FAPi PET/CT Imaging to Identify Fibrosis in Immune-Mediated Inflammatory Diseases
Abstract
:1. Introduction
2. Pulmonary Diseases
3. IgG4-Related Diseases
4. Cardiovascular Diseases
5. Renal Diseases
6. Gastro-Intestinal and Hepatic Diseases
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
18F | Fluorine-18 |
68Ga | Gallium-68 |
%IA | Percent injected activity |
%IA/cc | Percent injected activity per cubic centimeter of tissue |
%ID/cc | Percentage injected dose per cubic centimeter |
% ID/g | Percentage injected dose per gram |
αSMA | α-smooth muscle actin |
AL | Systemic amyloid light chain |
AL CA | Systemic amyloid light chain cardiac amyloidosis |
ASUV | Average standardized uptake value |
ASUVmax/B | Ratio of maximum average standardized uptake value to the background |
ASUVmean/B | Ratio of mean average standardized uptake value to the background |
CD | Crohn’s disease |
CDAI | Crohn’s disease activity index |
CDEIS | Crohn’s disease endoscopy index of severity |
CMR | Cardiac magnetic resonance |
CRP | C-reactive protein |
CTE | Computed tomography enterography |
DLCO | Diffusing capacity for carbon monoxide |
DOTA-LM3 | Dotatate-LM3 |
ESR | Erythrocyte sedimentation rate |
FAP | Fibroblast activation protein |
FAPi | Fibroblast activation protein inhibitor |
FAPi PET/CT | Fibroblast activation protein inhibitor positron emission tomography/computed tomography |
FAV | Fibrotic active volume |
FCP | Fecal calprotectin |
FDG | Fluoro- D-glucose |
fILD | Fibrotic interstitial lung disease |
FVC | Forced vital capacity |
GGO | Ground-glass opacity |
HR | High resolution |
HRCT | High-resolution computed tomography |
HSCs | Hepatic stellate cells |
HU | Hounsfield unit |
IBD | Inflammatory bowel disease |
IgG4 | Immunoglobulin G4 |
ILDs | Interstitial lung diseases |
IMIDs | Immune-mediated inflammatory diseases |
IPF | Idiopathic pulmonary fibrosis |
LBR | Lesion-to-back ratio |
LV | Left ventricle |
LVV | Large vessel vasculitis |
MAV | Metabolism activation volume |
MDPI | Multidisciplinary Digital Publishing Institute |
MPGN | Membranoproliferative glomerulonephritis |
MRI | Magnetic resonance imaging |
MSCs | Mesenchymal stroma cells |
MTI | Magnetization transfer magnetic resonance imaging |
MTR | Magnetization transfer ratio |
PET/CT | Positron emission tomography/computed tomography |
RT-qPCR | RT-qPCR: real-time quantitative PCR |
SES-CD | Simple endoscopic score for Crohn’s disease |
SSTR | Somatostatin receptor |
SUV | Standardized uptake value |
SUVmax | Maximum standardized uptake value |
SUVmean | Mean standardized uptake value |
TBR | Target to back ratio |
TL | Total lesion |
VOI | Volume of interest |
References
- Kuwert, T.; Schmidkonz, C.; Prante, O.; Schett, G.; Ramming, A. FAPI PET Opens a New Window to Understanding Immune-Mediated Inflammatory Diseases. J. Nucl. Med. 2022, 63, 1136–1137. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Fiocchi, C.; Rogler, G. Mechanisms, Management, and Treatment of Fibrosis in Patients with Inflammatory Bowel Diseases. Gastroenterology 2017, 152, 340–350.e346. [Google Scholar] [CrossRef] [PubMed]
- Hamson, E.J.; Keane, F.M.; Tholen, S.; Schilling, O.; Gorrell, M.D. Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy. Proteomics Clin. Appl. 2014, 8, 454–463. [Google Scholar] [CrossRef]
- Dondi, F.; Albano, D.; Treglia, G.; Bertagna, F. Emerging Role of FAPI PET Imaging for the Assessment of Benign Bone and Joint Diseases. J. Clin. Med. 2022, 11, 4514. [Google Scholar] [CrossRef] [PubMed]
- Schmidkonz, C.; Kuwert, T.; Gotz, T.I.; Ramming, A.; Atzinger, A. Recent advances in nuclear medicine and their role in inflammatory arthritis: Focus on the emerging role of FAPI PET/CT. Skeletal Radiol. 2024, 1–10. [Google Scholar] [CrossRef]
- Albano, D.; Rizzo, A.; Slart, R.; Hess, S.; Noriega-Alvarez, E.; Wakfie-Corieh, C.G.; Leccisotti, L.; Glaudemans, A.; Gheysens, O.; Treglia, G. The Role of Fibroblast Activation Protein Inhibitor Positron Emission Tomography in Inflammatory and Infectious Diseases: An Updated Systematic Review. Pharmaceuticals 2024, 17, 716. [Google Scholar] [CrossRef]
- D’Alessio, S.; Ungaro, F.; Noviello, D.; Lovisa, S.; Peyrin-Biroulet, L.; Danese, S. Revisiting fibrosis in inflammatory bowel disease: The gut thickens. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 169–184. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; He, J.; Chen, J.; Zhu, H.; Yang, Z.; Wang, Q.; Li, N. Head to head comparison of (18)F-FDG and Al(18)F-NOTA-FAPI-04 PET/CT imaging used in diagnosis of autoimmune rheumatic diseases. Clin. Rheumatol. 2024, 43, 3497–3505. [Google Scholar] [CrossRef]
- Luo, Y.; Pan, Q.; Zhou, Z.; Li, M.; Wei, Y.; Jiang, X.; Yang, H.; Li, F. (68)Ga-FAPI PET/CT for Rheumatoid Arthritis: A Prospective Study. Radiology 2023, 307, e222052. [Google Scholar] [CrossRef]
- George, P.M.; Spagnolo, P.; Kreuter, M.; Altinisik, G.; Bonifazi, M.; Martinez, F.J.; Molyneaux, P.L.; Renzoni, E.A.; Richeldi, L.; Tomassetti, S.; et al. Progressive fibrosing interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir. Med. 2020, 8, 925–934. [Google Scholar] [CrossRef]
- Ruppel, G.L.; Enright, P.L. Pulmonary function testing. Respir. Care 2012, 57, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Bahtouee, M.; Jafari, E.; Khazaei, M.; Aram, N.; Amini, A.; Jokar, N.; Ahmadzadehfar, H.; Gholamrezanezhad, A.; Assadi, M. Exploring the Potential Value of [68 Ga]Ga-FAPI-46 PET/CT for Molecular Assessment of Fibroblast Activation in Interstitial Lung Disease: A Single-Center Pilot Study. Clin. Nucl. Med. 2025, 50, e17–e25. [Google Scholar] [CrossRef] [PubMed]
- Rohrich, M.; Leitz, D.; Glatting, F.M.; Wefers, A.K.; Weinheimer, O.; Flechsig, P.; Kahn, N.; Mall, M.A.; Giesel, F.L.; Kratochwil, C.; et al. Fibroblast Activation Protein-Specific PET/CT Imaging in Fibrotic Interstitial Lung Diseases and Lung Cancer: A Translational Exploratory Study. J. Nucl. Med. 2022, 63, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Kramer, V.; Novruzov, E.; Mamlins, E.; Rohrich, M.; Fernandez, R.; Amaral, H.; Soza-Ried, C.; Monje, B.; Sabbagh, E.; et al. Initial results with [(18)F]FAPI-74 PET/CT in idiopathic pulmonary fibrosis. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1605–1611. [Google Scholar] [CrossRef]
- Rosenkrans, Z.T.; Massey, C.F.; Bernau, K.; Ferreira, C.A.; Jeffery, J.J.; Schulte, J.J.; Moore, M.; Valla, F.; Batterton, J.M.; Drake, C.R.; et al. [(68) Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3705–3716. [Google Scholar] [CrossRef]
- Ji, H.; Song, X.; Lv, X.; Shao, F.; Long, Y.; Song, Y.; Song, W.; Qiao, P.; Gai, Y.; Jiang, D.; et al. [(68)Ga]FAPI PET for Imaging and Treatment Monitoring in a Preclinical Model of Pulmonary Fibrosis: Comparison to [(18)F]FDG PET and CT. Pharmaceuticals 2024, 17, 726. [Google Scholar] [CrossRef]
- Chen, J.; Luo, D.; Dai, Y.; Zhou, Y.; Pang, Y.; Wu, H.; Sun, L.; Su, G.; Lin, Q.; Zhao, L.; et al. Enhanced Detection of Early Pulmonary Fibrosis Disease Using (68)Ga-FAPI-LM3 PET. Mol. Pharm. 2024, 21, 3684–3692. [Google Scholar] [CrossRef]
- Kubo, K.; Yamamoto, K. IgG4-related disease. Int. J. Rheum. Dis. 2016, 19, 747–762. [Google Scholar] [CrossRef]
- Kamisawa, T.; Zen, Y.; Pillai, S.; Stone, J.H. IgG4-related disease. Lancet 2015, 385, 1460–1471. [Google Scholar] [CrossRef]
- Schmidkonz, C.; Rauber, S.; Atzinger, A.; Agarwal, R.; Gotz, T.I.; Soare, A.; Cordes, M.; Prante, O.; Bergmann, C.; Kleyer, A.; et al. Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. Ann. Rheum. Dis. 2020, 79, 1485–1491. [Google Scholar] [CrossRef]
- Luo, Y.; Pan, Q.; Yang, H.; Peng, L.; Zhang, W.; Li, F. Fibroblast Activation Protein-Targeted PET/CT with (68)Ga-FAPI for Imaging IgG4-Related Disease: Comparison to (18)F-FDG PET/CT. J. Nucl. Med. 2021, 62, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Rohrich, M.; Rosales, J.J.; Hoppner, J.; Kvacskay, P.; Blank, N.; Loi, L.; Paech, D.; Schreckenberger, M.; Giesel, F.; Kauczor, H.U.; et al. Fibroblast activation protein inhibitor-positron emission tomography in aortitis: Fibroblast pathology in active inflammation and remission. Rheumatology 2024, 63, 2473–2483. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Gao, Y.; Ren, C.; Huang, Z.; Liu, B.; Li, X.; Chang, L.; Shen, K.; Ding, H.; et al. Feasibility of (68)Ga-Labeled Fibroblast Activation Protein Inhibitor PET/CT in Light-Chain Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2022, 15, 1960–1970. [Google Scholar] [CrossRef]
- Wang, H.; He, L.; Feng, L.; Zhang, W.; Liu, N.; Zhang, W. Non-invasive assessment of IgA nephropathy severity with [(18)F]AlF-NOTA-FAPI-04 PET/CT imaging. Clin. Kidney J. 2024, 17, sfae340. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Liu, H.; Luo, W.; Liu, H.; Lv, T.; Wang, J.; Qin, J.; Ou, S.; Chen, Y. Value of [(68)Ga]Ga-FAPI-04 imaging in the diagnosis of renal fibrosis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3493–3501. [Google Scholar] [CrossRef]
- Song, Y.; Qin, C.; Chen, Y.; Ruan, W.; Gai, Y.; Song, W.; Gao, Y.; Hu, W.; Qiao, P.; Song, X.; et al. Non-invasive visualization of liver fibrosis with [(68)Ga]Ga-DOTA-FAPI-04 PET from preclinical insights to clinical translation. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3572–3584. [Google Scholar] [CrossRef]
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schonland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic immunoglobulin light chain amyloidosis. Nat. Rev. Dis. Primers 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Pugh, D.; Grayson, P.; Basu, N.; Dhaun, N. Aortitis: Recent advances, current concepts and future possibilities. Heart 2021, 107, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.Y.; Ahn, S.S.; Lee, L.E.; Choe, H.N.; Song, J.J.; Park, Y.B.; Lee, S.W. Efficacy of the fibrosis index for predicting end-stage renal disease in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Int. J. Clin. Pract. 2021, 75, e13929. [Google Scholar] [CrossRef]
- Hassler, J.R. IgA nephropathy: A brief review. Semin. Diagn. Pathol. 2020, 37, 143–147. [Google Scholar] [CrossRef]
- Friedman, S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000, 275, 2247–2250. [Google Scholar] [CrossRef] [PubMed]
- Eksteen, B.; Afford, S.C.; Wigmore, S.J.; Holt, A.P.; Adams, D.H. Immune-mediated liver injury. Semin. Liver Dis. 2007, 27, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Cosnes, J.; Cattan, S.; Blain, A.; Beaugerie, L.; Carbonnel, F.; Parc, R.; Gendre, J.P. Long-term evolution of disease behavior of Crohn’s disease. Inflamm. Bowel Dis. 2002, 8, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhong, X.; Li, L.; Li, X.; Liu, Y.; Guo, C.; Chen, Y.; Huang, Z. [(68)Ga]Ga-FAPI-04 PET/CT on assessing Crohn’s disease intestinal lesions. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1360–1370. [Google Scholar] [CrossRef]
- Scharitzer, M.; Macher-Beer, A.; Mang, T.; Unger, L.W.; Haug, A.; Reinisch, W.; Weber, M.; Nakuz, T.; Nics, L.; Hacker, M.; et al. Evaluation of Intestinal Fibrosis with (68)Ga-FAPI PET/MR Enterography in Crohn Disease. Radiology 2023, 307, e222389. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Zhang, R.; Lin, J.; Huang, S.; Shi, K.; Shen, X.; Xiang, Z.; Wang, X.; Huang, L.; et al. Comparative analysis of [(18)F]F-FAPI PET/CT, [(18)F]F-FDG PET/CT and magnetization transfer MR imaging to detect intestinal fibrosis in Crohn’s disease: A prospective animal model and human cohort study. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1856–1868. [Google Scholar] [CrossRef]
Author, Year | Country | Study Design | Imid | Study Population (% Male) | Control Group (n) | Age (Years) | Comparison with 18F-FDG | Additional Parameters | Main Results |
---|---|---|---|---|---|---|---|---|---|
CHEN et al., 2023 * [17] | China | Prospective | Pulmonary fibrosis | 3 mice, exact number not specified | Yes | N/A | No | Immunofluorescence, Western blotting, RT-qPCR. | 68Ga-FAPi-LM3 which targets not only FAP, but also SSTR2, is a promising potential tracer for early diagnosis of pulmonary fibrosis. |
JI et al., 2024 * [16] | China | Prospective | Pulmonary fibrosis | 19 mice | yes (n = 7) | N/A | Yes | Histological staining and FAP and GLUT1 immunohistochemical staining. | FAPi-PET can assess fibrosis and treatment response in a pulmonary fibrosis mouse model. FAP expression corroborates this. |
ROSENKRANS et al., 2022 * [15] | United states of America | Prospective | Pulmonary fibrosis | 3–5 mice per subgroup, exact number not specified | Yes (not specified) | N/A | Yes | Masson’s trichrome staining and FAP immunohistochemical staining. | 68Ga-FAPi-46 lung uptake was significantly increased n bleomycin mice compared to controls at both day 7 and 14. 18F-FDG uptake was highest during the inflammatory phase of the mouse model (day 6) and a non-significant decrease was seen during the profibrotic phase. |
BAHTOUEE et al., 2024 [12] | Iran | Prospective | Interstitial Lung Disease | 20 patients (40%) | Yes (n = 10) | Mean: 58.7 | No | HRCT fibrosis score, ESR, CRP tests and pulmonary function tests. | 68Ga-FAPi PET/CT, combined with 99mTc-MIBI SPECT/CT, could serve as a noninvasive method for evaluating active fibrosis and inflammation in ILD patients, while also differentiating levels of fibrotic activity based on HRCT patterns. |
MORI et al., 2024 [14] | Chile | Prospective | Idiopathic pulmonary fibrosis | 8 patients (50%) | Yes (n = 6) | Median: 71 | No | HRCT-scan (HUmean and Humax) FVC, DLCO. | 18F-FAPi-74 PET/CT could serve as a non-invasive imaging technique to detect and assess pulmonary fibrotic processes and changes in IPF. Additionally, FAPi could potentially predict disease progression by quantifying fibrosis, with tracer uptake being higher in IPF patients compared to controls. |
RÖHRICH et al., 2022 [13] | Germany | Retrospective | Fibrotic Interstitial Lung Diseases | 15 patients - | No | Mean: 71.2 | No | CT-based fibrosis scores (FIB-index and GGO-index) FAP immunohistochemical staining of fILD biopsies. | FILD lesions showed an elevated 68Ga-FAPi uptake, thus FAPi could be a valuable tool in managing fILD, especially in predicting disease progression and evaluating therapy response. Also, immunohistochemistry of human biopsy samples showed a patchy expression of FAP in fibrotic lesions, preferentially in the transition zone to healthy lung parenchyma. |
Author, Year | Country | Study Design | IMID | Study Population (% Male) | Control Group (n) | Age (Years) | Comparison with 18F-FDG | Additional Parameters | Main Results |
---|---|---|---|---|---|---|---|---|---|
LUO et al., 2021 [21] | China | Prospective | IgG4-related disease | 26 patients (76.9%) | No | Mean: 51.5 | Yes | CT-scan. | 68Ga-FAPi PET/CT demonstrated a higher sensitivity accompanied with greater uptake in the bile duct, liver, salivary and lacrimal gland and pancreas compared to 18F-FDG in IgG4-RD. 68Ga-FAPi is not suitable for detecting IgG4-related lymphadenopathy. |
RÖHRICH et al., 2024 [22] | Germany | Retrospective | LVV (Aortitis) | 8 patients (12.5%) | Yes (n = 8) | Active LVV (n = 3) median: 58 Inactive LVV (n = 5) median: 59 | No | MRI (inflammatory activity score), CRP. | FAPi uptake can be detected in aortitis patients even during remission, years after onset, and with low MRI inflammatory activity scores. This suggests that FAPI is a promising tracer for large vessel vasculitis (LVV) and may detect ongoing pathology in the vessel walls despite clinical remission. |
SCHMIDKONZ et al., 2020 [20] | Germany | Prospective | IgG4 -related diseases | 27 patients (70.4%) | No | Mean 54.9 | Yes | Histological analysis and fluorescence imaging of the corresponding biopsies. RNA-sequencing of fibrotic and resting fibroblasts. | FAPi PET/CT enables differentiation between inflammatory and fibrotic activity in IgG4-related disease in vivo, with fibrotic activity indicated by increased FAPi uptake. |
WANG et al., 2022 [23] | China | Prospective | Light-chain cardiac amyloidosis | 30 patients (66.7%) | No | Mean: 59.1 | No | CMR, clinical biomarkers and echocardiography. | FAPi PET/CT can assist in identifying light-chain cardiac amyloidosis by detecting myocardial fibroblast activation associated with myocardial remodeling, while also demonstrating a strong correlation with disease severity. |
WANG et al., 2024 [24] | China | Prospective | Immunoglobulin A nephropathy | 20 patients (65.0%) | Yes (n = 10) | Mean: 44 | No | Renal biopsy, assessed using the Oxford classification, Masson trichrome staining for tubular atrophy and interstitial fibrosis, and immunohistochemical staining for FAP and αSMA. | 18F-AlF-NOTA-FAPi-04 PET/CT can serve as a non-invasive technique for evaluating inflammation and fibrosis, providing valuable insights into the pathological severity in IgAN patients. |
ZHOU et al., 2021 [25] | China | Retrospective | Renal fibrosis | 13 patients (61.5%) | Yes (n = 9) | Mean: 42 | No | Immunochemical analyses assessing glomerular fibrosis, renal interstitial fibrosis and the extent of disease. | 68Ga-FAPi-04 is eligible to detect moderate-to-severe renal fibrosis caused by different forms of diseases. |
Author and Year | Tracer | PET/CT Scanner | Administered Dose | Post Injection Imaging (min) | (Semi)Quantitative Uptake Metrics |
---|---|---|---|---|---|
PRE-CLINICAL AND TRANSLATIONAL STUDIES | |||||
Chen et al., 2024 [17] | 68Ga-FAPi-46, 68Ga-DOTA-LM3 and 68Ga-FAPi-LM3 | Inveon small-animal scanner (Siemens) | 7.4 MBq | 30 + 5 and 60 + 5 min | %ID/g, VOI |
Ji et al., 2024 [16] | 68Ga-FAPI | Small-animal PET/CT scanner (Novel Medical) | 6.0 MBq | 50 min | HU, %ID/g, correlation %ID/g with percentage positive area of FAP immunohistochemical staining |
Li et al., 2024 [8] | 18F-FAPi | IRIS PET/CT system (Inviscan) | 3.7 MBq | 60 min | SUVmean, SUVmax, MTR |
Discovery MI (GE Healthcare) | 1.8–2.2 MBq/kg | ||||
Rosenkrans et al., 2022 [15] | 68Ga FAPi-46 and 68Ga-DOTA | Inveon small-animal scanner (Siemens) | 0.8–3.8 MBq for dynamic imaging and 3.8 MBq for static imaging | 0 and 60 min | HU, %IA, %IA/cc, VOI |
Song et al., 2024 [26] | 68Ga-DOTA-FAPI-04 | InliView-3000B and NMSoft-AIAC (NovelMedical™) | 3.70–7.40 MBq | 40 min | %ID/cc, SUVmax, ASUVmax, SUVmean, ASUVmax/B and ASUVmean/B. |
TOF-PET/MR (SIGNA, GE Healthcare) or Discovery VCT® (GE Healthcare) | 100–218 MBq | ||||
CLINICAL STUDIES | |||||
Bahtouee et al., 2024 [12] | 68Ga-FAPi-46 | General Electric (Discovery IQ) | 150 MBq | 60 min | TL-FAPI, SUVmax, SUVmean, TLRmax, TLRmean, HUmax and HUmean |
Chen et al. 2023 [17] | 68Ga-FAPi-04 | Umi 780 | 1.85–2.96 MBq/kg | 60 ± 10 min | SUVmax, TBR, global FAPi PET/CT score |
Luo et al., 2021 [21] | 68Ga-FAPi | Polestar m660 (SinoUnion) or Biograph 64 TruePoint TrueV (Siemens) | 85.2 ± 27.0 MBq | 54.4 ± 15.8 min | SUVmax |
Mori et al., 2024 [14] | 18F-FAPi-74 | Biograph mCT Flow scanner (Siemens) | 199–239 MBq | 60 min | SUVmean, SUVmax, FAV |
Röhrich et al., 2022 [13] | 68Ga-FAPi-46 | Biograph mCT Flow (Siemens) | 150–250 MBq | 10 * and 60 and 180 min | SUVmean, SUVmax, TBR/LBR |
Röhrich et al., 2024 [22] | 68Ga FAPi-46 | FlowMotion (Siemens) | 177–285 MBq | 60 min | SUVmean, SUVmax TBR, FAPi visual activity score |
Schmidkonz et al., 2020 [20] | 68Ga-FAPi-04 | Biograph mCT 40 (Siemens) | SUVmax, SUVmean, MAV, TL-FAPi | ||
Wang et al., 2022 [23] | 68Ga-FAPi-04 | Polestar m660 (SinoUnion) | 107.4 ± 26.5 MBq | 60 min | SUVmax, SUVmean, SUV ratio, LV molecular volume |
Wang et al., 2024 [24] | 18F-AlF-NOTA-FAPi-04 | Biograph mCT Flow 64 (Siemens) | 3.70–4.44 MBq/kg | 61.2 ± 8.5 min | SUVmax, SUVmean |
Zhou et al., 2021 [25] | 68Ga-FAPi-04 | Not specified | 1.85–2.59 MBq/kg | 50 to 60 min | SUVmax of kidney, SUVmean of liver and TBR |
Author, Year | Country | Study Design | IMID | Study Population (% Male) | Control Group (n) | Age (Years) | Comparison with 18F-FDG | Additional Parameters | Main Results |
---|---|---|---|---|---|---|---|---|---|
LI et al., 2024 * [36] | China | Prospective | Intestinal fibrosis, Crohn’s disease | 22 rats | Yes (n = 4) | N/A | Yes | MTI, histopathology, FAP immunohistochemical staining of intestinal specimens. | FAPi-PET imaging was reported to hold great accurate diagnostic value in the early detection of intestinal fibrosis. In rats, FAPi uptake showed to have a higher correlation with fibrosis compared to FDG and MTI, specifically in early phase fibrosis. In patients with Crohn’s disease, FAPi superior than FDG in distinguishing fibrosis gradations. |
SONG et al., 2024 * [26] | China | Prospective | Liver fibrosis | 34 mice 26 patients (38.5%) | Yes (n = 26) No | N/A Mean: 50 | No | Immunofluorescence and immunohistochemical analysis for FAP and αSMA expression. Histological analysis, serum markers, Forns index for inflammation and fibrosis, fibroscan. | 68Ga-DOTA-FAPi-04 PET holds great potential to detect multiple stages of hepatic fibrosis. FAPi imaging was shown to be superior to other conventional markers in the early detection of fibrosis. |
CHEN et al., 2023 [34] | China | Retrospective | Crohn’s disease | 16 patients (68.8%) | No | Median: 23 | No | Ileocolonoscopy (CDEIS and SES-CD) and CTE procedure, CDAI, CRP, FCP, global ileocolonic PET/CT score. | 68Ga-FAPi-04 PET/CT demonstrated promising sensitivity and specificity for detecting endoscopic (fibrotic) lesions, with the severity of these lesions significantly correlating with the intensity of FAPi uptake. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lartey, D.A.; Schilder, L.A.; Zwezerijnen, G.J.C.; D’Haens, G.R.A.M.; Grootjans, J.; Löwenberg, M. FAPi PET/CT Imaging to Identify Fibrosis in Immune-Mediated Inflammatory Diseases. Biomedicines 2025, 13, 775. https://doi.org/10.3390/biomedicines13040775
Lartey DA, Schilder LA, Zwezerijnen GJC, D’Haens GRAM, Grootjans J, Löwenberg M. FAPi PET/CT Imaging to Identify Fibrosis in Immune-Mediated Inflammatory Diseases. Biomedicines. 2025; 13(4):775. https://doi.org/10.3390/biomedicines13040775
Chicago/Turabian StyleLartey, Dalia A., Lynn A. Schilder, Gerben J. C. Zwezerijnen, Geert R. A. M. D’Haens, Joep Grootjans, and Mark Löwenberg. 2025. "FAPi PET/CT Imaging to Identify Fibrosis in Immune-Mediated Inflammatory Diseases" Biomedicines 13, no. 4: 775. https://doi.org/10.3390/biomedicines13040775
APA StyleLartey, D. A., Schilder, L. A., Zwezerijnen, G. J. C., D’Haens, G. R. A. M., Grootjans, J., & Löwenberg, M. (2025). FAPi PET/CT Imaging to Identify Fibrosis in Immune-Mediated Inflammatory Diseases. Biomedicines, 13(4), 775. https://doi.org/10.3390/biomedicines13040775