Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Determinations
2.3. Cognitive and Functional Protocol
- -
- Global cognitive efficiency, by means of the Montreal Cognitive Assessment (MoCA). It is a 10 min cognitive screening tool created to detect mild cognitive impairment (MCI) and suggested from the National Institute of Neurological Disorders and Stroke—Canadian Stroke Network (NINDS-CSN). MoCA was thought to be specifically sensitive to frontal, attention, and executive deficits [26,27,28], as it covers eight cognitive domains (score range 0–30).
- -
- Attention, by means of the Color Word Stroop test [29]. It is a measure of concentration effectiveness and deals with response inhibition and selective attention. The activity required by this test is a selective processing of only one visual feature while continuously blocking out the processing of others. The execution time and the errors committed are recorded.
2.4. Statistical Analysis
3. Results
3.1. Circulating Biomarkers According to Cognitive Performance
3.1.1. Geriatric Depression Scale
3.1.2. Montreal Cognitive Assessment
3.1.3. Stroop Test
3.1.4. ADL and IADL
3.1.5. Short Physical Performance Battery and Gait Speed Test
3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESC Scientific Document Group 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lip, G.Y.; Apostolakis, S. Inflammation in atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.; Shantsila, E.; Lip, G.Y. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef]
- Harada, M.; Van Wagoner, D.R.; Nattel, S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ. J. 2015, 79, 495–502. [Google Scholar] [CrossRef]
- Papanastasiou, C.A.; Theochari, C.A.; Zareifopoulos, N.; Arfaras-Melainis, A.; Giannakoulas, G.; Karamitsos, T.D.; Palaiodimos, L.; Ntaios, G.; Avgerinos, K.I.; Kapogiannis, D.; et al. Atrial Fibrillation Is Associated with Cognitive Impairment, All-Cause Dementia, Vascular Dementia, and Alzheimer‘s Disease: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2021, 10, 3122–3135. [Google Scholar] [CrossRef]
- Zuin, M.; Roncon, L.; Passaro, A.; Bosi, C.; Cervellati, C.; Zuliani, G. Risk of dementia in patients with atrial fibrillation: Short versus long follow-up. A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2021, 36, 148–1500. [Google Scholar] [CrossRef]
- Chopard, R.; Piazza, G.; Gale, S.A.; Campia, U.; Albertsen, I.E.; Kim, J.; Goldhaber, S.Z. Dementia and Atrial Fibrillation: Pathophysiological Mechanisms and Therapeutic Implications. Am. J. Med. 2018, 131, 1408–1417. [Google Scholar] [CrossRef]
- Poggesi, A.; Inzitari, D.; Pantoni, L. Atrial Fibrillation and Cognition: Epidemiological Data and Possible Mechanisms. Stroke 2015, 46, 3316–3321. [Google Scholar] [CrossRef]
- Rivard, L.; Friberg, L.; Conen, D.; Healey, J.S.; Berge, T.; Boriani, G.; Brandes, A.; Calkins, H.; Camm, A.J.; Yee Chen, L.; et al. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022, 145, 392–409. [Google Scholar] [CrossRef]
- Koh, Y.H.; Lew, L.Z.W.; Franke, K.B.; Elliott, A.D.; Lau, D.H.; Thiyagarajah, A.; Linz, D.; Arstall, M.; Tully, P.J.; Baune, B.T.; et al. Predictive role of atrial fibrillation in cognitive decline: A systematic review and meta-analysis of 2.8 million individuals. Europace 2022, 24, 1229–1239. [Google Scholar] [CrossRef]
- Bunch, T.J.; Weiss, J.P.; Crandall, B.G.; May, H.T.; Bair, T.L.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L.; et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer’s dementia. Heart Rhythm. 2010, 7, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Mobley, A.R.; Subramanian, A.; Champsi, A.; Wang, X.; Myles, P.; McGreavy, P.; Bunting, K.V.; Shukla, D.; Nirantharakumar, K.; Kotecha, D. Thromboembolic events and vascular dementia in patients with atrial fibrillation and low apparent stroke risk. Nat. Med. 2024, 30, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J. Atrial Fibrillation and Dementia. Circulation 2020, 142, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Hart, R.G.; Koudstaal, P.J.; Lane, D.A.; Lip, G.Y.H. Atrial fibrillation and cognitive function: JACC review topic of the week. J. Am. Coll. Cardiol. 2019, 73, 612–619. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Sanders, P.; Nattel, S.; Lau, D.H. Biomarkers in Atrial Fibrillation: Pathogenesis and Clinical Implications. Card. Electrophysiol. Clin. 2021, 13, 221–233. [Google Scholar] [CrossRef]
- Palà, E.; Escudero-Martínez, I.; Penalba, A.; Bustamante, A.; Lamana-Vallverdú, M.; Mancha, F.; Ocete, R.F.; Piñero, P.; Galvao-Carmona, A.; Gómez-Herranz, M.; et al. Association of blood-based biomarkers with radiologic markers and cognitive decline in atrial fibrillation patients. J. Stroke Cerebrovasc. Dis. 2022, 31, 106833. [Google Scholar] [CrossRef]
- Kedžo, J.; Domjanović Škopinić, T.; Domjanović, J.; Marinović Guić, M.; Lovrić Kojundžić, S.; Tandara, L.; Matetić, A.; Jurišić, Z. Neurologic Biomarkers, Neuroimaging, and Cognitive Function in Persistent Atrial Fibrillation: A Cross-Sectional Study. Int. J. Mol. Sci. 2023, 24, 2902. [Google Scholar] [CrossRef]
- Fumagalli, S.; Ricciardi, G.; Di Serio, C.; La Marca, G.; Pieraccini, G.; Franci Montorzi, R.; Santamaria, E.; Spanalatte, G.; Marchetti, F.; Corti, G.; et al. Inflammation, mitochondrial dysfunction and physical performance: A possible association in older patients with persistent atrial fibrillation-the results of a preliminary study. Aging Clin. Exp. Res. 2023, 35, 2831–2837. [Google Scholar] [CrossRef]
- Poggesi, A.; Barbato, C.; Galmozzi, F.; Camilleri, E.; Cesari, F.; Chiti, S.; Diciotti, S.; Galora, S.; Giusti, B.; Gori, A.M.; et al. Role of Biological Markers for Cerebral Bleeding Risk STRATification in Patients with Atrial Fibrillation on Oral Anticoagulants for Primary or Secondary Prevention of Ischemic Stroke (Strat-AF Study): Study Design and Methodology. Medicina 2019, 55, 626. [Google Scholar] [CrossRef]
- Hemker, H.C.; Al Dieri, R.; De Smedt, E.; Béguin, S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb. Haemost. 2006, 96, 553–561. [Google Scholar]
- Lisman, T.; de Groot, P.G.; Meijers, J.C.; Rosendaal, F.R. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood 2005, 105, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A. Geriatric Depression Scale. Psychopharmacol. Bull. 1988, 24, 709–711. [Google Scholar]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Hachinski, V.; Iadecola, C.; Petersen, R.C.; Breteler, M.M.; Nyenhuis, D.L.; Black, S.E.; Powers, W.J.; DeCarli, C.; Merino, J.G.; Kalaria, R.N.; et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 2006, 37, 2220–2241. [Google Scholar] [CrossRef]
- Conti, S.; Bonazzi, S.; Laiacona, M.; Masina, M.; Coralli, M.V. Montreal Cognitive Assessment (MoCA)-Italian version: Regression based norms and equivalent scores. Neurol. Sci. 2015, 36, 209–214. [Google Scholar] [CrossRef]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Una versione abbreviata del test di Stroop. Dati normativi nella popolazione italiana. Nuova Riv. Neurol. 2002, 12, 111–115. [Google Scholar]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Capitani, E.; Laiacona, M. Composite neuropsychological batteries and demographic correction: Standardization based on equivalent scores, with a review of published data. The Italian Group for the Neuropsychological Study of Ageing. J. Clin. Exp. Neuropsychol. 1997, 19, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, E.; Barucci, E.; Barbato, C.; Formelli, B.; Cesari, F.; Chiti, S.; Diciotti, S.; Giusti, B.; Gori, A.M.; Marzi, C.; et al. Cognitive phenotypes and factors associated with cognitive decline in a cohort of older patients with atrial fibrillation: The Strat-AF study. Eur. J. Neurol. 2023, 30, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.; Lane, D.; Van Walraven, C.; Hart, R.G. Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke 2006, 37, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Mari, D.; Parnetti, L.; Coppola, R.; Bottasso, B.; Reboldi, G.P.; Senin, U.; Mannucci, P.M. Hemostasis abnormalities in patients with vascular dementia and Alzheimer’s disease. Thromb. Haemost. 1996, 75, 216–218. [Google Scholar] [CrossRef]
- Stott, D.J.; Spilg, E.; Campbell, A.M.; Rumley, A.; Mansoor, M.A.; Lowe, G.D. Haemostasis in ischaemic stroke and vascular dementia. Blood Coagul. Fibrinolysis 2001, 12, 651–657. [Google Scholar] [CrossRef]
- Bath, P.M.; Anderton, P.R.; Ankolekar, S. Hemostasis and vascular dementia. Arter. Thromb. Vasc. Biol. 2010, 30, 461–463. [Google Scholar] [CrossRef]
- Gallacher, J.; Bayer, A.; Lowe, G.; Fish, M.; Pickering, J.; Pedro, S.; Dunstan, F.; White, J.; Yarnell, J.; Ben-Shlomo, Y. Is sticky blood bad for the brain?: Hemostatic and inflammatory systems and dementia in the Caerphilly Prospective Study. Arter. Thromb. Vasc. Biol. 2010, 30, 599–604. [Google Scholar] [CrossRef]
- Quinn, T.J.; Gallacher, J.; Deary, I.J.; Lowe, G.D.; Fenton, C.; Stott, D.J. Association between circulating hemostatic measures and dementia or cognitive impairment: Systematic review and meta-analyzes. J. Thromb. Haemost. JTH 2011, 9, 1475–1482. [Google Scholar] [CrossRef]
- Wolters, F.J.; Boender, J.; de Vries, P.S.; Sonneveld, M.A.; Koudstaal, P.J.; de Maat, M.P.; Franco, O.H.; Ikram, M.K.; Leebeek, F.W.; Ikram, M.A. Von Willebrand factor and ADAMTS13 activity in relation to risk of dementia: A population-based study. Sci. Rep. 2018, 8, 5474. [Google Scholar] [CrossRef]
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef]
- Akoudad, S.; Wolters, F.J.; Viswanathan, A.; de Bruijn, R.F.; van der Lugt, A.; Hofman, A.; Koudstaal, P.J.; Ikram, M.A.; Vernooij, M.W. Association of Cerebral Microbleeds with Cognitive Decline and Dementia. JAMA Neurol. 2016, 73, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Alfano, F.; Cesari, F.; Gori, A.M.; Berteotti, M.; Salvadori, E.; Giusti, B.; Bertelli, A.; Kura, A.; Barbato, C.; Formelli, B.; et al. The Role of Extracellular Matrix and Inflammation in the Stratification of Bleeding and Thrombotic Risk of Atrial Fibrillation on Oral Anticoagulant Therapy: Insights from Strat-Af Study. J. Clin. Med. 2023, 12, 6866. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyk, M.; Majewski, J.; Lelakowski, J. Thromboembolic events are associated with prolonged clot lysis time in patients with permanent atrial fibrillation. Pol. Arch. Med. Wewn. 2011, 121, 400–407. [Google Scholar] [CrossRef]
- Litwinowicz, R.; Natorska, J.; Zabczyk, M.; Kapelak, B.; Lakkireddy, D.; Vuddanda, V.; Bartus, K. Changes in fibrinolytic activity and coagulation factors after epicardial left atrial appendage closure in patients with atrial fibrillation. J. Thorac. Dis. 2022, 14, 4226–4235. [Google Scholar] [CrossRef]
- Melenovsky, V.; Lip, G.Y. Interleukin-8 and atrial fibrillation. Europace 2008, 10, 784–785. [Google Scholar] [CrossRef]
- Alsadany, M.A.; Shehata, H.H.; Mohamad, M.I.; Mahfouz, R.G. Histone deacetylases enzyme, copper, and IL-8 levels in patients with Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2013, 28, 54–61. [Google Scholar] [CrossRef]
- Baune, B.T.; Ponath, G.; Golledge, J.; Varga, G.; Arolt, V.; Rothermundt, M.; Berger, K. Association between IL-8 cytokine and cognitive performance in an elderly general population—The MEMO-Study. Neurobiol. Aging 2008, 29, 937–944. [Google Scholar] [CrossRef]
- Baune, B.T.; Ponath, G.; Rothermundt, M.; Roesler, A.; Berger, K. Association between cytokines and cerebral MRI changes in the aging brain. J. Geriatr. Psychiatry Neurol. 2009, 22, 23–34. [Google Scholar] [CrossRef]
- Righi, D.; Manco, C.; Pardini, M.; Stufano, A.; Schino, V.; Pelagotti, V.; Massa, F.; Stefano, N.; Plantone, D. Investigating interleukin-8 in Alzheimer’s disease: A comprehensive review. J. Alzheimers Dis. JAD 2025, 103, 38–55. [Google Scholar] [CrossRef]
Demographic and Clinical Characteristics | Total Cohort (n = 180) |
---|---|
Age [yrs], (mean ± SD) | 77.72 ± 6.70 |
Female sex, n (%) | 67 (37.2%) |
Schooling [yrs], (mean ± SD) | 9.36 ± 4.27 |
Stroke, n (%) | 38 (21.1%) |
Coronary artery disease, n (%) | 19 (10.6%) |
Heart failure, n (%) | 24 (13.3%) |
Peripheral arterial pathology, n (%) | 14 (7.8%) |
Hypertension, n (%) | 147 (81.7%) |
Diabetes, n (%) | 23 (12.8%) |
Dyslipidaemia, n (%) | 92 (51.1%) |
Physical activity (lack of), n (%) | 116 (64.4%) |
Smoke, n (%) | 105 (58.3%) |
Alcohol consumption, n (%) | 95 (52.8%) |
BMI [kg/m2], (mean ± SD) | 26.40 ± 3.79 |
CHA2DS2-VASc Score (mean ± SD) | 3.71 ± 1.41 |
HAS-BLED (mean ± SD) | 1.82 ± 0.87 |
Biological Markes | GDS (n = 180) | MoCA E.S. (n = 180) | Stroop Test | |||||
---|---|---|---|---|---|---|---|---|
Time of Execution, E.S. (n = 180) | Number of Errors (n = 180) | |||||||
Rho | p-Value | Rho | p-Value | Rho | p-Value | Rho | p-Value | |
IL-4 | −0.134 | 0.072 | 0.021 | 0.782 | −0.034 | 0.653 | −0.040 | 0.596 |
IL-6 | 0.100 | 0.172 | −0.068 | 0.351 | −0.128 | 0.087 | −0.026 | 0.734 |
IL-8 | 0.045 | 0.550 | 0.099 | 0.185 | −0.061 | 0.419 | −0.051 | 0.494 |
IL-10 | 0.061 | 0.416 | −0.182 | 0.015 | −0.115 | 0.123 | −0.204 | 0.006 |
TNFα | 0.019 | 0.795 | −0.038 | 0.614 | −0.084 | 0.261 | 0.003 | 0.963 |
CCL-2 | −0.136 | 0.069 | −0.103 | 0.169 | 0.034 | 0.650 | 0.093 | 0.213 |
CXCL-10 | 0.163 | 0.029 | −0.036 | 0.631 | −0.100 | 0.182 | −0.011 | 0.881 |
ICAM-1 | −0.101 | 0.178 | −0.009 | 0.908 | −0.116 | 0.121 | −0.037 | 0.618 |
VCAM-1 | 0.093 | 0.214 | −0.051 | 0.500 | −0.201 | 0.007 | −0.146 | 0.051 |
VEGF | −0.094 | 0.209 | −0.014 | 0.857 | −0.055 | 0.464 | 0.067 | 0.368 |
PAI-1 | 0.004 | 0.957 | −0.088 | 0.242 | −0.054 | 0.478 | −0.095 | 0.210 |
vWF | 0.043 | 0.569 | 0.036 | 0.636 | −0.251 | <0.001 | −0.081 | 0.284 |
Lag time | −0.024 | 0.747 | −0.046 | 0.538 | −0.004 | 0.957 | −0.041 | 0.590 |
Peak | −0.059 | 0.420 | 0.018 | 0.810 | −0.034 | 0.658 | −0.006 | 0.935 |
Time to peak | 0.029 | 0.697 | −0.075 | 0.307 | 0.014 | 0.853 | −0.005 | 0.947 |
ETP TM- | 0.022 | 0.763 | −0.024 | 0.751 | −0.014 | 0.850 | −0.005 | 0.945 |
ETP TM+ | −0.055 | 0.451 | 0.023 | 0.756 | −0.032 | 0.674 | 0.007 | 0.929 |
ETP ratio | −0.042 | 0.569 | 0.011 | 0.883 | −0.061 | 0.417 | −0.010 | 0.897 |
Clot lysis time | 0.044 | 0.567 | −0.089 | 0.249 | −0.097 | 0.208 | −0.057 | 0.459 |
D-Dimer | −0.088 | 0.266 | 0.038 | 0.636 | −0.018 | 0.820 | −0.043 | 0.589 |
GDF15 | 0.043 | 0.585 | −0.045 | 0.559 | −0.171 | 0.027 | −0.228 | 0.003 |
PCSK9 | −0.092 | 0.240 | −0.115 | 0.139 | −0.105 | 0.177 | −0.015 | 0.846 |
sUPAR | −0.049 | 0.531 | −0.018 | 0.817 | −0.101 | 0.193 | −0.019 | 0.804 |
Biological Markes | Stroop Test | |||||
---|---|---|---|---|---|---|
Time of Execution | Number of Errors | |||||
E.S. 0–1 (n = 44) | E.S. 2–4 (n = 136) | p | E.S. 0–1 (n = 44) | E.S. 2–4 (n = 136) | p | |
IL-4 [pg/mL], median (IQR) | 12.81 (2.54–36.25) | 6.70 (4.93–25.38) | 0.547 | 21.65 (5.05–40.28) | 6.70 (4.90–25.38) | 0.216 |
IL-6 [pg/mL], median (IQR) | 1.79 (0.38–3.71) | 1.56 (0.30–2.99) | 0.235 | 2.60 (1.60–5.52) | 1.56 (0.30–3.21) | 0.107 |
IL-8 [pg/mL], median (IQR) | 9.85 (6.71–16.82) | 8.60 (5.43–12.94) | 0.118 | 12.62 (8.08–21.30) | 8.73 (5.43–12.77) | 0.064 |
IL-10 [pg/mL], median (IQR) | 3.00 (0.32–3.72) | 2.89 (5.43–12.94) | 0.344 | 3.46 (0.99–3.72) | 2.89 (0.30–3.55) | 0.293 |
TNFα [pg/mL], median (IQR) | 2.02 (0.62–5.00) | 2.13 (1.06–3.51) | 0.798 | 2.53 (0.81–4.88) | 2.04 (0.83–4.00) | 0.479 |
CCL-2 [pg/mL], median (IQR) | 320.88 (229.38–475.00) | 321.44 (229.34–413.54) | 0.991 | 300.40 (234.03–370.93) | 320.88 (228.94–431.60) | 0.709 |
CXCL-10 [pg/mL], median (IQR) | 16.21 (11.90–28.07) | 14.65 (9.98–23.55) | 0.184 | 18.82 (11.97–32.41) | 15.04 (10.49–23.66) | 0.240 |
ICAM-1 [ng/mL], median (IQR) | 355.17 (268.45–609.26) | 320.39 (251.20–438.35) | 0.153 | 421.36 (279.32–715.25) | 326.33 (251.38–444.99) | 0.201 |
VCAM-1 [ng/mL], median (IQR) | 1675.60 (1186.90–2333.95) | 1337.75 (1004.25–1946.28) | 0.058 | 2035.30 (1592.20–2300.43) | 1350.00 (1004.25–1950.90) | 0.029 |
VEGF [pg/mL], median (IQR) | 74.06 (47.80–110.79) | 64.06 (32.93–108.59) | 0.104 | 57.93 (46.01–97.08) | 65.91 (36.88–110.26) | 0.812 |
PAI-1 [ng/mL], median (IQR) | 9.93 (6.97–16.73) | 8.61 (7.00–13.26) | 0.337 | 10.10 (7.58–19.78) | 8.81 (6.97–15.16) | 0.347 |
vWF [%], median (IQR) | 197.30 (158.00–221.70) | 153.40 (126.40–204.58) | 0.001 | 220.85 (175.85–231.63) | 163.90 (130.30–204.50) | 0.007 |
Lag time [min], median (IQR) | 9.00 (4.30–54.03) | 8.30 (3.30–17.30) | 0.378 | 7.65 (4.40–78.08) | 8.30 (3.30–18.35) | 0.815 |
Peak [nM], median (IQR) | 47.00 (1.00–195.00) | 47.00 (12.83–152.28) | 0.977 | 37.00 (2.90–145.10) | 47.00 (11.15–159.55) | 0.521 |
Time to peak [min], median (IQR) | 15.70 (8.60–100.00) | 14.50 (8.60–28.48) | 0.497 | 19.85 (9.90–82.33) | 14.70 (8.30–29.50) | 0.417 |
ETP TM- [nM/min], median (IQR) | 599.00 (48.25–1582.70) | 548.00 (248.90–1461.00) | 0.828 | 490.90 (61.75–1495.20) | 588.00 (214.50–1479.00) | 0.664 |
ETP TM+ [nM/min], median (IQR) | 391.00 (1.00–922.00) | 339.00 (116.75–1160.75) | 0.971 | 286.50 (35.00–1220.00) | 341.00 (116.50–1096.40) | 0.721 |
ETP ratio [ratio], median (IQR) | 0.58 (0.01–0.84) | 0.67 (0.28–0.91) | 0.598 | 0.73 (0.04–1.06) | 0.65 (0.26–0.90) | 0.725 |
Clot lysis time [min], median (IQR) | 56.44 (44.90–74.58) | 51.60 (40.91–66.09) | 0.110 | 56.45 (47.76–74.10) | 52.36 (41.60–67.91) | 0.333 |
D-Dimer [ng/mL], median (IQR) | 349 (206–634) | 294 (202–508) | 0.307 | 521 (216–3958) | 297 (203–528) | 0.114 |
GDF15 [ng/mL], median (IQR) | 192.50 (156.82–284.77) | 164.0 (123.5–235.6) | 0.019 | 1.97 (1.87–2.83) | 1.68 (1.28–2.42) | 0.054 |
PCSK9 [ng/mL], median (IQR) | 270.24 (210.94–352.64) | 239.56 (197.57–313.44) | 0.086 | 298.09 (211.46–384.75) | 244.65 (198.30–325.29) | 0.220 |
Biological Markes | ADL (n = 180) | IADL (n = 180) | SPPB (n = 180) | 4 m Gait Speed Test (n = 180) | ||||
---|---|---|---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | Rho | p-Value | Rho | p-Value | |
IL-4 | −0.018 | 0.806 | 0.041 | 0.585 | 0.042 | 0.574 | 0.087 | 0.249 |
IL-6 | 0.009 | 0.908 | −0.012 | 0.874 | −0.025 | 0.737 | 0.007 | 0.922 |
IL-8 | −0.109 | 0.145 | 0.023 | 0.755 | −0.113 | 0.13 | −0.04 | 0.592 |
IL-10 | 0.063 | 0.399 | −0.044 | 0.558 | 0.048 | 0.524 | −0.04 | 0.598 |
TNFα | −0.004 | 0.956 | −0.013 | 0.86 | 0.004 | 0.961 | 0.07 | 0.34 |
CCL-2 | 0.073 | 0.329 | 0.089 | 0.234 | 0.053 | 0.477 | 0.05 | 0.505 |
CXCL-10 | 0.001 | 0.987 | 0.055 | 0.46 | −0.087 | 0.245 | −0.146 | 0.051 |
ICAM-1 | −0.018 | 0.809 | −0.035 | 0.641 | 0.021 | 0.784 | 0.075 | 0.318 |
VCAM-1 | −0.014 | 0.849 | −0.035 | 0.64 | 0.058 | 0.436 | 0.071 | 0.343 |
VEGF | −0.137 | 0.067 | 0.098 | 0.19 | −0.074 | 0.322 | −0.005 | 0.944 |
PAI-1 | 0.021 | 0.783 | 0.18 | 0.016 | −0.326 | <0.001 | −0.205 | 0.006 |
vWF | 0.044 | 0.559 | 0.036 | 0.637 | −0.21 | 0.005 | −0.105 | 0.167 |
Lag time | 0.042 | 0.587 | 0.024 | 0.758 | 0.003 | 0.964 | 0.066 | 0.388 |
Peak | −0.019 | 0.803 | 0.002 | 0.977 | 0.033 | 0.667 | −0.038 | 0.614 |
Time to peak | 0.032 | 0.676 | 0.016 | 0.829 | 0.001 | 0.994 | 0.042 | 0.583 |
ETP TM- | −0.031 | 0.69 | −0.037 | 0.632 | 0.04 | 0.599 | −0.042 | 0.589 |
ETP TM+ | −0.031 | 0.684 | −0.02 | 0.795 | 0.055 | 0.466 | −0.038 | 0.617 |
ETP ratio | −0.025 | 0.745 | 0.018 | 0.808 | 0.001 | 0.993 | −0.103 | 0.172 |
Clot lysis time | −0.09 | 0.245 | −0.019 | 0.805 | 0.008 | 0.92 | −0.041 | 0.601 |
D-Dimer | 0.152 | 0.055 | 0.024 | 0.759 | −0.054 | 0.495 | −0.135 | 0.09 |
GDF15 | −0.083 | 0.288 | 0.224 | 0.004 | −0.218 | 0.005 | −0.232 | 0.003 |
PCSK9 | −0.003 | 0.967 | 0.155 | 0.046 | −0.162 | 0.037 | −0.178 | 0.022 |
sUPAR | −0.038 | 0.630 | 0.094 | 0.225 | −0.201 | 0.009 | −0.256 | <0.001 |
Biological Markes | Dichotomous SPPB | 4 m Gait Speed Test | ||||
---|---|---|---|---|---|---|
SPPB ≤ 10 (n = 113) | SPPB Normal (n = 67) | p | Compromised (>5 s) (n = 113) | Normal (<5 s) (n = 67) | p | |
IL-4 [pg/mL], median (IQR) | 6.70 (4.60–29.94) | 10.80 (5.00–29.40) | 0.942 | 6.10 (2.54–22.04) | 10.80 (5.00–32.69) | 0.139 |
IL-6 [pg/mL], median (IQR) | 1.56 (0.30–3.51) | 1.73 (0.45–2.91) | 0.805 | 1.56 (0.30–4.27) | 1.73 (0.38–3.07) | 0.781 |
IL-8 [pg/mL], median (IQR) | 9.14 (6.06–13.70) | 7.23 (3.41–12.10) | 0.031 | 8.73 (6.74–12.20) | 8.88 (5.01–13.15) | 0.414 |
IL-10 [pg/mL], median (IQR) | 2.89 (0.30–3.54) | 2.89 (0.31–3.56) | 0.561 | 2.89 (1.31–3.46) | 2.89 (0.30–3.56) | 0.610 |
TNFα [pg/mL], median (IQR) | 2.03 (0.91–3.51) | 2.53 (0.73–4.25) | 0.573 | 2.00 (1.06–3.39) | 2.30 (0.73–4.25) | 0.434 |
CCL-2 [pg/mL], median (IQR) | 325.47 (229.84–405.43) | 317.15 (221.48–441.34) | 0.970 | 338.18 (217.80–399.19) | 317.15 (230.45–437.56) | 0.837 |
CXCL-10 [pg/mL], median (IQR) | 15.04 (11.00–24.01) | 16.16 (9.96–23.19) | 0.888 | 15.42 (11.77–24.03) | 15.04 (10.16–23.88) | 0.564 |
ICAM-1 [ng/mL], median (IQR) | 319.52 (251.53–461.49) | 335.66 (255.22–480.73) | 0.832 | 284.84 (246.56–384.34) | 332.93 (270.52–480.73) | 0.148 |
VCAM-1 [ng/mL], median (IQR) | 1350.00 (1036.30–1942.55) | 1518.80 (996.15–2121.50) | 0.593 | 1255.00 (1033.43–1975.63) | 1445.90 (1000.00–2078.10) | 0.479 |
VEGF [pg/mL], median (IQR) | 61.58 (41.44–103.07) | 70.24 (32.18–112.14) | 0.854 | 64.97 (38.60–91.18) | 65.65 (36.88–112.14) | 0.663 |
PAI-1 [ng/mL], median (IQR) | 10.57 (7.43–16.74) | 7.99 (6.39–10.77) | 0.002 | 12.44 (7.36–19.53) | 8.60 (6.89–12.27) | 0.046 |
vWF [%], median (IQR) | 191.00 (137.23–217.83) | 150.10 (121.35) | 0.015 | 183.30 (137.50–217.05) | 171.85 (128.60–206.15) | 0.320 |
Lag time [min], median (IQR) | 8.30 (3.30–17.35) | 8.30 (3.78–19.70) | 0.792 | 8.30 (3.30–14.35) | 8.60 (3.60–23.70) | 0.473 |
Peak [nM], median (IQR) | 48.00 (10.85–159.78) | 45.00 (6.00–161.15) | 0.649 | 40.25 (15.95–155.00) | 48.00 (6.50–160.60) | 0.921 |
Time to peak [min], median (IQR) | 14.70 (8.30–32.18) | 15.60 (9.00–26.15) | 0.859 | 14.65 (9.08–27.98) | 14.85 (8.38–34.28) | 0.828 |
ETP TM- [nM/min], median (IQR) | 588.00 (247.50–1396.50) | 510.50 (142.50–1521.75) | 0.717 | 536.00 (257.60–1310.00) | 588.00 (140.00–1649.00) | 0.924 |
ETP TM+ [nM/min], median (IQR) | 348.50 (134.00–1048.00) | 338.00 (95.25–1210.30) | 0.905 | 376.75 (181.50–844.45) | 339.00 (95.13–1174.25) | 0.902 |
ETP ratio [ratio], median (IQR) | 0.65 (0.21–0.90) | 0.65 (0.29–0.92) | 0.776 | 0.77 (0.32–0.94) | 0.62 (0.22–0.84) | 0.096 |
Clot lysis time [min], median (IQR) | 53.13 (42.61–68.07) | 53.64 (41.03–68.76) | 0.664 | 53.13 (45.12–64.91) | 52.93 (41.47–68.90) | 0.826 |
D-Dimer [ng/mL], median (IQR) | 316.50 (210.50–604.25) | 286.50 (169.25–522.75) | 0.222 | 314.50 (205.50–528.25) | 291.00 (205.00–601.00) | 0.838 |
GDF15 [ng/mL], median (IQR) | 1.81 (1.45–2.61) | 1.59 (1.16–2.22) | 0.028 | 2.08 (1.53–2.62) | 1.66 (1.25–2.35) | 0.061 |
PCSK9 [ng/mL], median (IQR) | 258.70 (206.48–351.44) | 234.70 (189.50–288.15) | 0.041 | 258.70 (213.55–342.87) | 243.39 (193.70–313.44) | 0.232 |
sUPAR [ng/mL], median (IQR) | 2.97 (2.26–3.74) | 2.71 (2.20–3.65) | 0.192 | 3.35 (2.60–4.21) | 2.83 (2.17–3.62) | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfano, F.; Cesari, F.; Gori, A.M.; Berteotti, M.; Salvadori, E.; Giusti, B.; Bertelli, A.; Fratini, F.; Rogolino, A.; Formelli, B.; et al. Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study. Biomedicines 2025, 13, 941. https://doi.org/10.3390/biomedicines13040941
Alfano F, Cesari F, Gori AM, Berteotti M, Salvadori E, Giusti B, Bertelli A, Fratini F, Rogolino A, Formelli B, et al. Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study. Biomedicines. 2025; 13(4):941. https://doi.org/10.3390/biomedicines13040941
Chicago/Turabian StyleAlfano, Francesco, Francesca Cesari, Anna Maria Gori, Martina Berteotti, Emilia Salvadori, Betti Giusti, Alessia Bertelli, Filippo Fratini, Angela Rogolino, Benedetta Formelli, and et al. 2025. "Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study" Biomedicines 13, no. 4: 941. https://doi.org/10.3390/biomedicines13040941
APA StyleAlfano, F., Cesari, F., Gori, A. M., Berteotti, M., Salvadori, E., Giusti, B., Bertelli, A., Fratini, F., Rogolino, A., Formelli, B., Pescini, F., Fainardi, E., Barucci, E., Salti, G., Cavaliere, A., Ginestroni, A., Marcucci, R., & Poggesi, A. (2025). Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study. Biomedicines, 13(4), 941. https://doi.org/10.3390/biomedicines13040941