Breast Cancer Surgical Specimens: A Marking Challenge and a Novel Solution—A Prospective, Randomized Study
Abstract
:1. Introduction
2. Statistical Analyses
3. Patients and Methods
3.1. Study Design
3.2. Patient Selection and Randomization
3.3. Ages of Patients in the Examined Groups at the Time of the Operation
3.4. Body Mass Index (BMI) of Patients
3.5. Histological Types of Breast Cancer in the Study Groups
3.6. Immunohistochemical Subtypes of Breast Cancer
3.7. Tumor Localization Within the Breast
3.8. Tumor Proliferative Activity Based on Ki-67 Index
3.9. Specimen Orientation Assessment
3.10. Criteria for Assessing Specimen Orientation
- A: Was the specimen’s orientation preserved unambiguously upon arrival in the pathology department?
- B: Was tumor localization unambiguously identifiable on the mammogram?
- C: Were the anatomical sides of the specimen (e.g., medial/lateral or superior/inferior) distinguishable?
- D: Was tumor localization evident on macroscopic examination?
- E: Was neoadjuvant therapy performed?
- F: Was there complete radiologic or pathologic regression, or no regression?
- G: Was there any ambiguity in distinguishing between opposing sides of the specimen (e.g., due to similar suture lengths or indistinct markers), such that the specimen could potentially be misoriented or rotated 180 degrees?
4. Results
4.1. Specimen Orientation and Tumor Localization
- A: Orientation clarity upon arrival at pathology was comparable between the two groups (p = 0.0737).
- B: Mammographic clarity of tumor localization was significantly less evident in the Suture Marking Group (p = 0.0001).
- C: Clarity of specimen laterality (left/right) was not significantly different (p = 0.1461).
- D: Macroscopic clarity of tumor localization within the specimen showed no significant difference (p = 0.5834).
- E: Neoadjuvant therapy usage was similar between the groups (p = 0.7555).
- F: Complete radiologic or pathologic regression rates showed no significant difference (p = 0.5252).
- G: Potential for 180-degree rotation of the specimen was identical across all cases in both groups.
4.2. Pathological Tumor (pT) Stage Distribution
4.3. Orientation Accuracy and Reliability—Comparison of Specimen Plate and Suture Marking Methods
4.4. R0 Resection Rates by Immunohistochemical Subtype in the Specimen Plate Group
4.5. R0 Resection Rates by Immunohistochemical Subtype in the Suture Marking Group
5. Discussion
Study Limitations
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
CC | Craniocaudal |
DCIS | Ductal Carcinoma In Situ |
ER | Estrogen Receptor |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HR | Hormone Receptor |
HR+/HER2− | Hormone Receptor-Positive/HER2-Negative |
HR−/HER2+ | Hormone Receptor-Negative/HER2-Positive |
ILC | Invasive Lobular Carcinoma |
MLO | Mediolateral Oblique |
MRI | Magnetic Resonance Imaging |
NST | No Special Type (Carcinoma) |
pT | Pathological Tumor Stage |
PR | Progesterone Receptor |
R0 | Resection with Negative Margins |
TNBC | Triple-Negative Breast Cancer |
TPBC | Triple-Positive Breast Cancer |
Appendix A
Appendix A.1. Specimen Plate Manufacturing and Structural Features
Appendix A.2. Radiographic and Ergonomic Properties
References
- Di Leone, A.; Franceschini, G.; Mason, E.J.; D’Archi, S.; D’Angelo, A.; Scardina, L.; Sanchez, A.M.; Conti, M.; Trombadori, C.; Terribile, D.A.; et al. Image-guided localization techniques for surgical excision of non-palpable breast lesions: An overview of current literature and our experience with preoperative skin tattoo. J. Pers. Med. 2021, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Denkert, C.; Piccart-Gebhart, M.; Regan, M.; et al. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef]
- Vanni, G.; Pellicciaro, M.; Renelli, G.; Materazzo, M.; Sadri, A.; Marsella, V.E.; Tacconi, F.; Bastone, S.A.; Longo, B.; Di Mauro, G.; et al. Cavity Shave Margins in Breast Conservative Surgery: A Strategy to Reduce Positive Margins and Surgical Time. Curr. Oncol. 2024, 31, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Volleamere, A.J.; Kirwan, C.C. National survey of breast cancer specimen orientation marking systems. Eur. J. Surg. Oncol. 2013, 39, 255–259. [Google Scholar] [CrossRef]
- Drozgyik, A.; Szabó, T.; Kovács, G.; Kollár, D.; Molnár, T.F. A New Approach to Breast Specimen Orientation: Avoiding Pitfalls with the Specimen Plate Concept. Curr. Oncol. 2024, 31, 4589–4598. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.A.; Sinnott, C.; Bawa, S.; Kaufman, D.I.; Guarino, K.; Addona, T. Re-excision rate after partial mastectomy in oncoplastic breast-conserving surgery: A single-institutional experience and review of the literature. Ann. Plast. Surg. 2019, 82, S170–S172. [Google Scholar] [CrossRef]
- McCahill, L.E.; Single, R.M.; Aiello Bowles, E.J.; Feigelson, H.S.; James, T.A.; Barney, T.; Engel, J.M.; Onitilo, A.A. Variability in reexcision following breast conservation surgery. JAMA 2012, 307, 467–475. [Google Scholar] [CrossRef]
- Tang, S.S.; Kaptanis, S.; Haddow, J.B.; Mondani, G.; Elsberger, B.; Tasoulis, M.K.; Obondo, C.; Johns, N.; Ismail, W.; Syed, A.; et al. Current margin practice and effect on re-excision rates following the publication of the SSO-ASTRO consensus and ABS consensus guidelines: A national prospective study of 2858 women undergoing breast-conserving therapy in the UK and Ireland. Eur. J. Cancer 2017, 84, 315–324. [Google Scholar] [CrossRef]
- Ahmed, G.A.; Baron, D.H.; Agrawal, A. Oncologic and cosmetic outcomes of oncoplastic breast-conserving surgery after neoadjuvant systemic therapy: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2025, 209, 229–252. [Google Scholar] [CrossRef]
- Fregatti, P.; Gipponi, M.; Atzori, G.; De Rosa, R.; Diaz, R.; Cornacchia, C.; Sparavigna, M.; Garlaschi, A.; Belgioia, L.; Fozza, A.; et al. The margins’ challenge: Risk factors of residual disease after breast-conserving surgery in early-stage breast cancer. In Vivo 2022, 36, 814–820. [Google Scholar] [CrossRef]
- Schulman, A.M.; Mirrielees, J.A.; Leverson, G.; Landercasper, J.; Greenberg, C.; Wilke, L.G. Reexcision surgery for breast cancer: An analysis of the American Society of Breast Surgeons (ASBrS) MasterySM database following the SSO-ASTRO “no ink on tumor” guidelines. Ann. Surg. Oncol. 2017, 24, 52–58. [Google Scholar] [CrossRef]
- Banys-Paluchowski, M.; Kühn, T.; Masannat, Y.; Rubio, I.; de Boniface, J.; Ditsch, N.; Karadeniz Cakmak, G.; Karakatsanis, A.; Dave, R.; Hahn, M.; et al. Localization techniques for non-palpable breast lesions: Current status, knowledge gaps, and rationale for the MELODY study (EUBREAST-4/iBRA-NET, NCT 05559411). Cancers 2023, 15, 1173. [Google Scholar] [CrossRef]
- Zacharioudakis, K.; Down, S.; Bholah, Z.; Lee, S.; Khan, T.; Maxwell, A.J.; Douek, M. Is the future magnetic?—Magseed localization for non-palpable breast cancer: A multicenter nonrandomized control study. Eur. J. Surg. Oncol. 2019, 45, 2016–2021. [Google Scholar] [CrossRef]
- Cheung, B.H.H.; Co, M.; Lui, T.T.N.; Kwong, A. Evolution of localization methods for non-palpable breast lesions: A literature review from a translational medicine perspective. Transl. Breast Cancer Res. 2024, 5, 12. [Google Scholar] [CrossRef]
- Parisi, S.; Gambardella, C.; Conzo, G.; Sodo, M.; D’Antonio, A.; Bianco, P.; Flocco, R.; Vanni, L.; Esposito, E.; Nasto, R.S.; et al. Advanced Localization Technique for Non-Palpable Breast Cancer: Radiofrequency Alone vs. Combined Technique with Ultrasound. J. Clin. Med. 2023, 12, 5076. [Google Scholar] [CrossRef]
- Drozgyik, A.; Kollár, D.; Dankházi, L.; Harmati, I.Á.; Szalay, K.; Molnár, T.F. Non-Palpable Breast Cancer: A Targeting Challenge—Comparison of Radio-Guided vs. Wire-Guided Localization Techniques. Biomedicines 2024, 12, 2466. [Google Scholar] [CrossRef]
- Vourtsis, A.; Kachulis, A. The performance of 3D ABUS versus HHUS in the visualization and BI-RADS characterization of breast lesions in a large cohort of 1,886 women. Eur. Radiol. 2018, 28, 592–601. [Google Scholar] [CrossRef]
- Jochelson, M.S. Magnetic Resonance Imaging of the Breast: Current Indications. Top. Magn. Reson. Imaging 2017, 26, 177–185. [Google Scholar] [CrossRef]
- Dołęga-Kozierowski, B.; Lis, M.; Marszalska-Jacak, H.; Koziej, M.; Celer, M.; Bandyk, M.; Kasprzak, P.; Szynglarewicz, B.; Matkowski, R. Multimodality imaging in lobular breast cancer: Differences in mammography, ultrasound, and MRI in the assessment of local tumor extent and correlation with molecular characteristics. Front. Oncol. 2022, 12, 855519. [Google Scholar] [CrossRef]
- Jamaris, S.; Akpolat-Basci, L.; Stephanou, M.; Wetzig, S.; Cubuk, Y.; Gerharz, J.; Bittner, A.K.; See, M.H.; Liedtke, C.; Kolberg, H.C. Re-Excision Rates in Breast-Conserving Surgery for Invasive Breast Cancer after Neoadjuvant Chemotherapy with and without the Use of a Radiopaque Tissue Transfer and X-ray System. Breast Care 2019, 14, 302–307. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Askari, E.; Haghiralsadat, F.; Tofighi, D. A Highly Sensitive Nanobiosensor Based on Aptamer-Conjugated Graphene-Decorated Rhodium Nanoparticles for Detection of HER2-Positive Circulating Tumor Cells. Nanotechnol. Rev. 2022, 11, 793–810. [Google Scholar] [CrossRef]
- Wu, Y.; Song, H.; Shi, H.; Wang, G. Perspectives on the Potential Application of microRNAs in the Diagnosis and Treatment of Triple-Negative Breast Cancer. Oncol. Transl. Med. 2024, 10, 5–9. [Google Scholar] [CrossRef]
Group | Mean Age (Years) | Median Age (Years) |
---|---|---|
Specimen Plate Group | 61.1 | 64.0 |
Suture Marking Group | 60.2 | 62.5 |
Group | Mean BMI (kg/m2) | Standard Deviation |
---|---|---|
Specimen Plate Group | 26.23 | 3.55 |
Suture Marking Group | 25.96 | 3.17 |
Group | NST Carcinoma | Lobular Carcinoma | Mucinous Carcinoma |
---|---|---|---|
Specimen Plate Group | 91.07% (51 cases) | 5.36% (3 cases) | 3.57% (2 cases) |
Suture Marking Group | 87.04% (47 cases) | 12.96% (7 cases) | 0 |
Group | HR+/HER2− | TNBC | TPBC | HR−/HER2+ |
---|---|---|---|---|
Specimen Plate Group | 78.57% (44 cases) | 10.71% (6 cases) | 5.36% (3 cases) | 5.36% (3 cases) |
Suture Marking Group | 74.07% (40 cases) | 12.96% (7 cases) | 12.96% (7 cases) | 0 |
Group | Upper Outer Quadrant | Upper Inner Quadrant | Lower Outer Quadrant | Lower Inner Quadrant | Central Quadrant |
---|---|---|---|---|---|
Specimen Plate Group | 46.43% (26 cases) | 21.43% (12 cases) | 14.29% (8 cases) | 12.50% (7 cases) | 5.36% (3 cases) |
Suture Marking Group | 51.58% (28 cases) | 20.37% (11 cases) | 5.56% (3 cases) | 14.81% (8 cases) | 7.41% (4 cases) |
Group | Low Proliferation | High Proliferation |
---|---|---|
Specimen Plate Group (n = 56) | 91.1% (51 cases) | 8.9% (5 cases) |
Suture Marking Group (n = 54) | 90.7% (49 cases) | 9.3% (5 cases) |
Group | T0 | Tis | T1 | T2 | T3 |
---|---|---|---|---|---|
Specimen Plate Group | 16.07% (9 cases) | 1.79% (1 case) | 57.14% (32 cases) | 23.21% (13 cases) | 1.79% (1 case) |
Suture Marking Group (n = 54) | 5.56% (3 cases) | 3.70% (2 cases) | 72.22% (39 cases) | 18.52% (10 cases) | 0 |
Criteria | Specimen Plate Group (n = 56) | Suture Marking Group (n = 54) |
---|---|---|
Unambiguous orientation upon arrival in Pathology | 100% | 96.3% (52 cases) |
Unambiguous tumor localization (macroscopic) | 60.71% (34 cases) | 44.44% (24 cases) |
Evident laterality | 100% | 96.3% (52 cases) |
Possibility of 180-degree rotation | 0 | 0 |
Clear mammographic orientation | 80.4% (45 cases) | 13% (7 cases) |
Successful R0 resection (p = 0.067) | 91.1% (51 cases) | 77.8% (42 cases) |
Immunohistochemical Subtypes (n = 56) | R0 Resection (n = 52) | Non-R0 Resection (n = 4) |
---|---|---|
HR+/HER2− | (41 cases) | (3 cases) |
TNBC | (5 cases) | (1 case) |
TPBC | (3 cases) | (0 cases) |
HR−/HER2+ | (3 cases) | (0 cases) |
Immunohistochemical Subtypes (n = 54) | R0 Resection (n = 45) | Non-R0 Resection (n = 9) |
---|---|---|
HR+/HER2− | (31 cases) | (9 cases) |
TNBC | (7 cases) | (0 cases) |
TPBC | (7 cases) | (0 cases) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozgyik, A.; Kránitz, N.; Szabó, T.; Kollár, D.; Harmati, I.Á.; Rajnai, R.; Molnár, T.F. Breast Cancer Surgical Specimens: A Marking Challenge and a Novel Solution—A Prospective, Randomized Study. Biomedicines 2025, 13, 984. https://doi.org/10.3390/biomedicines13040984
Drozgyik A, Kránitz N, Szabó T, Kollár D, Harmati IÁ, Rajnai R, Molnár TF. Breast Cancer Surgical Specimens: A Marking Challenge and a Novel Solution—A Prospective, Randomized Study. Biomedicines. 2025; 13(4):984. https://doi.org/10.3390/biomedicines13040984
Chicago/Turabian StyleDrozgyik, András, Noémi Kránitz, Tamás Szabó, Dániel Kollár, István Á. Harmati, Renáta Rajnai, and Tamás F. Molnár. 2025. "Breast Cancer Surgical Specimens: A Marking Challenge and a Novel Solution—A Prospective, Randomized Study" Biomedicines 13, no. 4: 984. https://doi.org/10.3390/biomedicines13040984
APA StyleDrozgyik, A., Kránitz, N., Szabó, T., Kollár, D., Harmati, I. Á., Rajnai, R., & Molnár, T. F. (2025). Breast Cancer Surgical Specimens: A Marking Challenge and a Novel Solution—A Prospective, Randomized Study. Biomedicines, 13(4), 984. https://doi.org/10.3390/biomedicines13040984