Understanding Causal Relationships Between Imaging-Derived Phenotypes and Parkinson’s Disease: A Mendelian Randomization and Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. GWAS Datasets of Brain IDPs
2.3. GWAS Datasets of PD and Its Manifestations and Severity
2.4. Selection of Instrument Variants and Harmonization of Single Nucleotide Polymorphisms
2.5. Bidirectional Two-Sample MR Analyses
2.6. Sensitivity Analyses
2.7. Observational Study Participants
2.8. Brain Magnetic Resonance Imaging Acquisition and Processing
2.9. Statistical Analysis
3. Results
3.1. Forward MR: The Putative Causal Effects of IDPs on PD
3.2. Forward MR: The Putative Causal Effects of IDPs on PD Severity and Symptoms
3.3. Forward MR: The Putative Causal Effects of PD and Its Severity and Symptoms on IDPs
3.4. Reverse MR
3.5. Sensitivity Analyses
3.6. Concordance Between Observational Study Results and MR Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVAs | Analysis of variances |
CC | Corpus callosum |
FA | Fractional anisotropy |
FDR | False discovery rate |
GWAS | Genome-wide association studies |
HCs | Healthy controls |
IDPs | Imaging-derived phenotypes |
iRBD | Idiopathic rapid-eye-movement sleep behavior disorder |
IVs | Instrumental variables |
MR | Mendelian randomization |
OR | Odds ratio |
PD | Parkinson’s disease |
ROC | Receiver operating characteristic curve |
UPDRS | Unified Parkinson Disease Rating Scale |
SN | Substantia nigra |
UF | Uncinate fasciculus |
VPL | Ventral posterolateral nucleus |
References
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Bloem, B.R. Parkinson’s Disease Is Predominantly an Environmental Disease. J. Park. Dis. 2024, 14, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef]
- Bourque, M.; Morissette, M.; Di Paolo, T. Neuroactive steroids and Parkinson’s disease: Review of human and animal studies. Neurosci. Biobehav. Rev. 2024, 156, 105479. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Alster, P.; Madetko-Alster, N.; Otto-Ślusarczyk, D.; Migda, A.; Migda, B.; Struga, M.; Friedman, A. Role of orexin in pathogenesis of neurodegenerative parkinsonisms. Neurol. Neurochir. Pol. 2023, 57, 335–343. [Google Scholar] [CrossRef]
- Haller, S.; Haacke, E.M.; Thurnher, M.M.; Barkhof, F. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology 2021, 299, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Lehéricy, S.; Chiu, S.Y.; Strafella, A.P.; Stoessl, A.J.; Vaillancourt, D.E. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease. JAMA Neurol. 2021, 78, 1262–1272. [Google Scholar] [CrossRef]
- Theisen, F.; Leda, R.; Pozorski, V.; Oh, J.M.; Adluru, N.; Wong, R.; Okonkwo, O.; Dean, D.C.; Bendlin, B.B.; Johnson, S.C.; et al. Evaluation of Striatonigral Connectivity Using Probabilistic Tractography in Parkinson’s Disease. NeuroImage Clin. 2017, 16, 557–563. [Google Scholar] [CrossRef]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson disease subtypes—Key to understanding heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef]
- Bu, S.; Pang, H.; Li, X.; Zhao, M.; Wang, J.; Liu, Y.; Yu, H.; Fan, G. Structural and Functional Alterations of Motor-Thalamus in Different Motor Subtype of Parkinson’s Disease: An Individual Study. Acad. Radiol. 2024, 31, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, E.; Antoniotti, P.; Bellocchio, V.; Veronelli, L.; Corbo, M.; Pisoni, A. Neural alterations underlying executive dysfunction in Parkinson’s disease: A systematic review and coordinate-based meta-analysis of functional neuroimaging studies. Age Res. Rev. 2024, 95, 102207. [Google Scholar] [CrossRef] [PubMed]
- Horsager, J.; Andersen, K.B.; Knudsen, K.; Skjærbæk, C.; Fedorova, T.D.; Okkels, N.; Schaeffer, E.; Bonkat, S.K.; Geday, J.; Otto, M.; et al. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain 2020, 143, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Badenoch, J.B.; Paris, A.; Jacobs, B.M.; Noyce, A.J.; Marshall, C.R.; Waters, S. Neuroanatomical and prognostic associations of depression in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2024, 95, 966–973. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, R.; He, Z.; Pang, X.; Yu, W.; Huang, X. Assessing the association between white matter lesions and Parkinson’s disease. Neurol. Sci. 2023, 44, 897–903. [Google Scholar] [CrossRef]
- Liu, W.S.; Zhang, Y.R.; Ge, Y.J.; Wang, H.F.; Cheng, W.; Yu, J.T. Inflammation and Brain Structure in Alzheimer’s Disease and Other Neurodegenerative Disorders: A Mendelian Randomization Study. Mol. Neurobiol. 2024, 61, 1593–1604. [Google Scholar] [CrossRef]
- Smith, S.M.; Douaud, G.; Chen, W.; Hanayik, T.; Alfaro-Almagro, F.; Sharp, K.; Elliott, L.T. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 2021, 24, 737–745. [Google Scholar] [CrossRef]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef]
- Iwaki, H.; Blauwendraat, C.; Leonard, H.L.; Kim, J.J.; Liu, G.; Maple-Grødem, J.; Corvol, J.; Pihlstrøm, L.; van Nimwegen, M.; Hutten, S.J.; et al. Genomewide association study of Parkinson’s disease clinical biomarkers in 12 longitudinal patients’ cohorts. Mov. Disord. 2019, 34, 1839–1850. [Google Scholar] [CrossRef]
- Levi, S.; Volonté, M.A. Iron chelation in early Parkinson’s disease. Lancet Neurol. 2023, 22, 290–291. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Q.; Liu, Y.; Zhang, Y.; Sun, L.; Ma, X.; Song, N.; Xie, J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct. Target. Ther. 2025, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Jiao, Q.; Du, X.; Jia, F.; Chen, X.; Yan, C.; Jiang, H. Ferroptosis in Parkinson’s disease—The iron-related degenerative disease. Ageing Res. Rev. 2024, 101, 102477. [Google Scholar] [CrossRef]
- Alrouji, M.; Anwar, S.; Venkatesan, K.; Shahwan, M.; Hassan, M.I.; Islam, A.; Shamsi, A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res. Rev. 2024, 102, 102575. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, Z.; Sun, J.; Jia, L.; Cai, L.; Chen, Q.; Yang, W.; Wang, Y.; Zhang, Y.; Guo, S.; et al. Changes in iron load in specific brain areas lead to neurodegenerative diseases of the central nervous system. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 129, 110903. [Google Scholar] [CrossRef]
- Alushaj, E.; Hemachandra, D.; Kuurstra, A.; Menon, R.S.; Ganjavi, H.; Sharma, M.; Kashgari, A.; Barr, J.; Reisman, W.; Khan, A.R.; et al. Subregional analysis of striatum iron in Parkinson’s disease and rapid eye movement sleep behaviour disorder. NeuroImage Clin. 2023, 40, 103519. [Google Scholar] [CrossRef]
- Ravanfar, P.; Loi, S.M.; Syeda, W.T.; Van Rheenen, T.E.; Bush, A.I.; Desmond, P.; Cropley, V.L.; Lane, D.J.R.; Opazo, C.M.; Moffat, B.A.; et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 618435. [Google Scholar] [CrossRef]
- Prasuhn, J.; Göttlich, M.; Gerkan, F.; Kourou, S.; Ebeling, B.; Kasten, M.; Hanssen, H.; Klein, C.; Brüggemann, N. Relationship between brain iron deposition and mitochondrial dysfunction in idiopathic Parkinson’s disease. Mol. Med. 2022, 28, 28. [Google Scholar] [CrossRef] [PubMed]
- Rao, I.Y.; Hanson, L.R.; Johnson, J.C.; Rosenbloom, M.H.; Frey, W.H. 2nd. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer’s and Parkinson’s Diseases. Pharmaceuticals 2022, 15, 551. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ghaderi, S. Parkinson’s disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques—A systematic review and literature analysis. Heliyon 2024, 10, e27950. [Google Scholar] [CrossRef]
- Drori, E.; Berman, S.; Mezer, A.A. Mapping microstructural gradients of the human striatum in normal aging and Parkinson’s disease. Sci. Adv. 2022, 8, eabm1971. [Google Scholar] [CrossRef]
- Xiong, W.; Li, L.F.; Huang, L.; Liu, Y.; Xia, Z.C.; Zhou, X.X.; Tang, B.S.; Guo, J.F.; Lei, L.F. Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinson’s disease. Clin. Neurol. Neurosurg. 2020, 198, 106181. [Google Scholar] [CrossRef] [PubMed]
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef]
- Lashuel, H.; Ortega, R.; Cloetens, P.; Devès, G.; Carmona, A.; Bohic, S. Iron Storage within Dopamine Neurovesicles Revealed by Chemical Nano-Imaging. PLoS ONE 2007, 2, e925. [Google Scholar] [CrossRef]
- Ortega, R.; Carmona, A.; Roudeau, S.; Perrin, L.; Dučić, T.; Carboni, E.; Bohic, S.; Cloetens, P.; Lingor, P. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons. Mol. Neurobiol. 2015, 53, 1925–1934. [Google Scholar] [CrossRef]
- Lisanby, S.H.; McDonald, W.M.; Massey, E.W.; Doraiswamy, P.M.; Rozear, M.; Boyko, O.B.; Krishnan, K.R.; Nemeroff, C. Diminished subcortical nuclei volumes in Parkinson’s disease by MR imaging. J. Neural Transm. Suppl. 1993, 40, 13–21. [Google Scholar] [PubMed]
- McKeown, M.J.; Uthama, A.; Abugharbieh, R.; Palmer, S.; Lewis, M.; Huang, X. Shape (but not volume) changes in the thalami in Parkinson disease. BMC Neurol. 2008, 8, 8. [Google Scholar] [CrossRef]
- Messina, D.; Cerasa, A.; Condino, F.; Arabia, G.; Novellino, F.; Nicoletti, G.; Salsone, M.; Morelli, M.; Lanza, P.L.; Quattrone, A. Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Park. Relat. Disord. 2011, 17, 172–176. [Google Scholar] [CrossRef]
- Boelens Keun, J.T.; van Heese, E.M.; Laansma, M.A.; Weeland, C.J.; de Joode, N.T.; van den Heuvel, O.A.; Gool, J.K.; Kasprzak, S.; Bright, J.K.; Vriend, C.; et al. Structural assessment of thalamus morphology in brain disorders: A review and recommendation of thalamic nucleus segmentation and shape analysis. Neurosci. Biobehav. Rev. 2021, 131, 466–478. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, G.; Liu, D.; Liu, Y.; Yuan, T.; Zhang, X.; Jiang, Y.; Du, T.; Zhang, J. The morphology of thalamic subnuclei in Parkinson’s disease and the effects of machine learning on disease diagnosis and clinical evaluation. J. Neurol. Sci. 2020, 411, 116721. [Google Scholar] [CrossRef]
- Jia, X.; Liang, P.; Li, Y.; Shi, L.; Wang, D.; Li, K. Longitudinal Study of Gray Matter Changes in Parkinson Disease. AJNR Am. J. Neuroradiol. 2015, 36, 2219–2226. [Google Scholar] [CrossRef]
- Laansma, M.A.; Bright, J.K.; Al-Bachari, S.; Anderson, T.J.; Ard, T.; Assogna, F.; Baquero, K.A.; Berendse, H.W.; Blair, J.; Cendes, F.; et al. International Multicenter Analysis of Brain Structure Across Clinical Stages of Parkinson’s Disease. Mov. Disord. 2021, 36, 2583–2594. [Google Scholar] [CrossRef] [PubMed]
- Coloigner, J.; Batail, J.M.; Commowick, O.; Corouge, I.; Robert, G.; Barillot, C.; Drapier, D. White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study. NeuroImage Clin. 2019, 22, 101710. [Google Scholar] [CrossRef]
- Bergamino, M.; Keeling, E.G.; Ray, N.J.; Macerollo, A.; Silverdale, M.; Stokes, A.M. Structural connectivity and brain network analyses in Parkinson’s disease: A cross-sectional and longitudinal study. Front. Neurol. 2023, 14, 1137780. [Google Scholar] [CrossRef] [PubMed]
- Koinuma, T.; Hatano, T.; Kamagata, K.; Andica, C.; Mori, A.; Ogawa, T.; Takeshige-Amano, H.; Uchida, W.; Saiki, S.; Okuzumi, A.; et al. Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. J. Parkinsons Dis. 2021, 11, 1221–1235. [Google Scholar] [CrossRef]
- Rashidi, F.; Khanmirzaei, M.H.; Hosseinzadeh, F.; Kolahchi, Z.; Jafarimehrabady, N.; Moghisseh, B.; Aarabi, M.H. Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Biology 2023, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Liu, Y.; Guo, J.; Zhang, H.; Xiang, Y.; Liao, H.; Cai, S.; Zhou, B.; Wang, M.; Liu, S.; et al. Impaired white matter microstructure associated with severe depressive symptoms in patients with PD. Brain Imaging Behav. 2022, 16, 169–175. [Google Scholar] [CrossRef]
- Kim, S.G.; Overath, T.; Sedley, W.; Kumar, S.; Teki, S.; Kikuchi, Y.; Patterson, R.; Griffiths, T.D. MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex. NeuroImage 2022, 249, 118879. [Google Scholar] [CrossRef]
- Rossler, J.; Rossler, W.; Seifritz, E.; Unterrassner, L.; Wyss, T.; Haker, H.; Wotruba, D. Dopamine-Induced Dysconnectivity Between Salience Network and Auditory Cortex in Subjects with Psychotic-like Experiences: A Randomized Double-Blind Placebo-Controlled Study. Schizophr. Bull. 2020, 46, 732–740. [Google Scholar] [CrossRef]
- Jiang, T.; Gill, D.; Butterworth, A.S.; Burgess, S. An empirical investigation into the impact of winner’s curse on estimates from Mendelian randomization. Int. J. Epidemiol. 2023, 52, 1209–1219. [Google Scholar] [CrossRef]
HC (n = 81) | iRBD (n = 47) | PD (n = 85) | Test Statistic | p-Value | |
---|---|---|---|---|---|
Age (year) | 62.77 ± 8.10 | 67.1 ± 5.68 | 67.87 ± 6.97 | F = 11.53 | <0.0001 |
Sex, n | χ² = 0.1348 | 0.94 | |||
Male | 40 (49%) | 23 (49%) | 44 (52%) | ||
Female | 41 (51%) | 24 (51%) | 41 (48%) | ||
Disease duration (m) | - | 50.65 ± 15.74 | 97.49 ± 36.24 | ||
H–Y stage | - | - | 1.97 ± 0.80 | ||
UPDRS I score | - | - | 9.02 ± 5.46 | ||
UPDRS II score | - | - | 11.84 ± 6.33 | ||
UPDRS III score | - | - | 33.13 ± 15.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhong, M.; Yang, Z.; Wang, X.; Dong, Z.; Zhou, L.; Yin, Q.; Wang, B.; Liu, J.; Li, Y.; et al. Understanding Causal Relationships Between Imaging-Derived Phenotypes and Parkinson’s Disease: A Mendelian Randomization and Observational Study. Biomedicines 2025, 13, 747. https://doi.org/10.3390/biomedicines13030747
Zhang Y, Zhong M, Yang Z, Wang X, Dong Z, Zhou L, Yin Q, Wang B, Liu J, Li Y, et al. Understanding Causal Relationships Between Imaging-Derived Phenotypes and Parkinson’s Disease: A Mendelian Randomization and Observational Study. Biomedicines. 2025; 13(3):747. https://doi.org/10.3390/biomedicines13030747
Chicago/Turabian StyleZhang, Yichi, Min Zhong, Zhao Yang, Xiaojin Wang, Zhongxun Dong, Liche Zhou, Qianyi Yin, Bingshun Wang, Jun Liu, Yuanyuan Li, and et al. 2025. "Understanding Causal Relationships Between Imaging-Derived Phenotypes and Parkinson’s Disease: A Mendelian Randomization and Observational Study" Biomedicines 13, no. 3: 747. https://doi.org/10.3390/biomedicines13030747
APA StyleZhang, Y., Zhong, M., Yang, Z., Wang, X., Dong, Z., Zhou, L., Yin, Q., Wang, B., Liu, J., Li, Y., & Niu, M. (2025). Understanding Causal Relationships Between Imaging-Derived Phenotypes and Parkinson’s Disease: A Mendelian Randomization and Observational Study. Biomedicines, 13(3), 747. https://doi.org/10.3390/biomedicines13030747