Advanced Research in the Pathophysiology of Venous Thromboembolism–Acute Pulmonary Embolism
Abstract
:1. Introduction
2. The Relationship Between Inflammation and Acute Pulmonary Embolism in Animal Models
3. The Interplay Between Thrombosis and Neutrophils and Neutrophil Extracellular Traps (NETs)
3.1. Data Summarizing the Role of NETs in Animal Studies
3.2. Data Demonstrating the Role of NETs in Thromboembolism in Humans
4. Soluble Cytokines and Chemokines in the Pathophysiology of Acute Pulmonary Embolism—A Brief Summary
Marker | Author | Year | Study Design | Total Patients | Conclusion |
---|---|---|---|---|---|
IL-1 | Van Minkelen R. [43] | 2007 | Case-control | 948 | The H5H5 homozygous genotype of the IL-1RN gene increases the risk of VT. |
Abuduhalike, R. [48] | 2020 | Prospective | 284 | The IL-1 SNP-rs1800587 GG + GA variant is associated with higher risk of VTE in comparison to subjects with the AA genotype [OR 4.444, 95% CI 1.466–13.470]. | |
IL-6 | Van Aken, B.E. [49] | 2000 | Case-control | 532 | Higher plasma concentrations of IL-6 in patients with deep vein thrombosis. |
Roumen-Klappe, E.M. [50] | 2002 | Prospective | 73 | ||
Roumen-Klappe, E.M. [51] | 2009 | Prospective | 110 | ||
Beckers, M.M.J. [52] | 2010 | Prospective | 433 | ||
Matos, M.F. [53] | 2011 | Prospective | 245 | ||
Bittar, L.F. [54] | 2015 | Case-control | 135 | ||
De Franciscis, S. [47] | 2016 | Prospective | 201 | ||
Zhang, Y. [55] | 2019 | Case-control | 72 | Lower expression of miR-338-5p contributes to DVT by enhancing IL-6 expression. | |
IL-8 | Van Aken, B.E. [49] | 2000 | Case-control | 532 | Venous thrombosis risk is increased in patients with circulating IL-8 levels. |
Van Aken, B.E. [56] | 2002 | Population-based case-control study | 948 | ||
Roumen-Klappe, E.M. [50] | 2002 | Prospective cohort | 73 | ||
Montes-Worboys, A. [57] | 2013 | Follow-up | 125 | ||
Bontekoe, E. [58] | 2021 | Prospective | 157 | ||
Tang B. [19] | 2014 | Case-control | 660 | The IL-10 (-1082A/G) gene polymorphism’s GG genotype has a protective effect, lowering the risk of DVT. | |
IL-13 | Beckers, M.M.J. [52] | 2010 | Prospective | 433 | The study identified an association between VTE episodes and SNPs located in the genes encoding IL-13. |
TNF-α | Horakova, K. [59] | 2010–2011 | Case-control | 129 | Patients with DVT had a higher prevalence of the G-308A polymorphism than the control group. |
Mazetto, B.M. [60] | 2012 | Prospective | 56 | Higher plasma concentration of TNF-α in patients with VTE compared to healthy controls. | |
De Franciscis, S. [47] | 2015 | Prospective | 201 | ||
TGF-β | Memon, A.A. [61] | 2014 | Prospective with 39 months follow-up | 126 | Patients with VTE were characterized by a lower plasma concentration of TGF-β1 and TGF-β2. |
Wang, X. [62] | 2019 | Prospective | 78 | The higher risk of VTE reoccurrence was related to 12 mRNAs: miR-15b-5p, miR106a-5p, miR-197-3p, miR-652-3p, miR-361-5p, miR-222-3p, miR-26b-5p, miR-532-5p, miR-27b-3p, miR-21-5p, miR-103a-3p, and miR-30c-5p. | |
MCP-1 | van Aken, B.E. [49] | 2000 | Case-control | 532 | Plasma concentrations of MCP-1 were elevated in patients with recurrent venous thrombosis. |
Bontekoe, E. [58] | 2021 | Prospective | 157 | A significant increase in the levels of MCP-1 was observed in patients with submassive or low-risk PE. | |
ICAM-1 | Shbaklo, H. [63] | 2009 | Prospective | 387 | Patients with PTS had higher ICAM-1 levels compared to those without PTS (ICAM-1: p = 0.06). |
P-selectin | Vandy, F.C. [64] | 2013 | Prospective | 279 | In patients characterized by a Wells score ≥ 2, sP-selectin has shown a 97.5% specificity and a 91% PPV for diagnosing DVT. |
Vandy, F.C. [64] | 2013 | Prospective | 279 | In patients characterized by a Wells score ≥ 2, sP-selectin has shown a 97.5% specificity and a 91% PPV for diagnosing DVT. |
5. Endothelium
5.1. Role of the Endothelium in Venous Thromboembolism
5.2. Physiological Function of Endothelial Cells
5.3. Pro-Inflammatory Molecules—Sterile Inflammation and Endothelium Activation
6. Reactive Oxygen Species and High-Mobility Group Box 1 Protein—Vigorous Players in Endothelium-Related Inflammation
7. Altered Phenotype of Endothelial Cells—Coming Back to the Embryogenesis
8. Extracellular RNA—A Link Between the Endothelium and Immunity
9. MicroRNA as a Biomarker of Venous Thromboembolism
10. Clinical Applications and Future Directions
11. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APE | Acute pulmonary embolism |
BAL | Bronchoalveolar lavage |
CAM | Cell adhesion molecules |
CINC | Cytokine-Induced Neutrophil Chemoattractant |
CVD | Cardiovascular diseases |
CXCL | Chemokine (C-X-C motif) ligand 1 |
DAMP | Danger associated molecular patterns |
DVT | Deep vein thrombosis |
EC | Endothelial cells |
ED | Endothelium |
F | Coagulation Factor |
HMGB1 | High mobility group box 1 protein |
IL | Interleukin |
IP-10 | Interferon ɣ-induced protein 10 |
IVC | Inferior Vena Cava |
MCP | Monocyte chemoattractant protein |
MIP | Macrophage Inflammatory Protein |
miRNA | Micro-RNA |
MMP | Matrix metalloproteinases |
MPO | Myeloperoxidase |
NETs | Neutrophils extracellular traps |
NO | Nitric oxide |
PA | Pulmonary Artery |
PTS | Post-thrombotic syndrome |
RAGE | Receptor for advanced glycation end products |
ROS | Reactive Oxygen Species |
RV | Right ventricle |
RVOT | Right ventricle outflow tract |
RVSP | Right ventricle systolic pressure |
SNP | Single nucleotide polymorphism |
TF | Tissue factor |
TFPI | Tissue factor plasminogen inhibitor |
TIMP | Tissue inhibitor of metalloproteinases |
TLR | Toll like receptor |
TM | Thrombomodulin |
TNF-α | Tumor necrosis factor α |
tPA | Tissue Plasminogen Activator |
uPA | Urokinase plasminogen activator |
WPB | Weibel Palade Bodies |
VTE | Venous Thromboembolism |
VWF | Von Willebrandt Factor |
References
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Jubilar, M.; Lecumberri, R.; Paramo, J.A. Immunothrombosis: Molecular Aspects and New Therapeutic Perspectives. J. Clin. Med. 2023, 12, 1399. [Google Scholar] [CrossRef] [PubMed]
- Zabczyk, M.; Natorska, J.; Undas, A. Novel factors affecting fibrin clot formation and their clinical implications. Pol. Arch. Intern. Med. 2024, 134, 16884. [Google Scholar] [CrossRef]
- Pajak, A.; Jankowski, P.; Zdrojewski, T. The burden of cardiovascular disease risk factors: A current problem. Kardiol. Pol. 2022, 80, 5–15. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Silva, B.V.; Cale, R.; Menezes, M.N.; Jorge, C.; Pinto, F.J.; Caldeira, D. How to predict prognosis in patients with acute pulmonary embolism? Recent advances. Kardiol. Pol. 2023, 81, 684–691. [Google Scholar] [CrossRef]
- Page, I.H. Pathogenesis of arterial hypertension. J. Am. Med. Assoc. 1949, 140, 451–458. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikolajczyk, T.P.; Guzik, T.J.; Pruszczyk, P. Acute Pulmonary Embolism and Immunity in Animal Models. Arch. Immunol. Ther. Exp. 2024, 72, 3. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikolajczyk, T.P.; Pruszczyk, P. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. Arch. Immunol. Ther. Exp. 2024, 72, 21. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Eagleton, M.J.; Henke, P.K.; Luke, C.E.; Hawley, A.E.; Bedi, A.; Knipp, B.S.; Wakefield, T.W.; Greenfield, L.J. Southern Association for Vascular Surgery William J. von Leibig Award. Inflammation and intimal hyperplasia associated with experimental pulmonary embolism. J. Vasc. Surg. 2002, 36, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Zagorski, J.; Debelak, J.; Gellar, M.; Watts, J.A.; Kline, J.A. Chemokines accumulate in the lungs of rats with severe pulmonary embolism induced by polystyrene microspheres. J. Immunol. 2003, 171, 5529–5536. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.A.; Zagorski, J.; Gellar, M.A.; Stevinson, B.G.; Kline, J.A. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. J. Mol. Cell. Cardiol. 2006, 41, 296–307. [Google Scholar] [CrossRef]
- Zagorski, J.; Gellar, M.A.; Obraztsova, M.; Kline, J.A.; Watts, J.A. Inhibition of CINC-1 decreases right ventricular damage caused by experimental pulmonary embolism in rats. J. Immunol. 2007, 179, 7820–7826. [Google Scholar] [CrossRef]
- Watts, J.A.; Gellar, M.A.; Obraztsova, M.; Kline, J.A.; Zagorski, J. Role of inflammation in right ventricular damage and repair following experimental pulmonary embolism in rats. Int. J. Exp. Pathol. 2008, 89, 389–399. [Google Scholar] [CrossRef]
- Zagorski, J.; Sanapareddy, N.; Gellar, M.A.; Kline, J.A.; Watts, J.A. Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. Physiol. Genom. 2008, 34, 101–111. [Google Scholar] [CrossRef]
- Zagorski, J.; Obraztsova, M.; Gellar, M.A.; Kline, J.A.; Watts, J.A. Transcriptional changes in right ventricular tissues are enriched in the outflow tract compared with the apex during chronic pulmonary embolism in rats. Physiol. Genom. 2009, 39, 61–71. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Huang, J.; Zhou, X.; Xie, H.; Zhu, Q.; Huang, M.; Ni, S. Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary Thromboembolism. PLoS ONE 2016, 11, e0164530. [Google Scholar] [CrossRef]
- Zagorski, J.; Kline, J.A. Differential effect of mild and severe pulmonary embolism on the rat lung transcriptome. Respir. Res. 2016, 17, 86. [Google Scholar] [CrossRef]
- Colling, M.E.; Tourdot, B.E.; Kanthi, Y. Inflammation, Infection and Venous Thromboembolism. Circ. Res. 2021, 128, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Ammollo, C.T.; Semeraro, N.; Colucci, M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica 2009, 94, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Preston, R.J.S.; O’Sullivan, J.M.; O’Donnell, J.S. Advances in understanding the molecular mechanisms of venous thrombosis. Br. J. Haematol. 2019, 186, 13–23. [Google Scholar] [CrossRef] [PubMed]
- von Bruhl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Kollnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Kimball, A.S.; Obi, A.T.; Luke, C.E.; Dowling, A.R.; Cai, Q.; Adili, R.; Jankowski, H.; Schaller, M.; Holinstadt, M.; Jaffer, F.A.; et al. Ly6CLo Monocyte/Macrophages are Essential for Thrombus Resolution in a Murine Model of Venous Thrombosis. Thromb. Haemost. 2020, 120, 289–299. [Google Scholar] [CrossRef]
- Uderhardt, S.; Ackermann, J.A.; Fillep, T.; Hammond, V.J.; Willeit, J.; Santer, P.; Mayr, M.; Biburger, M.; Miller, M.; Zellner, K.R.; et al. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J. Exp. Med. 2017, 214, 2121–2138. [Google Scholar] [CrossRef]
- Natorska, J.; Zabczyk, M.; Undas, A. Neutrophil extracellular traps (NETs) in cardiovascular diseases: From molecular mechanisms to therapeutic interventions. Kardiol. Pol. 2023, 81, 1205–1216. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Lewis, H.D.; Liddle, J.; Coote, J.E.; Atkinson, S.J.; Barker, M.D.; Bax, B.D.; Bicker, K.L.; Bingham, R.P.; Campbell, M.; Chen, Y.H.; et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 2015, 11, 189–191. [Google Scholar] [CrossRef]
- Simon, D.I.; Chen, Z.; Xu, H.; Li, C.Q.; Dong, J.; McIntire, L.V.; Ballantyne, C.M.; Zhang, L.; Furman, M.I.; Berndt, M.C.; et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med. 2000, 192, 193–204. [Google Scholar] [CrossRef]
- Lam, F.W.; Cruz, M.A.; Parikh, K.; Rumbaut, R.E. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica 2016, 101, e277–e279. [Google Scholar] [CrossRef] [PubMed]
- Ammollo, C.T.; Semeraro, F.; Xu, J.; Esmon, N.L.; Esmon, C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011, 9, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef]
- Massberg, S.; Grahl, L.; von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Schulman, S.; Makatsariya, A.; Khizroeva, J.; Bitsadze, V.; Kapanadze, D. The Basic Principles of Pathophysiology of Venous Thrombosis. Int. J. Mol. Sci. 2024, 25, 11447. [Google Scholar] [CrossRef]
- Smith, P.; Rosell, A.; Farm, M.; Bruzelius, M.; Aguilera Gatica, K.; Mackman, N.; Odeberg, J.; Thalin, C. Markers of neutrophil activation and neutrophil extracellular traps in diagnosing patients with acute venous thromboembolism: A feasibility study based on two VTE cohorts. PLoS ONE 2022, 17, e0270865. [Google Scholar] [CrossRef]
- Mosevoll, K.A.; Johansen, S.; Wendelbo, O.; Nepstad, I.; Bruserud, O.; Reikvam, H. Cytokines, Adhesion Molecules, and Matrix Metalloproteases as Predisposing, Diagnostic, and Prognostic Factors in Venous Thrombosis. Front. Med. 2018, 5, 147. [Google Scholar] [CrossRef]
- Tsang, J.; Simon, M.; Stewart, K.; Qayumi, K.; Battistini, B. Proinflammatory cytokines are not released in the circulation following acute pulmonary thromboembolism in pigs. J. Investig. Surg. 2002, 15, 29–35. [Google Scholar] [CrossRef]
- Fortuna, G.M.; Figueiredo-Lopes, L.; Dias-Junior, C.A.; Gerlach, R.F.; Tanus-Santos, J.E. A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism. Int. J. Cardiol. 2007, 114, 22–27. [Google Scholar] [CrossRef]
- Dias-Junior, C.A.; Cau, S.B.; Oliveira, A.M.; Castro, M.M.; Montenegro, M.F.; Gerlach, R.F.; Tanus-Santos, J.E. Nitrite or sildenafil, but not BAY 41-2272, blunt acute pulmonary embolism-induced increases in circulating matrix metalloproteinase-9 and oxidative stress. Thromb. Res. 2009, 124, 349–355. [Google Scholar] [CrossRef]
- Dolci, D.T.; Fuentes, C.B.; Rolim, D.; Park, M.; Schettino, G.P.; Azevedo, L.C. Time course of haemodynamic, respiratory and inflammatory disturbances induced by experimental acute pulmonary polystyrene microembolism. Eur. J. Anaesthesiol. 2010, 27, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, D.; Yu, Y.; Liu, X.; Hu, L.; Gu, Y. Association Between Inflammatory Mediators and Pulmonary Blood Flow in a Rabbit Model of Acute Pulmonary Embolism Combined With Shock. Front. Physiol. 2020, 11, 1051. [Google Scholar] [CrossRef]
- van Minkelen, R.; de Visser, M.C.; Houwing-Duistermaat, J.J.; Vos, H.L.; Bertina, R.M.; Rosendaal, F.R. Haplotypes of IL1B, IL1RN, IL1R1, and IL1R2 and the risk of venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1486–1491. [Google Scholar] [CrossRef]
- Malaponte, G.; Polesel, J.; Candido, S.; Sambataro, D.; Bevelacqua, V.; Anzaldi, M.; Vella, N.; Fiore, V.; Militello, L.; Mazzarino, M.C.; et al. IL-6-174 G>C and MMP-9-1562 C>T polymorphisms are associated with increased risk of deep vein thrombosis in cancer patients. Cytokine 2013, 62, 64–69. [Google Scholar] [CrossRef]
- Nosaka, M.; Ishida, Y.; Kimura, A.; Kuninaka, Y.; Inui, M.; Mukaida, N.; Kondo, T. Absence of IFN-gamma accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J. Clin. Investig. 2011, 121, 2911–2920. [Google Scholar] [CrossRef]
- Henke, P.K. Plasmin and matrix metalloproteinase system in deep venous thrombosis resolution. Vascular 2007, 15, 366–371. [Google Scholar] [CrossRef]
- de Franciscis, S.; Gallelli, L.; Amato, B.; Butrico, L.; Rossi, A.; Buffone, G.; Calio, F.G.; De Caridi, G.; Grande, R.; Serra, R. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: Could they have a predictive role in the development of post-thrombotic syndrome? Int. Wound J. 2016, 13, 1237–1245. [Google Scholar] [CrossRef]
- Abuduhalike, R.; Sun, J.; Mahemuti, A. Correlation Study of the Long-Term Prognosis of Venous Thromboembolism and Inflammatory Gene Polymorphisms. Int. J. Gen. Med. 2020, 13, 1559–1566. [Google Scholar] [CrossRef]
- van Aken, B.E.; den Heijer, M.; Bos, G.M.; van Deventer, S.J.; Reitsma, P.H. Recurrent venous thrombosis and markers of inflammation. Thromb. Haemost. 2000, 83, 536–539. [Google Scholar]
- Roumen-Klappe, E.M.; den Heijer, M.; van Uum, S.H.; van der Ven-Jongekrijg, J.; van der Graaf, F.; Wollersheim, H. Inflammatory response in the acute phase of deep vein thrombosis. J. Vasc. Surg. 2002, 35, 701–706. [Google Scholar] [CrossRef]
- Roumen-Klappe, E.M.; Janssen, M.C.; Van Rossum, J.; Holewijn, S.; Van Bokhoven, M.M.; Kaasjager, K.; Wollersheim, H.; Den Heijer, M. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: A prospective study. J. Thromb. Haemost. 2009, 7, 582–587. [Google Scholar] [CrossRef]
- Beckers, M.M.; Ruven, H.J.; Haas, F.J.; Doevendans, P.A.; ten Cate, H.; Prins, M.H.; Biesma, D.H. Single nucleotide polymorphisms in inflammation-related genes are associated with venous thromboembolism. Eur. J. Intern. Med. 2010, 21, 289–292. [Google Scholar] [CrossRef]
- Matos, M.F.; Lourenco, D.M.; Orikaza, C.M.; Bajerl, J.A.; Noguti, M.A.; Morelli, V.M. The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6-174GC, IL-8-251AT and MCP-1-2518AG in the risk of venous thromboembolism: A case-control study. Thromb. Res. 2011, 128, 216–220. [Google Scholar] [CrossRef]
- Bittar, L.F.; Mazetto Bde, M.; Orsi, F.L.; Collela, M.P.; De Paula, E.V.; Annichino-Bizzacchi, J.M. Long-term increased factor VIII levels are associated to interleukin-6 levels but not to post-thrombotic syndrome in patients with deep venous thrombosis. Thromb. Res. 2015, 135, 497–501. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Wei, R.; Miao, X.; Sun, S.; Liang, G.; Chu, C.; Zhao, L.; Zhu, X.; Guo, Q.; et al. IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by miR-338-5p. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 323–334. [Google Scholar] [CrossRef]
- van Aken, B.E.; Reitsma, P.H.; Rosendaal, F.R. Interleukin 8 and venous thrombosis: Evidence for a role of inflammation in thrombosis. Br. J. Haematol. 2002, 116, 173–177. [Google Scholar] [CrossRef]
- Montes-Worboys, A.; Arellano, E.; Elias, T.; Leon, J.; Rodriguez-Portal, J.A.; Otero, R. Residual thrombosis after a first episode of proximal deep venous thrombosis. Blood Coagul. Fibrinolysis 2013, 24, 335–360. [Google Scholar] [CrossRef]
- Bontekoe, E.; Brailovsky, Y.; Hoppensteadt, D.; Bontekoe, J.; Siddiqui, F.; Newman, J.; Iqbal, O.; Reed, T.; Fareed, J.; Darki, A. Upregulation of Inflammatory Cytokines in Pulmonary Embolism Using Biochip-Array Profiling. Clin. Appl. Thromb./Hemost. 2021, 27, 10760296211013107. [Google Scholar] [CrossRef]
- Horakova, K.; Chylkova, A.; Kolorz, M.; Bartosova, L.; Pechacek, V.; Starostka, D.; Wroblova, K. Polymorphism G-308A in the promoter of the tumor necrosis factor-alpha gene and its association with the risk of venous thromboembolism. Blood Coagul. Fibrinolysis 2012, 23, 316–319. [Google Scholar] [CrossRef]
- Mazetto, B.M.; Orsi, F.L.; Barnabe, A.; De Paula, E.V.; Flores-Nascimento, M.C.; Annichino-Bizzacchi, J.M. Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb. Res. 2012, 130, 889–893. [Google Scholar] [CrossRef]
- Memon, A.A.; Sundquist, K.; Wang, X.; Svensson, P.J.; Sundquist, J.; Zoller, B. Transforming growth factor (TGF)-beta levels and unprovoked recurrent venous thromboembolism. J. Thromb. Thrombolysis 2014, 38, 348–354. [Google Scholar] [CrossRef]
- Wang, X.; Sundquist, K.; Svensson, P.J.; Rastkhani, H.; Palmer, K.; Memon, A.A.; Sundquist, J.; Zoller, B. Association of recurrent venous thromboembolism and circulating microRNAs. Clin. Epigenet. 2019, 11, 28. [Google Scholar] [CrossRef]
- Shbaklo, H.; Holcroft, C.A.; Kahn, S.R. Levels of inflammatory markers and the development of the post-thrombotic syndrome. Thromb. Haemost. 2009, 101, 505–512. [Google Scholar]
- Vandy, F.C.; Stabler, C.; Eliassen, A.M.; Hawley, A.E.; Guire, K.E.; Myers, D.D.; Henke, P.K.; Wakefield, T.W. Soluble P-selectin for the diagnosis of lower extremity deep venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2013, 1, 117–1125. [Google Scholar] [CrossRef]
- Pilard, M.; Ollivier, E.L.; Gourdou-Latyszenok, V.; Couturaud, F.; Lemarie, C.A. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front. Cardiovasc. Med. 2022, 9, 864735. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikolajczyk, T.P.; Siedlinski, M.; Dobrowolski, P.; Konior-Rozlachowska, A.; Wrobel, A.; Biernat-Kaluza, E.; Januszewicz, M.; Guzik, B.; Guzik, T.J.; et al. Th17/Treg imbalance in patients with primary hyperaldosteronism and resistant hypertension. Pol. Arch. Intern. Med. 2022, 132, 16171. [Google Scholar] [CrossRef]
- Imiela, A.M.; Siedlinski, M.; Dobrowolski, P.; Pregowska-Chwala, B.; Kabat, M.; Oliveira Silva, R.N.; Koshy, A.M.; Wrobel, A.; Cendrowska-Demkow, I.; Januszewicz, M.; et al. Altered monocytic phenotypes are linked to a hypertension form: A clinical observational study. Kardiol. Pol. 2022, 80, 346–349. [Google Scholar] [CrossRef]
- Itani, H.A.; McMaster, W.G., Jr.; Saleh, M.A.; Nazarewicz, R.R.; Mikolajczyk, T.P.; Kaszuba, A.M.; Konior, A.; Prejbisz, A.; Januszewicz, A.; Norlander, A.E.; et al. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016, 68, 123–132. [Google Scholar] [CrossRef]
- Biernat, K.; Kuciel, N.; Mazurek, J.; Hap, K. Is It Possible to Train the Endothelium?-A Narrative Literature Review. Life 2024, 14, 616. [Google Scholar] [CrossRef]
- Peracaula, M.; Sebastian, L.; Francisco, I.; Vilaplana, M.B.; Rodriguez-Chiaradia, D.A.; Tura-Ceide, O. Decoding Pulmonary Embolism: Pathophysiology, Diagnosis, and Treatment. Biomedicines 2024, 12, 1936. [Google Scholar] [CrossRef]
- Pacinella, G.; Ciaccio, A.M.; Tuttolomondo, A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int. J. Mol. Sci. 2022, 23, 15722. [Google Scholar] [CrossRef] [PubMed]
- Shirinsky, V.P. Vascular Endothelium at the Molecular Level: From Fundamental Knowledge Toward Medical Implementation. Biomedicines 2024, 13, 2. [Google Scholar] [CrossRef]
- El-Mansi, S.; Nightingale, T.D. Emerging mechanisms to modulate VWF release from endothelial cells. Int. J. Biochem. Cell Biol. 2021, 131, 105900. [Google Scholar] [CrossRef]
- Zindel, J.; Kubes, P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu. Rev. Pathol. 2020, 15, 493–518. [Google Scholar] [CrossRef]
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef]
- Najem, M.Y.; Couturaud, F.; Lemarie, C.A. Cytokine and chemokine regulation of venous thromboembolism. J. Thromb. Haemost. 2020, 18, 1009–1019. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost. 2018, 16, 231–241. [Google Scholar] [CrossRef]
- Laurance, S.; Bertin, F.R.; Ebrahimian, T.; Kassim, Y.; Rys, R.N.; Lehoux, S.; Lemarie, C.A.; Blostein, M.D. Gas6 Promotes Inflammatory (CCR2(hi)CX3CR1(lo)) Monocyte Recruitment in Venous Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1315–1322. [Google Scholar] [CrossRef]
- Kaiser, R.; Escaig, R.; Erber, J.; Nicolai, L. Neutrophil-Platelet Interactions as Novel Treatment Targets in Cardiovascular Disease. Front. Cardiovasc. Med. 2021, 8, 824112. [Google Scholar] [CrossRef]
- Ramacciotti, E.; Blackburn, S.; Hawley, A.E.; Vandy, F.; Ballard-Lipka, N.; Stabler, C.; Baker, N.; Guire, K.E.; Rectenwald, J.E.; Henke, P.K.; et al. Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin. Appl. Thromb./Hemost. 2011, 17, 425–431. [Google Scholar] [CrossRef]
- Donadini, M.P.; Calcaterra, F.; Romualdi, E.; Ciceri, R.; Cancellara, A.; Lodigiani, C.; Bacci, M.; Della Bella, S.; Ageno, W.; Mavilio, D. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells 2025, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Dzikowska-Diduch, O.; Domienik-Karlowicz, J.; Gorska, E.; Demkow, U.; Pruszczyk, P.; Kostrubiec, M. E-selectin and sICAM-1, biomarkers of endothelial function, predict recurrence of venous thromboembolism. Thromb. Res. 2017, 157, 173–180. [Google Scholar] [CrossRef]
- Purdy, M.; Obi, A.; Myers, D.; Wakefield, T. P- and E- selectin in venous thrombosis and non-venous pathologies. J. Thromb. Haemost. 2022, 20, 1056–1066. [Google Scholar] [CrossRef]
- Darwish, I.; Fareed, J.; Brailovsky, Y.; Hoppensteadt, D.; Slajus, B.; Bontekoe, E.; De Stefano, F.; Reed, T.; Darki, A. Dysregulation of Biomarkers of Hemostatic Activation and Inflammatory Processes are Associated with Adverse Outcomes in Pulmonary Embolism. Clin. Appl. Thromb./Hemost. 2022, 28, 10760296211064898. [Google Scholar] [CrossRef]
- McCormack, J.J.; Lopes da Silva, M.; Ferraro, F.; Patella, F.; Cutler, D.F. Weibel-Palade bodies at a glance. J. Cell Sci. 2017, 130, 3611–3617. [Google Scholar] [CrossRef]
- Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Kollnberger, M.; Wakefield, T.W.; Lammle, B.; Massberg, S.; Wagner, D.D. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011, 117, 1400–1407. [Google Scholar] [CrossRef]
- Dong, R.; Chen, W.; Feng, W.; Xia, C.; Hu, D.; Zhang, Y.; Yang, Y.; Wang, D.W.; Xu, X.; Tu, L. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway. Cell. Physiol. Biochem. 2015, 37, 1592–1606. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Hosseini, E. Intravascular leukocyte migration through platelet thrombi: Directing leukocytes to sites of vascular injury. Thromb. Haemost. 2015, 113, 1224–1235. [Google Scholar] [CrossRef]
- Suarez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Alvarez-Cordoba, M.; Villalon-Garcia, I.; Talaveron-Rey, M.; Suarez-Carrillo, A.; Munuera-Cabeza, M.; Sanchez-Alcazar, J.A. From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021, 9, 258. [Google Scholar] [CrossRef]
- Fiuza, C.; Bustin, M.; Talwar, S.; Tropea, M.; Gerstenberger, E.; Shelhamer, J.H.; Suffredini, A.F. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 2003, 101, 2652–2660. [Google Scholar] [CrossRef]
- Venereau, E.; Schiraldi, M.; Uguccioni, M.; Bianchi, M.E. HMGB1 and leukocyte migration during trauma and sterile inflammation. Mol. Immunol. 2013, 55, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.; Philippi, V.; Stockhausen, S.; Busse, J.; Antonelli, A.; Miller, M.; Schubert, I.; Hoseinpour, P.; Chandraratne, S.; von Bruhl, M.L.; et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016, 128, 2435–2449. [Google Scholar] [CrossRef] [PubMed]
- Dyer, M.R.; Chen, Q.; Haldeman, S.; Yazdani, H.; Hoffman, R.; Loughran, P.; Tsung, A.; Zuckerbraun, B.S.; Simmons, R.L.; Neal, M.D. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci. Rep. 2018, 8, 2068. [Google Scholar] [CrossRef]
- Vogel, S.; Bodenstein, R.; Chen, Q.; Feil, S.; Feil, R.; Rheinlaender, J.; Schaffer, T.E.; Bohn, E.; Frick, J.S.; Borst, O.; et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Investig. 2015, 125, 4638–4654. [Google Scholar] [CrossRef]
- Choi, H.W.; Tian, M.; Song, F.; Venereau, E.; Preti, A.; Park, S.W.; Hamilton, K.; Swapna, G.V.; Manohar, M.; Moreau, M.; et al. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol. Med. 2015, 21, 526–535. [Google Scholar] [CrossRef]
- Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res. 2018, 114, 565–577. [Google Scholar] [CrossRef]
- Kovacic, J.C.; Dimmeler, S.; Harvey, R.P.; Finkel, T.; Aikawa, E.; Krenning, G.; Baker, A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 190–209. [Google Scholar] [CrossRef]
- Song, S.; Zhang, R.; Cao, W.; Fang, G.; Yu, Y.; Wan, Y.; Wang, C.; Li, Y.; Wang, Q. Foxm1 is a critical driver of TGF-beta-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J. Cell. Physiol. 2019, 234, 9052–9064. [Google Scholar] [CrossRef]
- Yun, E.; Kook, Y.; Yoo, K.H.; Kim, K.I.; Lee, M.S.; Kim, J.; Lee, A. Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases. Biomedicines 2020, 8, 639. [Google Scholar] [CrossRef]
- Jackson, A.O.; Zhang, J.; Jiang, Z.; Yin, K. Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc. Med. 2017, 27, 383–393. [Google Scholar] [CrossRef]
- Shu, D.Y.; Butcher, E.; Saint-Geniez, M. EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2020, 21, 4271. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, A.; Berman, M.; Al Ghouleh, I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid. Redox Signal. 2021, 34, 891–914. [Google Scholar] [CrossRef] [PubMed]
- Evrard, S.M.; Lecce, L.; Michelis, K.C.; Nomura-Kitabayashi, A.; Pandey, G.; Purushothaman, K.R.; d’Escamard, V.; Li, J.R.; Hadri, L.; Fujitani, K.; et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 2016, 7, 11853. [Google Scholar] [CrossRef]
- Peng, Q.; Shan, D.; Cui, K.; Li, K.; Zhu, B.; Wu, H.; Wang, B.; Wong, S.; Norton, V.; Dong, Y.; et al. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022, 11, 1834. [Google Scholar] [CrossRef]
- Terriaca, S.; Ferlosio, A.; Scioli, M.G.; Coppa, F.; Bertoldo, F.; Pisano, C.; Belmonte, B.; Balistreri, C.R.; Orlandi, A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int. J. Mol. Sci. 2024, 25, 2641. [Google Scholar] [CrossRef]
- Jayasuriya, R.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed. Pharmacother. 2022, 145, 112421. [Google Scholar] [CrossRef]
- Nishita-Hiresha, V.; Varsha, R.; Jayasuriya, R.; Ramkumar, K.M. The role of circRNA-miRNA-mRNA interaction network in endothelial dysfunction. Gene 2023, 851, 146950. [Google Scholar] [CrossRef]
- Kannemeier, C.; Shibamiya, A.; Nakazawa, F.; Trusheim, H.; Ruppert, C.; Markart, P.; Song, Y.; Tzima, E.; Kennerknecht, E.; Niepmann, M.; et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc. Natl. Acad. Sci. USA 2007, 104, 6388–6393. [Google Scholar] [CrossRef]
- Savino, L.; Savino, M.; Kansakar, U.; Dazzetti, T.; Varzideh, F.; Jankauskas, S.S.; Mone, P.; Santulli, G. Extracellular RNA and Endothelial TLR3 Link Inflammation and Venous Thromboembolism. J. Am. Heart Assoc. 2024, 13, e036335. [Google Scholar] [CrossRef]
- Lind, N.A.; Rael, V.E.; Pestal, K.; Liu, B.; Barton, G.M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 2022, 22, 224–235. [Google Scholar] [CrossRef]
- Bhagat, S.; Biswas, I.; Ahmed, R.; Khan, G.A. Hypoxia induced up-regulation of tissue factor is mediated through extracellular RNA activated Toll-like receptor 3-activated protein 1 signalling. Blood Cells Mol. Dis. 2020, 84, 102459. [Google Scholar] [CrossRef] [PubMed]
- Morelli, V.M.; Braekkan, S.K.; Hansen, J.B. Role of microRNAs in Venous Thromboembolism. Int. J. Mol. Sci. 2020, 21, 2602. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Jha, P.K.; Prabhakar, A.; Singh, H.D.; Gupta, N.; Chatterjee, T.; Tyagi, T.; Sharma, S.; Kumari, B.; Singh, S.; et al. MicroRNA-145 Impedes Thrombus Formation via Targeting Tissue Factor in Venous Thrombosis. EBioMedicine 2017, 26, 175–186. [Google Scholar] [CrossRef]
- Xiao, J.; Jing, Z.C.; Ellinor, P.T.; Liang, D.; Zhang, H.; Liu, Y.; Chen, X.; Pan, L.; Lyon, R.; Liu, Y.; et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J. Transl. Med. 2011, 9, 159. [Google Scholar] [CrossRef]
- Qin, J.; Liang, H.; Shi, D.; Dai, J.; Xu, Z.; Chen, D.; Chen, X.; Jiang, Q. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J. Thromb. Thrombolysis 2015, 39, 215–221. [Google Scholar] [CrossRef]
- Anijs, R.J.S.; Nguyen, Y.N.; Cannegieter, S.C.; Versteeg, H.H.; Buijs, J.T. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J. Thromb. Haemost. 2023, 21, 7–17. [Google Scholar] [CrossRef]
- Kessler, T.; Erdmann, J.; Vilne, B.; Bruse, P.; Kurowski, V.; Diemert, P.; Schunkert, H.; Sager, H.B. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. J. Transl. Med. 2016, 14, 120. [Google Scholar] [CrossRef]
- Liu, T.; Kang, J.; Liu, F. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Med. Sci. Monit. 2018, 24, 8621–8626. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, J.; Jiang, Z.; Wu, F.; Ping, J.; Ming, L. Diagnostic value of circulating microRNA-27a/b in patients with acute pulmonary embolism. Int. Angiol. 2018, 37, 19–25. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, J.; Wang, Q.; Wu, F.; Ping, J.; Ming, L. Combination of Circulating miRNA-320a/b and D-Dimer Improves Diagnostic Accuracy in Deep Vein Thrombosis Patients. Med. Sci. Monit. 2018, 24, 2031–2037. [Google Scholar] [CrossRef]
- Liu, F.; Zhai, Q. Expression level of neutrophil extracellular traps in peripheral blood of patients with chronic heart failure complicated with venous thrombosis and its clinical significance. J. Cardiothorac. Surg. 2024, 19, 129. [Google Scholar] [CrossRef]
Author | Year | Study Design | Conclusion |
---|---|---|---|
Eagleton et al. [12] | 2002 | Sprague–Dawley (SD) rats, IVC thrombosis-induced APE | Elevated macrophage infiltration and MCP-1 elevation within PA wall [12]. |
Tsang, J et al. [38] | 2002 | Piglets, thrombin-induced blood clots injected to the lower lobar PA | Minimal impact of IL-1β, Il-8, and TNF-α in systemic circulation [38]. |
Zagorski, J. et al. [13] | 2003 | Sprague–Dawley rats, polystyrene microsphere-induced APE | Rats with APE are characterized by severe pro-inflammatory chemokine accumulation in the lungs [13] |
Watts, J.A. et al. [14] | 2006 | Sprague–Dawley rats, polystyrene microsphere-induced APE | Higher MCP-1 and MPO activity in damaged RV. Increased CINC-1, CINC-2, MIP-1α, and MCP-1 mRNA in damaged RV. Neutrophil and monocyte accumulation in RV among severe APE rats [14]. |
Zagorski et al. [15] | 2007 | Sprague–Dawley rats, polystyrene microsphere-induced APE | The crucial function of neutrophils in acute RV damage following APE episode. CINC-1 is responsible for neutrophil influx. Blockade with anti-PMN antibodies reduced RV dysfunction [15]. |
Upregulated CCL-2, -3, -4, -6, -7, -9, -17, -20, and -27. Upregulated CXCL 1-2-9-19-16. Upregulated CCR1 and CXCR4. Downregulated CCL-12 and XCL-1 [15]. | |||
Fortuna, G.M. et al. [39] | 2007 | Mongrel dogs, micropshere-induced APE | MMP-9 mediated APE-induced pulmonary hypertension. Doxycycline treatment impaired APE-induced pulmonary hypertension [39]. |
Watts et al. [16] | 2008 | Sprague–Dawley rats, polystyrene microsphere-induced APE | The key role of macrophages and neutrophils in RV failure. The study revealed the presence of M1 cells in the early and M2 phenotype cells in the healing stage [16]. The neutrophil influx was diminished during 7 days following APE; monocyte influx was present for 6 weeks [16]. |
Dias-Junior, C.A. [40] | 2009 | Dogs, polystyrene microsphere-induced APE | NO–cGMP axis attenuated MMP-9 levels and reduced reactive oxygen species [40]. |
Zagorski et al. [18] | 2009 | Sprague–Dawley rats, polystyrene microsphere-induced APE | More exaggerated proinflammatory and profibrotic transcriptional response in the RV outflow tract compared with the apex [18]. |
Dolci, D.T. et al. [41] | 2010 | Pigs, polystyrene-induced APE | Higher bronchoalveolar lavage protein concentration was observed [41]. |
Tang, Z. et al. [19] | 2016 | Autologous thrombus-induced APE | The study applied an array to evaluate gene expression changes in the PA wall. Upregulated T- and B-cell, chemokine, NOD-like, Toll-like, RIG-I, and Fc-epsilon RI signaling pathways observed [19]. mRNA of IL-8 and TNF-α were increased in PA wall [19]. |
Zagórski, J. et al. [20] | 2016 | SD rats, microsphere-induced APE | Rats diagnosed with APE presented more exaggerated lung gene expression of inflammatory pathways and cholesterol synthesis, even without signs of pulmonary hypertension [20]. |
Wang, Y. et al. [42] | 2020 | Autologous thrombus-induced APE | Higher inflammatory cell infiltration, higher iNOS and higher IL-1β and IL-6, as well as TNF-α, mRNA were found in pulmonary and non-pulmonary parenchyma of rabbits with massive APE [42]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imiela, A.M.; Kucharska, J.; Kukliński, F.; Fernandez Moreno, T.; Dzik, K.; Pruszczyk, P. Advanced Research in the Pathophysiology of Venous Thromboembolism–Acute Pulmonary Embolism. Biomedicines 2025, 13, 906. https://doi.org/10.3390/biomedicines13040906
Imiela AM, Kucharska J, Kukliński F, Fernandez Moreno T, Dzik K, Pruszczyk P. Advanced Research in the Pathophysiology of Venous Thromboembolism–Acute Pulmonary Embolism. Biomedicines. 2025; 13(4):906. https://doi.org/10.3390/biomedicines13040906
Chicago/Turabian StyleImiela, Anna M., Joanna Kucharska, Franciszek Kukliński, Teresa Fernandez Moreno, Konrad Dzik, and Piotr Pruszczyk. 2025. "Advanced Research in the Pathophysiology of Venous Thromboembolism–Acute Pulmonary Embolism" Biomedicines 13, no. 4: 906. https://doi.org/10.3390/biomedicines13040906
APA StyleImiela, A. M., Kucharska, J., Kukliński, F., Fernandez Moreno, T., Dzik, K., & Pruszczyk, P. (2025). Advanced Research in the Pathophysiology of Venous Thromboembolism–Acute Pulmonary Embolism. Biomedicines, 13(4), 906. https://doi.org/10.3390/biomedicines13040906