PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights
Abstract
:1. Introduction
2. Basic Biology of CSCC
2.1. Cell of Origin
2.2. Genetic Mutations
2.3. Tumor Development
2.4. Molecular Pathways of CSCC
2.5. Immune Evasion
2.6. Standard Treatment for CSCC
3. Cosibelimab for CSCC
3.1. Cosibelimab Mechanism of Action
3.2. Approval Status of Cosibelimab for CSCC
3.3. Inclusion and Exclusion Criteria for Cosibelimab Trials: Phase I and Phase II
3.4. Evidence on Cosibelimab from Phase II Clinical Trial
3.4.1. Cosibeliamb Phase II Clinical Trial Study Design
3.4.2. Efficacy of Cosibelimab
3.4.3. Cosibelimab’s Safety
4. Discussion
4.1. Cosibelimab in Other Advanced Cancers: Evidence from Phase I and Broader Phase II Trials
4.1.1. Phase I Trial
Study Design
Efficacy
Safety
4.1.2. Broader Phase II Trial
Study Design
Efficacy
Safety
4.2. Comparative Efficacy and Safety of Cosibelimab Across Various Types of Cancers: Insights from Clinical Trials
4.2.1. Efficacy Comparison
4.2.2. Safety Comparison
4.3. Comparative Analysis of Cosibelimab, Pembrolizumab, and Cemiplimab in CSCC
4.3.1. Mechanism of Action
Similarities
Differences
4.3.2. Efficacy Comparison
Objective Response Rates
Duration of Response and Progression-Free Survival
Efficacy Across PD-L1 Expression Levels
4.3.3. Safety Comparison
Common Adverse Events
Severe Immune-Related Adverse Events
Management of Adverse Events
4.3.4. Practical Considerations
Dosing Schedules
Availability and Use in Clinical Practice
4.3.5. Comparison of Long-Term Survival Data
Pembrolizumab
Cemiplimab
Cosibelimab
4.4. Future Directions
4.4.1. Biomarker-Driven Personalization
4.4.2. NK Cell Activation and Resistance Mechanisms in Tumor Immunotherapy
4.4.3. Combination Strategies
4.4.4. Overcoming Resistance
4.4.5. Investigating ADCC Potential
4.4.6. Expanding Applications Beyond CSCC
4.4.7. Optimizing Dosing Schedules
4.4.8. Expanding the Role of Cosibelimab in Neoadjuvant or Adjuvant Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCC | Antibody-Dependent Cellular Cytotoxicity |
AK | Actinic Keratosis |
AKT | Protein Kinase B |
BCC | Basal Cell Carcinoma |
BLA | Biologics License Application |
CR | Complete Response |
CSCC | Cutaneous Squamous Cell Carcinoma |
DLT | Dose-Limiting Toxicity |
DOR | Duration of Response |
EMA | European Medicines Agency |
ERK | Extracellular Signal-Regulated Kinase |
FDA | U.S. Food and Drug Administration |
ICB | Immune Checkpoint Blockade |
irAE | Immune-Related Adverse Event |
laCSCC | Locally Advanced Cutaneous Squamous Cell Carcinoma |
MAPK | Mitogen-Activated Protein Kinase |
mCSCC | Metastatic Cutaneous Squamous Cell Carcinoma |
MDSC | Myeloid-Derived Suppressor Cell |
MTD | Maximum Tolerated Dose |
NK | Natural Killer (cells) |
NSCLC | Non-Small Cell Lung Cancer |
ORR | Objective Response Rate |
OS | Overall Survival |
PD-1 | Programmed Cell Death Protein-1 |
PD-L1 | Programmed Death-Ligand 1 |
PFS | Progression-Free Survival |
PI3K | Phosphoinositide 3-Kinase |
PKB | Protein Kinase B |
PR | Partial Response |
RECIST | Response Evaluation Criteria in Solid Tumors |
ROS | Reactive Oxygen Species |
SCC | Squamous Cell Carcinoma |
Treg | Regulatory T Cell |
References
- Adhikary, G.; Heipertz, E.L.; Preradovic, M.; Chen, X.; Xu, W.; Newland, J.J.; Kaur, N.; Vemuri, M.C.; Eckert, R.L. Natural killer cells suppress human cutaneous squamous cell carcinoma cancer cell survival and tumor growth. Mol. Carcinog. 2023, 62, 845–854. [Google Scholar] [CrossRef]
- Bottomley, M.J.; Thomson, J.; Harwood, C.; Leigh, I. The role of the immune system in cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 2019, 20, 2009. [Google Scholar] [CrossRef]
- Boutros, A.; Cecchi, F.; Tanda, E.T.; Croce, E.; Gili, R.; Arecco, L.; Spagnolo, F.; Queirolo, P. Immunotherapy for the treatment of cutaneous squamous cell carcinoma. Front. Oncol. 2021, 11, 733917. [Google Scholar] [CrossRef]
- Dantal, J.; Morélon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; Del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus for secondary prevention of skin cancer in kidney transplant recipients: 5-year results. J. Clin. Oncol. 2018, 36, 2612–2620. [Google Scholar] [CrossRef]
- Corneli, P.; Conforti, C.; Retrosi, C.; Vezzoni, R.; di Meo, N.; Piccolo, V.; Farinazzo, E.; Russo, T.; Magaton Rizzi, G.; Giuffrida, R.; et al. Pattern of response of unresectable and metastatic cutaneous squamous cell carcinoma to programmed death-1 inhibitors: A review of the literature. Dermatol. Ther. 2020, 33, e13250. [Google Scholar] [CrossRef] [PubMed]
- Daneluzzi, C.; Seyed Jafari, S.M.; Hunger, R.; Bossart, S. The immunohistochemical assessment of neoangiogenesis factors in squamous cell carcinomas and their precursors in the skin. J. Clin. Med. 2022, 11, 4494. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.S.; Özer, H.G.; Gillespie, J.L.; Allain, D.C.; Bernhardt, M.N.; Furlan, K.C.; Castro, L.T.F.; Peters, S.B.; Nagarajan, P.; Kang, S.Y.; et al. Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors. Cancer 2017, 123, 1184–1193. [Google Scholar] [CrossRef]
- Farberg, A.S.; Fitzgerald, A.L.; Ibrahim, S.F.; Tolkachjov, S.N.; Soleymani, T.; Douglas, L.M.; Kurley, S.J.; Arron, S.T. Current methods and caveats to risk factor assessment in cutaneous squamous cell carcinoma (cscc): A narrative review. Dermatol. Ther. 2022, 12, 267–284. [Google Scholar] [CrossRef]
- Galambus, J.; Tsai, K.Y. Molecular and immune targets in cutaneous squamous cell carcinoma. Mol. Carcinog. 2023, 62, 38–51. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Chen, Z. Transcriptome profiling of cervical cancer cells acquired resistance to cisplatin by deep sequencing. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2820–2829. [Google Scholar] [CrossRef]
- Newman, J.G.; Hall, M.A.; Kurley, S.J.; Cook, R.W.; Farberg, A.S.; Geiger, J.L.; Koyfman, S.A. Adjuvant therapy for high-risk cutaneous squamous cell carcinoma: 10-year review. Head Neck 2021, 43, 2822–2843. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer-Faja, J.; Toll, A.; Boada, A.; Guerra-Amor, Á.; Ferrándiz-Pulido, C.; Jaka, A. Management of cutaneous squamous cell carcinoma of the scalp: The role of imaging and therapeutic approaches. Cancers 2024, 16, 664. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, Y.; Chen, P.; Yang, M.; Jiang, X. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell. Biochem. 2018, 119, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, J.; Wu, W. Seven key hub genes identified by gene co-expression network in cutaneous squamous cell carcinoma. BMC Cancer 2021, 21, 852. [Google Scholar] [CrossRef]
- Cohen, D.N.; Lawson, S.K.; Shaver, A.C.; Du, L.; Nguyen, H.P.; He, Q.; Johnson, D.B.; Lumbang, W.A.; Moody, B.R.; Prescott, J.L.; et al. Contribution of beta-hpv infection and uv damage to rapid-onset cutaneous squamous cell carcinoma during braf-inhibition therapy. Clin. Cancer Res. 2015, 21, 2624–2634. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, J.; Xi, H.; Zhang, M.; Oh, Y.; Jin, Z.; Zheng, Z. Implication of Amyloid Precursor-like Protein 2 Expression in Cutaneous Squamous Cell Carcinoma Pathogenesis. In Vivo 2024, 38, 399–408. [Google Scholar] [CrossRef]
- Karppinen, S.M.; Honkanen, H.K.; Heljasvaara, R.; Riihilä, P.; Autio-Harmainen, H.; Sormunen, R.; Harjunen, V.; Väisänen, M.R.; Väisänen, T.; Hurskainen, T.; et al. Collagens xv and xviii show different expression and localisation in cutaneous squamous cell carcinoma: Type XV appears in tumor stroma, while xviii becomes upregulated in tumor cells and lost from microvessels. Exp. Dermatol. 2016, 25, 348–354. [Google Scholar] [CrossRef]
- Corchado-Cobos, R.; García-Sancha, N.; González-Sarmiento, R.; Pérez-Losada, J.; Cañueto, J. Cutaneous squamous cell carcinoma: From biology to therapy. Int. J. Mol. Sci. 2020, 21, 2956. [Google Scholar] [CrossRef]
- Fania, L.; Didona, D.; Di Pietro, F.R.; Verkhovskaia, S.; Morese, R.; Paolino, G.; Donati, M.; Ricci, F.; Coco, V.; Ricci, F.; et al. Cutaneous squamous cell carcinoma: From pathophysiology to novel therapeutic approaches. Biomedicines 2021, 9, 171. [Google Scholar] [CrossRef]
- Grant, S.R.; Rosario, S.R.; Patentreger, A.D.; Shary, N.; Fitzgerald, M.E.; Singh, P.K.; Foster, B.A.; Huss, W.J.; Wei, L.; Paragh, G. Hotspot: A computational tool to design targeted sequencing panels to assess early photocarcinogenesis. Cancers 2023, 15, 1612. [Google Scholar] [CrossRef]
- Lohcharoenkal, W.; Li, C.; Das Mahapatra, K.D.; Lapins, J.; Homey, B.; Sonkoly, E.; Pivarcsi, A. Mir-130a acts as a tumor suppressor microRNA in cutaneous squamous cell carcinoma and regulates the activity of the bmp/smad pathway by suppressing acvr1. J. Investig. Dermatol. 2021, 141, 1922–1931. [Google Scholar] [CrossRef] [PubMed]
- Piipponen, M.; Riihilä, P.; Nissinen, L.; Kähäri, V.M. The role of p53 in progression of cutaneous squamous cell carcinoma. Cancers 2021, 13, 4507. [Google Scholar] [CrossRef] [PubMed]
- Riihilä, P.; Nissinen, L.; Kähäri, V.M. Matrix metalloproteinases in keratinocyte carcinomas. Exp. Dermatol. 2021, 30, 50–61. [Google Scholar] [CrossRef]
- Su, W.; Huang, B.; Zhang, Q.; Han, W.; An, L.; Guan, Y.; Ji, J.; Yu, D. Exploring potential biomarkers, ferroptosis mechanisms, and therapeutic targets associated with cutaneous squamous cell carcinoma via integrated transcriptomic analysis. J. Healthc. Eng. 2022, 2022, 3524022. [Google Scholar] [CrossRef]
- Thind, A.S.; Ashford, B.; Strbenac, D.; Mitchell, J.; Lee, J.; Mueller, S.A.; Minaei, E.; Perry, J.R.; Ch’ng, S.; Iyer, N.G.; et al. Whole genome analysis reveals the genomic complexity in metastatic cutaneous squamous cell carcinoma. Front. Oncol. 2022, 12, 919118. [Google Scholar] [CrossRef]
- Alonso-Juarranz, M.; Mascaraque, M.; Carrasco, E.; Gracia-Cazaña, T.; De La Sen, O.; Gilaberte, Y.; Gonzalez, S.; Juarranz, Á.; Falahat, F. The distinctive features behind the aggressiveness of oral and cutaneous squamous cell carcinomas. Cancers 2023, 15, 3227. [Google Scholar] [CrossRef]
- Das Mahapatra, K.D.; Pasquali, L.; Søndergaard, J.N.; Lapins, J.; Németh, I.B.; Baltás, E.; Kemény, L.; Homey, B.; Moldovan, L.I.; Kjems, J.; et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci. Rep. 2020, 10, 3637. [Google Scholar] [CrossRef]
- Rahmati Nezhad, P.R.; Riihilä, P.; Piipponen, M.; Kallajoki, M.; Meri, S.; Nissinen, L.; Kähäri, V.M. Complement factor I upregulates expression of matrix metalloproteinase-13 and −2 and promotes invasion of cutaneous squamous carcinoma cells. Exp. Dermatol. 2021, 30, 1631–1641. [Google Scholar] [CrossRef]
- Riihilä, P.; Nissinen, L.; Farshchian, M.; Kallajoki, M.; Kivisaari, A.; Meri, S.; Grénman, R.; Peltonen, S.; Peltonen, J.; Pihlajaniemi, T.; et al. Complement component c3 and complement factor B promote growth of cutaneous squamous cell carcinoma. Am. J. Pathol. 2017, 187, 1186–1197. [Google Scholar] [CrossRef]
- Riihilä, P.; Nissinen, L.; Farshchian, M.; Kivisaari, A.; Ala-Aho, R.; Kallajoki, M.; Grénman, R.; Meri, S.; Peltonen, S.; Peltonen, J.; et al. Complement factor I promotes progression of cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2015, 135, 579–588. [Google Scholar] [CrossRef]
- Riihilä, P.; Nissinen, L.; Knuutila, J.; Rahmati Nezhad, P.R.; Viiklepp, K.; Kähäri, V.M. Complement system in cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 2019, 20, 3550. [Google Scholar] [CrossRef]
- Riihilä, P.; Viiklepp, K.; Nissinen, L.; Farshchian, M.; Kallajoki, M.; Kivisaari, A.; Meri, S.; Peltonen, J.; Peltonen, S.; Kähäri, V.M. Tumour-cell-derived complement components c1r and c1s promote growth of cutaneous squamous cell carcinoma. Br. J. Dermatol. 2020, 182, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Tsuchiya, K.; Nishimura, R.; Shirasaki, T.; Katsukura, N.; Hibiya, S.; Okamoto, R.; Nakamura, T.; Watanabe, M. tp53 mutation by Crispr system enhances the malignant potential of colon cancer. Mol. Cancer Res. 2019, 17, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Rymsza, A.; Świerczyńska, K.; Piotrowska, A.; Dzięgiel, P.; Szepietowski, J.C. Expression of mcm2 as a proliferative marker in actinic keratosis and cutaneous squamous cell carcinoma. In Vivo 2022, 36, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.D.; Sun, Y.Z.; Li, X.J.; Wu, W.J.; Xu, D.; He, Y.T.; Qi, J.; Tu, Y.; Tang, Y.; Tu, Y.H.; et al. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. eLife 2023, 12, e85270. [Google Scholar] [CrossRef]
- Avery, T.Y.; Köhler, N.; Zeiser, R.; Brummer, T.; Ruess, D.A. Onco-immunomodulatory properties of pharmacological interference with ras-raf-mek-erk pathway hyperactivation. Front. Oncol. 2022, 12, 931774. [Google Scholar] [CrossRef]
- Ci, C.; Wu, C.; Lyu, D.; Chang, X.; He, C.; Liu, W.; Chen, L.; Ding, W. Downregulation of kynureninase restrains cutaneous squamous cell carcinoma proliferation and represses the pi3k/akt pathway. Clin. Exp. Dermatol. 2020, 45, 194–201. [Google Scholar] [CrossRef]
- Li, T.; Sun, Y.; Wang, J.; Zhang, C.; Sun, Y. Promoted skin wound healing by tail-amputated Eisenia foetida proteins via the ras/raf/mek/erk signaling pathway. ACS Omega 2023, 8, 13935–13943. [Google Scholar] [CrossRef]
- Li, Y.Y.; Hanna, G.J.; Laga, A.C.; Haddad, R.I.; Lorch, J.H.; Hammerman, P.S. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin. Cancer Res. 2015, 21, 1447–1456. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Jiang, Q.; Li, X.; Tang, X.; Chen, S.; Jiang, L.; Fu, G.; Liu, S. Mir-125a attenuates the malignant biological behaviors of cervical squamous cell carcinoma cells through rad51. Bioengineered 2022, 13, 8503–8514. [Google Scholar] [CrossRef]
- Lü, D.; Sun, L.; Li, Z.; Mu, Z. Lncrna ezr-as1 knockdown represses proliferation, migration and invasion of cscc via the pi3k/akt signaling pathway. Mol. Med. Rep. 2021, 23, 76. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ping, G.; Wu, H. Uncovering PD-L1 and CD8+ TILS expression and clinical implication in cervical squamous cell carcinoma. BioMed Res. Int. 2020, 2020, 8164365. [Google Scholar] [CrossRef]
- Cowey, C.L.; Robert, N.J.; Espirito, J.L.; Davies, K.; Frytak, J.; Lowy, I.; Fury, M.G. Clinical outcomes among unresectable, locally advanced, and metastatic cutaneous squamous cell carcinoma patients treated with systemic therapy. Cancer Med. 2020, 9, 7381–7387. [Google Scholar] [CrossRef]
- Ferrándiz-Pulido, C.; Leiter, U.; Harwood, C.; Proby, C.M.; Guthoff, M.; Scheel, C.H.; Westhoff, T.H.; Bouwes Bavinck, J.N.; Meyer, T.; Nägeli, M.C.; et al. Immune checkpoint inhibitors in solid organ transplant recipients with advanced skin cancers—Emerging strategies for clinical management. Transplantation 2023, 107, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Fietz, S.; Fröhlich, A.; Mauch, C.; de Vos-Hillebrand, L.; Fetter, T.; Landsberg, J.; Hoffmann, F.; Sirokay, J. Manifestation of subacute cutaneous lupus erythematosus during treatment with anti-pd-1 antibody cemiplimab—A case report. Front. Immunol. 2023, 14, 1324231. [Google Scholar] [CrossRef]
- Kraft, S.; Gadkaree, S.K.; Deschler, D.G.; Lin, D.T.; Hoang, M.P.; Emerick, K.S. Programmed cell death ligand-1 and cytotoxic T cell infiltrates in metastatic cutaneous squamous cell carcinoma of the head and neck. Head Neck 2020, 42, 3226–3234. [Google Scholar] [CrossRef]
- Lonsdorf, A.S.; Edelmann, D.; Albrecht, T.; Brobeil, A.; Labrenz, J.; Johanning, M.; Schlenk, R.F.; Goeppert, B.; Enk, A.H.; Toberer, F. Differential immunoexpression of inhibitory immune checkpoint molecules and clinicopathological correlates in keratoacanthoma, primary cutaneous squamous cell carcinoma and metastases. Acta Derm. Venereol. 2024, 104, adv13381. [Google Scholar] [CrossRef]
- Mao, L.; Zhao, Z.L.; Yu, G.T.; Wu, L.; Deng, W.W.; Li, Y.C.; Liu, J.F.; Bu, L.L.; Liu, B.; Kulkarni, A.B.; et al. Γ-secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int. J. Cancer 2018, 142, 999–1009. [Google Scholar] [CrossRef]
- Schmults, C.D.; Blitzblau, R.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Baumann, B.C.; Bordeaux, J.; Chen, P.L.; Chin, R.; Contreras, C.M.; et al. Nccn guidelines® insights: Squamous cell skin cancer, version 1.2022. J. Natl. Compr. Canc. Netw. 2021, 19, 1382–1394. [Google Scholar] [CrossRef]
- Alberti, A.; Gurizzan, C.; Baggi, A.; Bossi, P. Where do we stand with immunotherapy for nonmelanoma skin cancers in the curative setting? Curr. Opin. Otolaryngol. Head Neck Surg. 2024, 32, 89–95. [Google Scholar] [CrossRef]
- Cavanagh, K.; McLean, L.S.; Lim, A.M.; Cardin, A.; Levy, S.M.; Rischin, D. Assessment of perineural spread in advanced cutaneous squamous cell carcinomas treated with immunotherapy. Cancer Imaging 2024, 24, 37. [Google Scholar] [CrossRef]
- García-Sancha, N.; Corchado-Cobos, R.; Bellido-Hernández, L.; Román-Curto, C.; Cardeñoso-Álvarez, E.; Pérez-Losada, J.; Orfao, A.; Cañueto, J. Overcoming resistance to immunotherapy in advanced cutaneous squamous cell carcinoma. Cancers 2021, 13, 5134. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.Y.; Clarke, R.; Cooper, P.; Stokes, J.; Calvert, P. Case Series: Cemiplimab and Nivolumab Immunotherapy as Promising Treatment in Advanced or Metastatic Cutaneous Squamous Cell Carcinoma Case Series. Case Rep. Oncol. 2023, 16, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Morecroft, R.; Phillipps, J.; Zhou, A.; Butt, O.; Khaddour, K.; Johanns, T.; Ansstas, G. Case report: Increased efficacy of cetuximab after pembrolizumab failure in cutaneous squamous cell carcinoma. Front. Oncol. 2024, 14, 1385094. [Google Scholar] [CrossRef]
- Ou, Z.; Lin, S.; Qiu, J.; Ding, W.; Ren, P.; Chen, D.; Wang, J.; Tong, Y.; Wu, D.; Chen, A.; et al. Single-nucleus rna sequencing and spatial transcriptomics reveal the immunological microenvironment of cervical squamous cell carcinoma. Adv. Sci. 2022, 9, e2203040. [Google Scholar] [CrossRef] [PubMed]
- Saeidi, V.; Doudican, N.; Carucci, J.A. Understanding the squamous cell carcinoma immune microenvironment. Front. Immunol. 2023, 14, 1084873. [Google Scholar] [CrossRef]
- Heppt, M.V.; Leiter, U. Cutaneous squamous cell carcinoma: State of the art, perspectives and unmet needs. J. Dtsch. Dermatol. Ges. 2023, 21, 421–424. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Yang, F.; Qi, X.; Wang, X.; Guan, X.; Duma, N.; Aguilera, J.V.; Chintakuntlawar, A.; Price, K.A.; et al. Treatment-related adverse events of pd-1 and pd-l1 inhibitors in clinical trials. JAMA Oncol. 2019, 5, 1008. [Google Scholar] [CrossRef]
- Hu, H.; Zhu, Q.; Luo, X.S.; Yang, X.; Wang, H.D.; Guo, C.Y. Efficacy of pd-1/pd-l1 inhibitors against pretreated advanced cancer: A systematic review and meta-analysis. Oncotarget 2018, 9, 11846–11857. [Google Scholar] [CrossRef]
- Lehmer, L.M.; Choi, F.; Kraus, C.N.; Shiu, J.; Feraudy, S.D.; Elsensohn, A. Histopathologic pd-l1 tumor expression and prognostic significance in nonmelanoma skin cancers: A systematic review. Am. J. Dermatopathol. 2020, 43, 321–330. [Google Scholar] [CrossRef]
- Kamiya, S.; Kato, J.; Kamiya, T.; Yamashita, T.; Sumikawa, Y.; Hida, T.; Horimoto, K.; Sato, S.; Takahashi, H.; Sawada, M.; et al. Association between pd-l1 expression and lymph node metastasis in cutaneous squamous cell carcinoma. Asia-Pac. J. Clin. Oncol. 2018, 16, e108–e112. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, W.; Li, O.; Qi, F.; Wang, J.; You, Y.; He, P.; Sou, Z.; Zheng, Y.; Liu, H. Abrogation of usp7 is an alternative strategy to downregulate pd-l1 and sensitize gastric cancer cells to t cells killing. Acta Pharm. Sin. B 2021, 11, 694–707. [Google Scholar] [CrossRef]
- Oh, S.; Kim, E.; Lee, H. Comparative impact of pd-1 and pd-l1 inhibitors on advanced esophageal or gastric/gastroesophageal junction cancer treatment: A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 3612. [Google Scholar] [CrossRef]
- Clingan, P.; Ladwa, R.; Brungs, D.; Harris, D.L.; McGrath, M.; Arnold, S.; Coward, J.; Fourie, S.; Kurochkin, A.; Malan, D.R.; et al. Efficacy and safety of cosibelimab, an anti-pd-l1 antibody, in metastatic cutaneous squamous cell carcinoma. J. Immunother. Cancer 2023, 11, e007637. [Google Scholar] [CrossRef] [PubMed]
- Yeo, N.; Genenger, B.; Aghmesheh, M.; Thind, A.; Napaki, S.; Perry, J.; Asford, B.; Ranson, M.; Brungs, D. Sex as a predictor of response to immunotherapy in advanced cutaneous squamous cell carcinoma. Cancers 2023, 15, 5026. [Google Scholar] [CrossRef]
- Migden, M.; Khushalani, N.; Chang, A.; Lewis, K.; Schmults, C.; Hernandez-Aya, L.; Meier, F.; Schadendorf, D.; Guminski, A.; Hauschild, A.; et al. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: Results from an open-label, phase 2, single-arm trial. Lancet Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, K.; Sravanthi, M.V.; D’Angelo, J.; Sivapiragasam, A. Cemiplimab for locally advanced cutaneous squamous cell carcinoma: A case series of 3 unique scenarios. J. Investig. Med. High Impact Case Rep. 2022, 10, 232470962211214. [Google Scholar] [CrossRef]
- Khaddour, K.; Fields, R.; Ansstas, M.; Rosman, I.; Ansstas, G. Metachronous cutaneous squamous cell carcinoma in a young patient as the only presenting symptom to uncover lynch syndrome with mlh1 germline mutation. Hered. Cancer Clin. Pract. 2020, 18, 1–6. [Google Scholar] [CrossRef]
- Tele, J.; Kanetkar, S.; Kumbhar, S. Solitary cutaneous metastasis of carcinoma larynx—An unusual occurrence. Int. J. Health Sci. Res. 2022, 12, 194–198. [Google Scholar] [CrossRef]
- Wang, F.; Wei, X.; Feng, J.; Li, Q.; Xu, N.; Hu, X.; Liao, W.; Jiang, Y.; Lin, X.-Y.; Zhang, Q.-Y.; et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: A phase ii clinical trial (polaris-02). J. Clin. Oncol. 2021, 39, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Seidl-Philipp, M.; Nguyen, V. Cutaneous squamous cell carcinoma. Memo—Mag. Eur. Med. Oncol. 2020, 13, 106–110. [Google Scholar] [CrossRef]
- Strzebońska, K.; Wasylewski, M.; Zaborowska, Ł.; Polak, M.; Sługocka, E.; Straś, J.; Blukacz, M.; Gyawali, B.; Waligóra, M. Risk and benefit for targeted therapy agents in pediatric phase ii trials in oncology: A systematic review with a meta-analysis. Target. Oncol. 2021, 16, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Potestio, L.; Fabbrocini, G.; Scalvenzi, M. New emerging treatment options for advanced basal cell carcinoma and squamous cell carcinoma. Adv. Ther. 2022, 39, 1164–1178. [Google Scholar] [CrossRef]
- Chan, J.; Yeh, I.; El-Sayed, I.; Algazi, A.; Glastonbury, C.; Ha, P.; Yom, S.; Zante, A. Ultraviolet light-related dna damage mutation signature distinguishes cutaneous from mucosal or other origin for head and neck squamous cell carcinoma of unknown primary site. Head Neck 2019, 41, E82–E85. [Google Scholar] [CrossRef]
- Izumi, T. Favorable efficacy of s-1 treatment for locoregionally advanced cutaneous squamous cell carcinoma in the head and neck region. J. Dermatol. 2023, 51, 271–279. [Google Scholar] [CrossRef]
- Keeping, S.; Xu, Y.; Chen, C.; Cope, S.; Mojebi, A.; Kuznik, A.; Konjidaris, G.; Ayers, D.; Sasane, M.; Allen, R.; et al. Comparative efficacy of cemiplimab versus other systemic treatments for advanced cutaneous squamous cell carcinoma. Future Oncol. 2020, 17, 611–627. [Google Scholar] [CrossRef]
- Grob, J.; González, R.; Basset-Séguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulatas, J.M.; Bauman, J.R.; et al. Pembrolizumab monotherapy for recurrent or metastatic cutaneous squamous cell carcinoma: A single-arm phase ii trial (keynote-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Anderson, A.; McClanahan, D.; Jacobs, J.; Jeng, S.; Vigoda, M.; Blucher, A.; Zheng, C.; Jung Yoo, Y.; Hale, C.; Ouyang, X.; et al. Functional genomic analysis identifies drug targetable pathways in invasive and metastatic cutaneous squamous cell carcinoma. Mol. Case Stud. 2020, 6, a005439. [Google Scholar] [CrossRef]
- Lee, T.; Shen, C.; Tsai, F.; Chen, C. Cancer-derived extracellular vesicles as biomarkers for cutaneous squamous cell carcinoma: A systematic review. Cancers 2022, 14, 5098. [Google Scholar] [CrossRef]
- Hoesl, C.; Fröhlich, T.; Hundt, J.; Kneitz, H.; Goebeler, M.; Wolf, R.; Schneider, M.R.; Dahlhoff, M. The transmembrane protein lrig2 increases tumor progression in skin carcinogenesis. Mol. Oncol. 2019, 13, 2476–2492. [Google Scholar] [CrossRef]
- Patil, K.; Khan, A.; Faried, A.; Kuttikrishnan, S.; Anver, R.; Mateo, J.; Aimir, A.; Ajaz, B.; Joerg, D.; Steinhoff, M.; et al. Sanguinarine Triggers Apoptosis in Cutaneous Squamous Cell Carcinoma Cells Through Sos-Dependent jnk-Kinase Signaling; Research Square: Eindhoven, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Nightingale, J.; Gandhi, M.; Helena, J.; Bowman, J.; McGrath, M.; Coward, J.; Porceddu, S.; Ladwa, R.; Panizza, B. Immunotherapy for the treatment of perineural spread in cutaneous head and neck squamous cell carcinoma: Time to rethink treatment paradigms. Head Neck 2022, 44, 1099–1105. [Google Scholar] [CrossRef]
- Dobrokhotov, O.; Sunagawa, M.; Torii, T.; Mii, S.; Kawauchi, K.; Enomoto, A.; Sokabe, M.; Harai, H. Anti-malignant effect of tensile loading to adherens junctions in cutaneous squamous cell carcinoma cells. Front. Cell Dev. Biol. 2021, 9, 728383. [Google Scholar] [CrossRef]
- Marsidi, N.; Ottevanger, R.; Bavinck, J.; Krekel-Taminiau, N.; Goeman, J.; Genders, R. Risk factors for incomplete excision of cutaneous squamous cell carcinoma: A large cohort study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1229–1234. [Google Scholar] [CrossRef]
- Sarin, K. Development of a mek inhibitor, nfx-179, as a chemoprevention agent for squamous cell carcinoma. Sci. Transl. Med. 2023, 15, eade1844. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zhou, C.; Zhang, Y.; Yan, G.; Wang, X. Modified 5-aminolevulinic acid photodynamic therapy reduces pain and improves therapeutic effects in cutaneous squamous cell carcinoma mouse model. Lasers Surg. Med. 2022, 54, 804–812. [Google Scholar] [CrossRef]
- Lergenmuller, S.; Ghiasvand, R.; Robsahm, T.; Green, A.; Lund, E.; Rueegg, C.; Veierød, M. Sunscreens with high versus low sun protection factor and cutaneous squamous cell carcinoma risk: A population-based cohort study. Am. J. Epidemiol. 2021, 191, 75–84. [Google Scholar] [CrossRef]
- Zakria, D. Incorporating a prognostic gene expression profile test into the management of cutaneous squamous cell carcinoma: An expert consensus panel report. J. Drugs Dermatol. 2024, 23, 54–60. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Lenehan, J.G.; Maleki Vareki, S. Neoadjuvant Immunotherapy for High-Risk, Resectable Malignancies: Scientific Rationale and Clinical Challenges. J. Natl. Cancer Inst. 2021, 113, 823–832. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef]
Criteria/Analysis | Phase I Trial | Phase II Trial |
---|---|---|
Inclusion Criteria | - Adult patients with mCSCC (nodal and/or distant) | - Adult patients with metastatic or locally advanced CSCC unsuitable for curative surgery or radiation |
- ECOG performance status of 0 or 1 | - ECOG performance status of 0 or 1 | |
- Adequate organ function | - Adequate organ function | |
- At least one measurable lesion according to RECIST 1.1 | - At least one measurable lesion according to RECIST 1.1 | |
Exclusion Criteria | - Prior immune checkpoint inhibitor therapy | - Active or suspected autoimmune disease |
- Active or suspected autoimmune disease | - Prior exposure to anti-PD-(L)1 therapy or other immune checkpoint inhibitors | |
- Immunosuppressive doses of steroids (>10 mg/day prednisone or equivalent) | - Immunosuppressive doses of steroids (>10 mg/day prednisone or equivalent) | |
- Uncontrolled cardiovascular disease | - Uncontrolled cardiovascular disease | |
- HIV, hepatitis B or hepatitis C virus infection | - HIV, hepatitis B or hepatitis C virus infection | |
- ECOG performance status greater than 2 | - ECOG performance status greater than 2 | |
Treatment Regimen | Cosibelimab administered at 800 mg every 2 weeks | Cosibelimab administered at 800 mg every 2 weeks until progression or intolerable toxicity |
Subgroup Analysis | Not explicitly mentioned in Phase I trial details | - Metastatic vs. locally advanced disease |
- ECOG performance status (34% with status 0 and 66% with status 1) | ||
- Age subgroups (median age of 75, 78% ≥ 65 years) | ||
- Sex and race (72% male, 85% White) | ||
- Prior systemic therapy (7% had prior systemic therapy) |
Category | CSCC-Specific Phase II Trial | Broader Phase II Trial (Various Tumor Types) | Phase I Trial (Early-Stage Study) |
---|---|---|---|
ORR | 47.5% (CSCC patients) | 47% (CSCC cohort, lower ORRs in other tumor types like NSCLC, bladder cancer) | Modest efficacy in CSCC, preliminary data |
CR | 7% | Not reported for CSCC | Not reported |
PR | 40.5% | Not specified | Early signs of PRs |
PFS | 12.9 months | Varies across tumor types, similar in CSCC cohort (lower PFS in NSCLC and bladder cancer) | Not reported |
DOR | 11.3 months | Similar to CSCC cohort | Not specified |
Safety Profile | Fatigue, rash, pruritus (Grade 1/2) | Similar to CSCC cohort; irAEs such as colitis, hepatitis, pneumonitis in NSCLC and bladder cancer | Focused on safety and DLTs; no MTD |
Severe Adverse Events (Grade 3 or Higher) | <10% (rare, manageable) | Similar; small subset with irAEs in NSCLC and bladder cancer | Low incidence of severe AEs, no MTD reached |
irAEs | Pneumonitis, immune-mediated dermatitis | Colitis, hepatitis, pneumonitis (especially in NSCLC and bladder cancer), manageable with corticosteroids | No major immune-related toxicities observed |
Management of Adverse Events | Standard immunosuppressive treatments | Pauses or corticosteroids for irAEs in NSCLC and bladder cancer | Standard interventions, no MTD reached |
Category | Cosibelimab [65] | Pembrolizumab [58,78] | Cemiplimab [58,78] |
---|---|---|---|
Mechanism of Action | PD-1/PD-L1 pathway (binds directly to PD-L1 on tumor cells), potential for ADCC | PD-1/PD-L1 pathway (inhibits PD-1 on T cells) | PD-1/PD-L1 pathway (inhibits PD-1 on T cells) |
ORR | 47.5% (Phase II) | 40–50% | 47% |
CR Rate | 7% | Lower than cemiplimab | 13% |
DOR | 11.3 months | Similar to cemiplimab, PD-L1 dependent | 16.8 months |
PFS | 12.9 months | Comparable to cemiplimab | 18 months |
Efficacy Across PD-L1 Levels | Effective across all PD-L1 levels | Better in PD-L1 high expressors (≥50%) | Effective across all PD-L1 levels |
Common Adverse Events | Fatigue, rash, pruritus, diarrhea | Fatigue, rash, pruritus, diarrhea | Fatigue, rash, pruritus, diarrhea |
Severe irAEs | <10% (lower incidence of Grade 3 or higher irAEs) | 10–15% (similar risks of irAEs, particularly in autoimmune patients) | 10–15% (higher risk of endocrinopathies) |
Endocrinopathies | Lower incidence | Similar to cemiplimab | Higher incidence (requires close monitoring) |
Dosing Schedule | Every 2 weeks | Every 3 or 6 weeks | Every 3 weeks |
Clinical Availability | Not yet approved for widespread use | Widely available and in clinical practice | Widely available and in clinical practice |
Long-Term Survival Data | Not fully available, but early data shows promise | Median OS 22 months, median PFS 18.4 months | Median OS 19 months, median PFS 16.8 months |
Efficacy in Long-Term Control | Potential for long-term responses, needs validation | Durable responses in PD-L1 high expressors | Consistent long-term control, effective across PD-L1 levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, O.A.; Westgate, D.; Saadaie Jahromi, B.; Shebrain, A.; Zhang, T.; Ashour, H.M. PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights. Biomedicines 2025, 13, 889. https://doi.org/10.3390/biomedicines13040889
Idris OA, Westgate D, Saadaie Jahromi B, Shebrain A, Zhang T, Ashour HM. PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights. Biomedicines. 2025; 13(4):889. https://doi.org/10.3390/biomedicines13040889
Chicago/Turabian StyleIdris, Omer A., Diana Westgate, Bahar Saadaie Jahromi, Abdulaziz Shebrain, Tiantian Zhang, and Hossam M. Ashour. 2025. "PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights" Biomedicines 13, no. 4: 889. https://doi.org/10.3390/biomedicines13040889
APA StyleIdris, O. A., Westgate, D., Saadaie Jahromi, B., Shebrain, A., Zhang, T., & Ashour, H. M. (2025). PD-L1 Inhibitor Cosibelimab for Cutaneous Squamous Cell Carcinoma: Comprehensive Evaluation of Efficacy, Mechanism, and Clinical Trial Insights. Biomedicines, 13(4), 889. https://doi.org/10.3390/biomedicines13040889