascón, Javier, Alfredo G. Casanova, Laura Vicente-Vicente, Francisco J. López-Hernández, and Ana I. Morales. 2025. "Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy—A Systematic and Critical Review" Biomedicines 13, no. 3: 711. https://doi.org/10.3390/biomedicines13030711
APA StyleTascón, J., Casanova, A. G., Vicente-Vicente, L., López-Hernández, F. J., & Morales, A. I. (2025). Nephrotoxicity of Immune Checkpoint Inhibitors in Single and Combination Therapy—A Systematic and Critical Review. Biomedicines, 13(3), 711. https://doi.org/10.3390/biomedicines13030711