Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Gold Nanoparticles, GNPs
2.3. Functionalization of Gold Nanoparticles
2.4. Cell Lines
2.5. Characterization Methods
2.5.1. The UV-VIS Absorption Spectra
2.5.2. TEM Images
2.5.3. High-Resolution TEM (HR-TEM) Images
2.5.4. Atomic Force Microscopy, AFM Images
2.5.5. Zeta (ξ-) Potential and Dynamic Light Scattering (DLS) Measurements
2.5.6. X-Ray Diffraction (XRD) Studies
2.5.7. MTT Viability Assay
2.5.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the GNP_R and GNP_R1 in Colloidal Systems
3.2. GNP_R1 Interaction with Drugs
3.2.1. Stability of GNPs in Aqueous Dispersion
3.2.2. Enhanced Stability of Multi-Functional GNPs in Colloidal Solutions
3.3. Potential Anticancer Efficacy of Functionalized GNPs on Human Cancer Cells
3.4. Cellular Viability in Response to Doxorubicin Alone or Combined with Natural Molecules and to Functional Gold Nanoparticles at 24 and 48 h
4. Conclusions
Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
D | doxorubicin |
R | trans-resveratrol |
P | piperine |
Ic | Icariin |
PBS | phosphate-buffered saline |
GNPs | gold nanoparticles |
GNP_R | gold nanoparticles coated with a resveratrol layer |
GNP_R1 | centrifuged and washed gold nanoparticles |
GNP_R1@D/R | gold nanoparticles two-functionalized |
GNP_R1@D/R/P | gold nanoparticles three-functionalized |
GNP_R1@D/R/P/Ic | gold nanoparticles multi-functionalized |
SPR | surface plasmon resonance |
TEM | transmission electron microscopy |
XRD | X-ray diffraction |
AFM | atomic force microscopy |
UV-VIS | ultraviolet–visible spectroscopy |
HR-TEM | high-resolution transmission electron microscopy |
HPV | human papillomavirus |
DLS | dynamic light scattering |
ζ-potential | zeta potential |
MTT | cell viability assay |
References
- Song, X.; Li, X.; Tan, Z.; Zhang, L. Recent status and trends of nanotechnology in cervical cancer: Systematic review and bibliometric analysis. Front. Oncol. 2024, 14, 1327851. [Google Scholar] [CrossRef] [PubMed]
- Alex, S.; Tiwari, A. Functionalized Gold Nanoparticles: Synthesis, Properties and Applications—A Review. J. Nanosci. Nanotechnol. 2015, 15, 1869–1894. [Google Scholar] [CrossRef]
- Hamida, R.S.; AlMotwaa, S.M.; Al-Otaibi, W.A.; Alqhtani, H.A.; Ali, M.A.; Bin-Meferij, M.M. Apoptotic Induction by Biosynthesized Gold Nanoparticles Using Phormidesmis communis Strain AB_11_10 against Osteosarcoma Cancer. Biomedicines 2024, 12, 1570. [Google Scholar] [CrossRef]
- Mocanu, A.; Cernica, I.; Tomoaia, G.; Bobos, L.-D.; Horovitz, O.; Tomoaia-Cotisel, M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf. A Physicochem. Eng. Asp. 2009, 338, 93–101. [Google Scholar] [CrossRef]
- Horovitz, O.; Tomoaia, G.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. Protein Binding to Gold Auto-assembled Films. Gold Bull. 2007, 40, 295–304. [Google Scholar] [CrossRef]
- Pasca, R.D.; Mocanu, A.; Cobzac, S.C.; Petean, I.; Horovitz, O.; Tomoaia-Cotisel, M. Biogenic Syntheses of Gold Nanoparticles Using Plant Extracts. Part. Sci. Technol. 2014, 32, 131–137. [Google Scholar] [CrossRef]
- Tomoaia, G.; Horovitz, O.; Mocanu, A.; Nita, A.; Avram, A.; Racz, C.-P.; Soritau, O.; Cenariu, M.; Tomoaia-Cotisel, M. Effects of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines. Colloids Surf. B Biointerfaces 2015, 135, 726–734. [Google Scholar] [CrossRef]
- Bawazeer, S.; Khan, I.; Rauf, A.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Khalil, A.A.; Qureshi, M.N.; Ahmad, L.; Khan, S.A. Black pepper (Piper nigrum) fruit-based gold nanoparticles (BP- AuNPs): Synthesis, characterization, biological activities, and catalytic applications—A green approach. Green Process. Synth. 2022, 11, 11–28. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar] [PubMed]
- Bhaskara, V.K.; Mittal, B.; Mysorekar, V.V.; Amaresh, N.; Simal-Gandara, J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr. Res. Food Sci. 2020, 3, 284–295. [Google Scholar] [CrossRef]
- Chatterjee, K.; Mukherjee, S.; Vanmanen, J.; Banerjee, P.; Fata, J.E. Corrigendum. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an HPV E6-positive cervical cancer model: An in vitro and in vivo analysis. Front. Oncol. 2019, 9, 352, Corrigendum in Front. Oncol. 2024, 14, 1483410. [Google Scholar] [CrossRef]
- AlHur, M.J.; Barakova, N.; Talib, W.H. Combination of resveratrol and piperine to target doxorubicin resistance in breast cancer: An in vitro and in vivo study. Pharmacia 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Du, Y.; Xia, L.; Jo, A.; Davis, R.M.; Bissel, P.; Ehrich, M.; Kingston, D.H.I. Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery. Bioconjug. Chem. 2017, 29, 420–430. [Google Scholar] [CrossRef]
- Aboyewa, J.A.; Sibuyi, N.R.S.; Meyer, M.; Oguntibeju, O.O. Gold Nanoparticles Synthesized Using Extracts of Cyclopia intermedia, Commonly Known as Honeybush, Amplify the Cytotoxic Effects of Doxorubicin. Nanomaterials 2021, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Banu, H.; Sethi, D.K.; Edgar, A.; Sheriff, A.; Rayees, N.; Renuka, N.; Faheem, S.M.; Premkumar, K.; Vasanthakumar, G. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J. Photochem. Photobiol. B 2015, 149, 116–128. [Google Scholar] [CrossRef]
- Elbialy, N.; Mahmoud Fathy, M.; Khalil, W.M. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int. J. Pharm. 2015, 490, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Oh, K.S.; Park, D.Y.; Lee, J.Y.; Lee, B.S.; Kim, I.S.; Kim, K.; Kwon, I.C.; Sang, Y.K.; Yuk, S.H. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting. J. Control. Release 2016, 228, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; et al. Cell-Penetrating Peptide-Modified Gold Nanoparticles for the Delivery of Doxorubicin to Brain Metastatic Breast Cancer. Mol. Pharm. 2016, 13, 1843–1854. [Google Scholar] [CrossRef]
- Cui, T.; Liang, J.-J.; Chen, H.; Geng, D.-D.; Jiao, L.; Yang, J.-Y.; Qian, H.; Zhang, C.; Ding, Y. The performance of Doxorubicin-conjugated gold nanoparticles: Regulation of drug location. ACS Appl. Mater. Interfaces 2017, 9, 8569–8580. [Google Scholar] [CrossRef]
- Zarchi, A.A.K.; Amini, S.M.; Salimi, A.; Kharazi, S. Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles. IET Nanobiotechnol. 2018, 12, 846–849. [Google Scholar] [CrossRef]
- Castro Coelho, S.; Pires Reis, D.; Carmo Pereira, M.; Coelho, M.A.N. Doxorubicin and Varlitini Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics 2019, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- El-Ghareb, W.I.; Swidan, M.M.; Ibrahim, I.T.; Abd El-Bary, A.; Ibrahim Tadros, M.; Sakr, T.M. 99mTc-Doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int. J. Pharm. 2020, 586, 119514. [Google Scholar] [CrossRef]
- Exner, K.S.; Ivanova, A. Identifying a gold nanoparticle as a proactive carrier for transport of a doxorubicin-peptide complex. Colloids Surf. B Biointerfaces 2020, 194, 111155. [Google Scholar] [CrossRef]
- Hou, K.; Bao, M.; Xin, C.; Wang, L.; Zhang, H.; Zhao, H.; Wang, Z. Green synthesis of gold nanoparticles coated doxorubicin liposomes using procyanidins for light–controlled drug release. Adv. Powder Technol. 2020, 31, 3640–3649. [Google Scholar] [CrossRef]
- Dhamechaa, D.; Jalalpurea, S.; Jadhava, K.; Jagwani, S.; Chavan, R. Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacol. Res. 2016, 113, 547–556. [Google Scholar] [CrossRef]
- Kumar, S.A.; Peter, Y.-A.; Nadeau, J.L. Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 2008, 19, 495101–495111. [Google Scholar] [CrossRef]
- Dizman, H.M.; Eroglu, G.O.; Kuruca, S.E.; Arsu, N. Photochemically prepared monodisperse gold nanoparticles as doxorubicin carrier and its cytotoxicity on leukemia cancer cells. Appl. Nanosci. 2021, 11, 309–320. [Google Scholar] [CrossRef]
- Das, T.; Mishra, S.; Nag, S.; Das Saha, K. Green-synthesized gold nanoparticles from black tea extract enhance the chemosensitivity of doxorubicin in HCT116 cells via a ROS-dependent pathway. RSC Adv. 2022, 12, 8996–9007. [Google Scholar] [CrossRef]
- Faid, A.H.; Shouman, S.A.; Badr, Y.A.; Sharaky, M. Enhanced cytotoxic effect of doxorubicin conjugated gold nanoparticles on breast cancer model. BMC Chem. 2022, 16, 90. [Google Scholar] [CrossRef]
- Kostka, K.; Sokolova, V.; El-Taibany, A.; Kruse, B.; Porada, D.; Wolff, N.; Prymak, O.; Seeds, M.C.; Epple, M.; Atala, A.J. The Application of Ultrasmall Gold Nanoparticles (2 nm) Functionalized with Doxorubicin in Three-Dimensional Normal and Glioblastoma Organoid Models of the Blood–Brain Barrier. Molecules 2024, 29, 2469. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Teniente, I.; Jaramillo-Loranca, B.E.; Vargas-Hernandez, G.; Villanueva-Ibanez, M.; Tovar-Jimenez, X.; Olvera-Venegas, P.N.; Tapia-Ramirez, J. Synthesis and toxicity assessment of Coffea arabica extract-derived gold nanoparticles loaded with doxorubicin in lung cancer cell cultures. Front. Bioeng. Biotechnol. 2024, 12, 1378601. [Google Scholar] [CrossRef]
- Aryal, S.; Grailer, J.J.; Pilla, S.; Steeberb, D.A.; Gong, S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J. Mater. Chem. 2009, 19, 7879–7884. [Google Scholar] [CrossRef]
- Hu, F.-Q.; Zhang, Y.-Y.; You, J.; Yuan, H.; Du, Y.-Z. pH Triggered Doxorubicin Delivery of PEGylated Glycolipid Conjugate Micelles for Tumor Targeting Therapy. Mol. Pharm. 2012, 9, 2469–2478. [Google Scholar] [CrossRef]
- Su Yim, M.; Hwang, Y.S.; Bang, J.K.; Jung, D.-W.; Kim, J.M.; Yi, G.-R.; Lee, G.; Ryu, E.K. Morphologically homogeneous, pH-responsive gold nanoparticles for non-invasive imaging of HeLa cancer. Nanomed. Nanotechnol. Biol. Med. 2021, 34, 102394. [Google Scholar] [CrossRef]
- Mirza, A.Z.; Shamshad, H. Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur. J. Med. Chem. 2011, 46, 1857–1860. [Google Scholar] [CrossRef] [PubMed]
- Alle, M.; Reddy, G.B.; Kim, T.H.; Park, S.H.; Lee, S.H.; Kim, J.-C. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr. Polym. 2019, 229, 115511. [Google Scholar] [CrossRef]
- Fremont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.K.; Thennarasu, S.; Mandal, A.B. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity. Colloids Surf. B Biointerfaces 2014, 114, 138–143. [Google Scholar] [CrossRef]
- Annaji, M.; Poudel, I.; Boddu, S.H.S.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep. 2021, 4, 1353. [Google Scholar] [CrossRef]
- Alarcon de la Lastra, C.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef]
- Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazue, F.; Ghiringhelli, F.; Latruffe, N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 48–59. [Google Scholar] [CrossRef]
- Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer 2014, 21, 209–225. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, K.; Cheng, L.; Yan, B.; Qian, W.; Cao, J.; Li, J.; Wu, E.; Ma, Q.; Yang, W. Resveratrol and cancer treatment: Updates. Ann. N. Y. Acad. Sci. 2017, 1403, 59–69. [Google Scholar] [CrossRef]
- Vesely, O.; Baldovska, S.; Kolesarova, A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13, 3095. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-S.; Ren, B.; Yang, X.; Cai, Z.-C.; Zhao, X.-J.; Zhao, M.-X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals 2021, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes. Int. J. Mol. Med. 2021, 47, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Zadorozhna, M.; Tataranni, T.; Mangieri, D. Piperine: Role in prevention and progression of cancer. Mol. Biol. Rep. 2019, 46, 5617–5629. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 16. [Google Scholar] [CrossRef]
- Benayad, S.; Wahnou, H.; El Kebbaj, R.; Liagre, B.; Sol, L.; Oudghiri, M.; Saad, E.M.; Duval, R.E.; Limami, Y. The Promise of Piperine in Cancer Chemoprevention. Cancers 2023, 15, 5488. [Google Scholar] [CrossRef]
- Lim, J.S.; Lee, D.Y.; Lim, J.H.; Oh, W.K.; Park, J.T.; Park, S.C.; Cho, K.A. Piperine: An Anticancer and Senostatic Drug. Front. Biosci. 2022, 27, 137. [Google Scholar] [CrossRef]
- Johnson, J.J.; Nihal, M.; Siddiqui, I.A.; Scarlett, C.O.; Bailey, H.H.; Mukhtar, H.; Ahmad, N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res. 2011, 55, 1169–1176. [Google Scholar] [CrossRef]
- Tak, J.K.; Lee, J.H.; Park, J.-W. Resveratrol and piperine enhance radiosensitivity of tumor cells. BMB Rep. 2012, 45, 242–246. [Google Scholar] [CrossRef]
- Tantawy, A.H.; Meng, X.G.; Marzouk, A.A.; Fouad, A.; Abdelazeem, A.H.; Youssif, B.G.M.; Jiang, H.; Wang, M.Q. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv. 2021, 11, 25738–25751. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, Z.; Shi, J. Pharmacological effects of icariin. Adv. Pharmacol. 2020, 87, 197–203. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano 2020, 14, 4816–4828. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L.; Xia, Y.; Guo, C.; Kong, L. Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway. Biol. Pharm. Bull. 2015, 38, 277–284. [Google Scholar] [CrossRef]
- Bi, Z.; Zhang, W.; Yan, X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed. Pharmacother. 2022, 151, 113180. [Google Scholar] [CrossRef]
- Pavliashvili, T.; Kalabegishvili, T.; Janjalia, M.; Ginturi, E.; Tsertsvadze, G. Synthesis of gold nanoparticles from chloroauric acid using red wine. Eur. Chem. Bull. 2017, 6, 192–195. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Lan, S.; Rong, L.; Liu, Y.; Sheng, Y.; Zhang, H.; Yang, B. Seedless synthesis of gold nanorods using resveratrol as a reductant. Nanotechnology 2016, 27, 165601. [Google Scholar] [CrossRef] [PubMed]
- Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 2014, 9, 4007–4021. [Google Scholar] [CrossRef]
- Ujica, M.A.; Dobrota, C.-T.; Tomoaia, G.; Mocanu, A.; Rosoiu, C.-L.; Mang, I.; Raischi, V.; Tomoaia-Cotisel, M. Gold nanoparticles: From synthesis through functionalization to biomedical applications. Acad. Rom. Sci. Ann. Ser. Biol. Sci. 2024, 13, 145–167. [Google Scholar] [CrossRef]
- Park, S.; Cha, S.-H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mat. Sci. Eng. C-Mater. 2016, 58, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Fadel, M.; Kassab, K.; Youssef, T.; El-Kholy, A.I. One-step synthesis of Phyto-polymer coated gold nanospheres as a delivery system to enhance resveratrol cytotoxicity. Drug Dev. Ind. Pharm. 2019, 45, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.K.; Yang, L.; Yung, L.-Y.L.; Ong, C.-N.; Ong, W.-Y.; Yu, L.E. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010, 31, 9023–9030. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, J.; Wang, L.; Song, S.; Fan, C.; Li, G. A Centrifugation-based Method for Preparation of Gold Nanoparticles and its Application in Biodetection. Int. J. Mol. Sci. 2007, 8, 526–532. [Google Scholar] [CrossRef] [PubMed Central]
- Robertson, J.D.; Rizzello, L.; Avila-Olias, M.; Gaitzsch, J.; Contini, C.; Magon, M.S.; Renshaw, S.A.; Battaglia, G. Purification of Nanoparticles by Size and Shape. Sci. Rep. 2016, 6, 27494. [Google Scholar] [CrossRef]
- Lucaciu, O.; Soriţău, O.; Gheban, D.; Ciuca, D.R.; Virtic, O.; Vulpoi, A.; Dirzu, N.; Câmpian, R.; Băciuţ, G.; Popa, C.; et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015, 15, 114. [Google Scholar] [CrossRef]
- Garbo, C.; Locs, L.; D’Este, M.; Demazeau, G.; Mocanu, A.; Roman, C.; Horovitz, O.; Tomoaia-Cotisel, M. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Int. J. Nanomed. 2020, 15, 1037–1058. [Google Scholar] [CrossRef]
- Tomoaia-Cotisel, M.; Tomoaia-Cotisel, A.; Yupsanis, T.; Tomoaia, G.; Balea, I.; Mocanu, A.; Racz, C. Coating layers of major storage protein from aleurone cells of barley studied by atomic force microscopy. Rev. Roum. Chim. 2006, 51, 1181–1185. [Google Scholar]
- Cojocaru, I.; Tomoaia-Cotisel, A.; Mocanu, A.; Yupsanis, T.; Tomoaia-Cotisel, M. The effect of globular protein from aleurone cells of barley on stearic acid monolayers. Rev. Chim. 2017, 68, 1470–1475. [Google Scholar] [CrossRef]
- Racz, C.-P.; Racz, L.Z.; Floare, C.G.; Tomoaia, G.; Horovitz, O.; Riga, S.; Kacso, I.; Borodi, G.; Sarkozi, M.; Mocanu, A.; et al. Curcumin and whey protein concentrate binding: Thermodynamic and structural approach. Food Hydrocoll. 2023, 139, 108547. [Google Scholar] [CrossRef]
- Venditti, I.; Iucci, G.; Fratoddi, I.; Cipolletti, M.; Montalesi, E.; Marino, M.; Secchi, V.; Battocchio, C. Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. Nanomaterials 2020, 10, 1898. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Hua, L.H.; Chen, B.H. Comparative Study on Inhibition of Pancreatic Cancer Cells by Resveratrol Gold Nanoparticles and a Resveratrol Nanoemulsion Prepared from Grape Skin. Pharmaceutics 2021, 13, 1871. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Zeng, J.; Li, Z.; Zuo, H.; Huang, C.; Zhao, X. Nano-Gold Loaded with Resveratrol Enhance the Anti-Hepatoma Effect of Resveratrol In Vitro and In Vivo. J. Biomed. Nanotechnol. 2019, 15, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Thipe, V.C.; Panjtan Amiri, K.; Bloebaum, P.; Raphael Karikachery, A.; Khoobchandani, M.; Katti, K.K.; Jurisson, S.S.; Katti, K.V. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomed. 2019, 14, 4413–4428. [Google Scholar] [CrossRef]
- Iram, S.; Zahera, M.; Khan, S.; Khan, I.; Syed, A.; Ansary, A.A.; Ameen, F.; Shair, O.H.M.; Khan, M.S. Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surf. B Biointerfaces 2017, 160, 254–264. [Google Scholar] [CrossRef]
- Sanchit, A.; Baljinder, S.; Sandeep, K.; Arun, K.; Arti, S.; Charan, S. Piperine loaded drug delivery systems for improved biomedical applications: Current status and future directions. Health Sci. Rev. 2023, 9, 100138. [Google Scholar] [CrossRef]
- Abolhassani, H.; Safavi, M.S.; Handali, S.; Nosrati, M.; Shojaosadati, S.A. Synergistic Effect of Self-Assembled Curcumin and Piperine Co-Loaded Human Serum Albumin Nanoparticles on Suppressing Cancer Cells. Drug Dev. Ind. Pharm. 2020, 46, 1647–1655. [Google Scholar] [CrossRef]
- Gilani, S.J.; Bin-Jumah, M.N.; Fatima, F. Development of Statistically Optimized Piperine-Loaded Polymeric Nanoparticles for Breast Cancer: In Vitro Evaluation and Cell Culture Studies. ACS Omega 2023, 8, 44183–44194. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Azam, S.; Kim, I.S.; Choi, D.K. Neuroprotective Effects of Black Pepper and Its Bioactive Compounds in Age-Related Neurological Disorders. Aging Dis. 2023, 14, 750–777. [Google Scholar] [CrossRef] [PubMed]
- Anand, B.G.; Shekhawat, D.S.; Dubey, K.; Kar, K. Uniform, Polycrystalline, and Thermostable Piperine-Coated Gold Nanoparticles to Target Insulin Fibril Assembly. ACS Biomater. Sci. Eng. 2017, 3, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, S.; Anand, B.G.; Fatima, M.; Prajapati, K.P.; Yadav, S.S.; Kar, K.; Mondal, A.C. Piperine-Coated Gold Nanoparticles Alleviate Paraquat-Induced Neurotoxicity in Drosophila melanogaster. ACS Chem. Neurosci. 2020, 11, 3772–3785. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Ding, D.N.; Wang, Y.R.; Liu, S.X.; Peng, C.; Shen, F.; Zhu, X.Y.; Li, C.; Tang, L.P.; Han, F.J. Icariin as a potential anticancer agent: A review of its biological effects on various cancers. Front Pharmacol. 2023, 14, 1216363. [Google Scholar] [CrossRef]
- Huang, S.; Xie, T.; Liu, W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J. Buon. 2019, 24, 990–996. [Google Scholar] [PubMed]
- Jiang, S.; Chang, H.; Deng, S.; Fan, D. Icariin enhances the chemosensitivity of cisplatin-resistant ovarian cancer cells by suppressing autophagy via activation of the AKT/mTOR/ATG5 pathway. Int. J. Oncol. 2019, 54, 1933–1942. [Google Scholar] [CrossRef]
- Cheng, X.; Tan, S.; Duan, F.; Yuan, Q.; Li, Q.; Deng, G. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer. 2019, 26, 766–775. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Li, Y.; Song, Q.; Long, N.; Fu, X.; Wang, Y.; He, Y.; Yan, H.; Li, C.; et al. Icariin-loaded selenium-gold multi-shell nanocomposites with NIR-II response release to relieve post-damaged bone microenvironment for osteoporosis synergy therapy. J. Chem. Eng. 2024, 499, 156421. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, J.; Zhou, D.; Weng, Y.; Qin, W.; Liu, C.; Lv, S.; Wang, W.; Zhao, X. Electrospun Icariin-Loaded Core-Shell Collagen, Polycaprolactone, Hydroxyapatite Composite Scaffolds for the Repair of Rabbit Tibia Bone Defects. Int. J. Nanomed. 2020, 15, 3039–3056. [Google Scholar] [CrossRef]
- Al-Abd, A.M.; Mahmoud, A.M.; El-Sherbiny, G.A.; El-Moselhy, M.A.; Nofal, S.M.; El-Latif, H.A.; El-Eraky, W.I.; El-Shemy, H.A. Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif. 2011, 44, 591–601. [Google Scholar] [CrossRef]
- Dudka, J.; Gieroba, R.; Korga, A.; Burdan, F.; Matysiak, W.; Jodlowska-Jedrych, B.; Mandziuk, S.; Korobowicz, E.; Murias, M. Different effects of resveratrol on dose-related Doxorubicin-induced heart and liver toxicity. Evid. Based Complement. Alternat. Med. 2012, 2012, 606183. [Google Scholar] [CrossRef]
- Matsumura, N.; Zordoky, B.N.; Robertson, I.M.; Hamza, S.M.; Parajuli, N.; Soltys, C.M.; Beker, D.L.; Grant, M.K.; Razzoli, M.; Bartolomucci, A.; et al. Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes. Cardiovasc. Res. 2018, 114, 1350–1359. [Google Scholar] [CrossRef]
- Ivanova, D.; Zhelev, Z.; Semkova, S.; Aoki, I.; Bakalova, R. Resveratrol Modulates the Redox-status and Cytotoxicity of Anticancer Drugs by Sensitizing Leukemic Lymphocytes and Protecting Normal Lymphocytes. Anticancer Res. 2019, 39, 3745–3755. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Wang, Q.; Ka Yan Ho, R.L.; Huang, Y.; Chow, M.S.S.; Kei Lam, C.W.; Zuo, Z. Enhanced anti-tumor efficacy and mechanisms associated with docetaxel-piperine combination- in vitro and in vivo investigation using a taxane-resistant prostate cancer model. Oncotarget 2017, 9, 3338–3352. [Google Scholar] [CrossRef]
- Marques da Fonseca, L.; Jacques da Silva, L.R.; Santos Dos Reis, J.; Rodrigues da Costa Santos, M.A.; de Sousa Chaves, V.; Monteiro da Costa, K.; Sa-Diniz, J.N.; Freire de Lima, C.G.; Morrot, A.; Nunes Franklim, T.; et al. Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. Medicines 2020, 7, 19. [Google Scholar] [CrossRef]
- Tan, H.L.; Chan, K.G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Lee, L.H.; Goh, B.H. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives. Front Pharmacol. 2016, 7, 191. [Google Scholar] [CrossRef]
- Zhang, D.C.; Liu, J.L.; Ding, Y.B.; Xia, J.G.; Chen, G.Y. Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer by suppressing NF-κB. Acta Pharmacol. Sin. 2013, 34, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Di, W.; Gao, X.; Guo, Y.; Tang, T.; Bai, X.; Cao, H. Materials, Syntheses and Biomedical Applications of Nano-Quercetin Formulations: A Comprehensive Literature Review. Int. J. Nanomed. 2025, 20, 8729–8764. [Google Scholar] [CrossRef] [PubMed]
Solution | Solvent | Chemical Formula | Molar Mass (g/mol) | Concentration | |
---|---|---|---|---|---|
mg/L | mmol/L | ||||
GNP_R, GNP_R1 | Water | Au | 197 | 179 | 0.91 |
Doxorubicin, D | Water | C27H29NO11 | 543.5 | 42 | 0.077 |
Resveratrol, R | PBS | C14H12O3 | 228.2 | 30 | 0.131 |
Piperine, P | PBS | C17H19NO3 | 285.3 | 40 | 0.140 |
Icariin, Ic | DMSO, PBS | C33H40O15 | 676.7 | 100 | 0.148 |
Samples (COMP) | Concentration µmol/L | Mole Ratios | ||||
---|---|---|---|---|---|---|
Concentration µg/mL | Au | D | R | P | Ic | |
1—GNP_R1 9.1 | 46.2 | - | - | - | - | - |
2—GNP_R1 5.9, R 0.5 | 29.9 | - | 2.19 | - | - | Au/R 13.7 |
3—GNP_R1 5.9, D 0.7 | 29.9 | 1.29 | - | - | - | Au/D 23.2 |
4—GNP_R1 4.5, R 0.38, D 0.52 | 22.8 | 0.96 | 1.66 | - | - | Au/D 23.8; Au/R 13.7; D/R 0.58 |
5—GNP_R1 5.9, P 0.66 | 29.9 | - | - | 2.31 | - | Au/P 12.9 |
6—GNP_R1 5.9, Ic 1.66 | 29.9 | - | - | - | 2.45 | Au/Ic 12.2 |
7—GNP_R1 4.8, Ic 1.3, D 0.42 | 24.4 | 0.773 | - | - | 1.92 | Au/D 31.6; Au/Ic 12.7; D/Ic 0.40 |
8—GNP_R1 4.8, P 0.53, D 0.42 | 24.4 | 0.773 | - | 1.86 | - | Au/D 31.6; Au/P 13.1; D/P 0.416 |
9—GNP_R1 4.8, Ic 1.3, D 2 | 24.4 | 3.68 | - | - | 1.92 | Au/D 6.63; Au/Ic 12.7; D/Ic 1.92 |
10—GNP_R1 4.8, P 0.53, D 2 | 24.4 | 3.68 | - | 1.86 | - | Au/D 6.63; Au/P 13.1; D/P 1.98 |
11—D 2.1 | - | 3.86 | - | - | - | - |
12—D 6.25 | - | 11.5 | - | - | - | - |
13—D 12.5 | - | 23.0 | - | - | - |
Samples (COMP) | Concentration, µmol/L | Mole Ratios | ||||
---|---|---|---|---|---|---|
Concentration, µg/mL | Au | D | R | P | Ic | |
1—D 2 | - | 3.68 | - | - | - | - |
2—R 0.2, D2 | - | 3.68 | 0.88 | - | - | D/R 4.18 |
3—P 0.5, D 2 | - | 3.68 | - | 1.75 | - | D/P 2.10 |
4—R 0.5, P 0.5, D 2 | - | 3.68 | 2.19 | 1.75 | - | D/R 1.67; D/P 2.10; R/P 1.25 |
5—Ic 1, D 2 | - | 3.68 | - | - | 1.48 | D/Ic 2.49 |
6—GNP_R1 4.8, D 2 | 24.4 | 3.68 | - | - | - | Au/D 6.63 |
7—GNP_R1 4.8, R 0.2, D 2 | 24.4 | 3.68 | 0.88 | - | - | Au/D 6.63; Au/R 27.7; D/R 4.18 |
8—GNP_R1 4.8, P 0.5, D 2 | 24.4 | 3.68 | - | 1.75 | - | Au/D 6.63; Au/P 13.9; D/P 2.10 |
9—GNP_R1 4.8, Ic 1, D 2 | 24.4 | 3.68 | - | - | 1.48 | Au/D 6.63; Au/Ic 16.5; D/Ic 2.49 |
10—GNP_ R1 3.6, R 0.14, P 0.35, Ic 0.7, D 2 | 18.3 | 3.68 | 0.61 | 1.23 | 1.03 | Au/D 4.97; Au/R 30.0; Au/P 14.9; Au/Ic 17.8; D/R 6.03; D/P 2.99; D/Ic 3.57; R/P 0.50; R/Ic 0.59; P/Ic 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, A.; Ujica, M.A.; Horovitz, O.; Tomoaia, G.; Soritau, O.; Dobrota, C.T.; Popa, C.R.; Kun, A.; Benea, H.-R.-C.; Mang, I.M.; et al. Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells. Biomedicines 2025, 13, 1861. https://doi.org/10.3390/biomedicines13081861
Mocanu A, Ujica MA, Horovitz O, Tomoaia G, Soritau O, Dobrota CT, Popa CR, Kun A, Benea H-R-C, Mang IM, et al. Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells. Biomedicines. 2025; 13(8):1861. https://doi.org/10.3390/biomedicines13081861
Chicago/Turabian StyleMocanu, Aurora, Madalina Anca Ujica, Ossi Horovitz, Gheorghe Tomoaia, Olga Soritau, Cristina Teodora Dobrota, Cristina Roxana Popa, Attila Kun, Horea-Rares-Ciprian Benea, Ionel Marius Mang, and et al. 2025. "Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells" Biomedicines 13, no. 8: 1861. https://doi.org/10.3390/biomedicines13081861
APA StyleMocanu, A., Ujica, M. A., Horovitz, O., Tomoaia, G., Soritau, O., Dobrota, C. T., Popa, C. R., Kun, A., Benea, H.-R.-C., Mang, I. M., Borodi, G., Raischi, V., Roman, M., Pop, L. C., & Tomoaia-Cotisel, M. (2025). Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells. Biomedicines, 13(8), 1861. https://doi.org/10.3390/biomedicines13081861