Mortality Predictors in Short-Term Mechanical Circulatory Support as a Bridge to Heart Transplantation
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Surgical Technique
2.3. Statistical Analysis
3. Results
3.1. Bivariate Analysis
3.2. Multivariate Analysis
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancini, D.; Colombo, P.C. Left ventricular assist devices. A rapidly evolving alternative to transplant. J. Am. Coll. Cardiol. 2015, 65, 2542–2555. [Google Scholar] [CrossRef]
- Poptsov, V.; Spirina, E.; Dogonasheva, A.; Zolotova, E. Five years’ experience with a peripheral veno-arterial ECMO for mechanical bridge to heart transplantation. J. Thorac. Dis. 2019, 11, S889–S901. [Google Scholar] [CrossRef]
- Barge-Caballero, E.; Almenar-Bonet, L.; González-Vilchez, F.; Lambert-Rodríguez, J.L.; González-Costello, J.; Segovia-Cubero, J.; Castel-Lavilla, M.A.; Delgado-Jiménez, J.; Garrido-Bravo, I.P.; Rangel-Sousa, D.; et al. Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart trasplantation; A nationwide Spanish registry. Eur. J. Heart Fail. 2018, 20, 178–186. [Google Scholar] [CrossRef]
- Domínguez-Massa, C.; Pérez-Guillén, M.; Sirgo-González, J.; Briz-Echeverría, P.M.; Rincón-Almanza, J.A.; Aguirre-Ramón, C.M.; Heredia-Cambra, T.; Dalmau-Sorlí, M.J.; Torregrosa-Puerta, S.; Martín-González, I.; et al. Resultados del uso de dispositivos de asistencia ventricular de corta-media duración como puente al trasplante cardiaco. Cirugia Cardiovasc. 2022, 29, 319–322. [Google Scholar] [CrossRef]
- Haddad, O.; Sareyyupoglu, B.; Goswami, R.M.; Bitargil, M.; Patel, P.C.; Jacob, S.; El-Sayed Ahmed, M.M.; Leoni Moreno, J.C.; Yip, D.S.; Landolfo, K.; et al. Short-term outcomes of heart transplant patients bridged with Impella 5.5 ventricular assist device. ESC Heart Fail. 2023, 10, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Kawabori, M.; Critsinelis, A.C.; Patel, S.; Nordan, T.; Thayer, K.L.; Chen, F.Y.; Couper, G.S. Total ventricular mass oversizing +50% or greater was a predictor of worse 1-year survival after heart transplantation. J. Thorac. Cardiovasc. Surg. 2023, 166, 1145–1154.e9. [Google Scholar] [CrossRef]
- Domínguez-Massa, C.; Pérez-Guillén, M.; Zarragoikoetxea-Jauregui, I.; Tébar-Botí, E.; Torregrosa-Puerta, S.; Dalmau-Sorlí, M.J.; Heredia-Cambra, T.; Guevara-Bonilla, A.; Rincón-Almanza, A.; López-Vilella, R.; et al. Predictive factor of mortality in Extracorporeal Membrane Oxygenation assisted patients as a bridge to heart transplantation. J. Cardiothorac. Vasc. Anesthesia 2025, 39, 2111–2120. [Google Scholar] [CrossRef]
- López-Vilella, R.; Pérez Guillén, M.; Guerrero Cervera, B.; Gimeno Costa, R.; Zarragoikoetxea Jauregui, I.; Pérez Esteban, F.; Carmona, P.; Heredia Cambra, T.; Talavera Peregrina, M.; Pajares Moncho, A.; et al. Comparative temporal analysis of morbidity and early mortality in heart transplantation with Extracorporeal Membrane Oxygenation support: Exploring trends over time. Biomedicines 2024, 12, 2109. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guillén, M.; Domínguez-Massa, C.; Heredia-Cambra, T.; Torregrosa-Puerta, S.; Almenar-Bonet, L.; Martínez-León, J.B. Percutaneous biventricular mechanical assistance as a bridge to heart transplant. Rev. Esp. Cardiol. (Engl. Ed.) 2024, 77, 101–103. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Clerkin, K.; Truby, L.K.; Francke, M.; Fried, J.; Masoumi, A.; Garan, A.R.; Farr, M.A.; Takayama, H.; Takeda, K.; et al. ECMO as a bridge to left ventricular assist device o heart transplantation. JACC Heart Fail. 2021, 9, 281–289. [Google Scholar] [CrossRef]
- Sef, D.; Mohite, P.; De Robertis, F.; Verzelloni Sef, A.; Mahesh, B.; Stock, U.; Simon, A. Bridge to heart transplantation using the Levitronix Centrimag short-term ventricular assist device. Artif. Organs 2020, 44, 1006–1008. [Google Scholar] [CrossRef]
- Mohite, P.N.; Zych, B.; Popov, A.F.; Sabashnikov, A.; Sáez, D.G.; Patil, N.P.; Amrani, M.; Bahrami, T.; DeRobertis, F.; Maunz, O.; et al. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: Use beyond 30 days. Eur. J. Cardio-Thorac. Surg. 2013, 44, e310–e315. [Google Scholar] [CrossRef]
- Takayama, H.; Soni, L.; Kalesan, B.; Truby, L.K.; Ota, T.; Cedola, S.; Khalpey, Z.; Uriel, N.; Colombo, P.; Mancini, D.M.; et al. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ. Heart Fail. 2014, 7, 799–806. [Google Scholar] [CrossRef]
- Cabezón-Villalba, G.; Barge-Caballero, E.; González-Vílchez, F.; Castel-Lavilla, M.Á.; Gómez-Bueno, M.; Almenar-Bonet, L.; González-Costello, J.; Lambert-Rodríguez, J.L.; Martínez-Sellés, M.; de la Fuente-Galán, L.; et al. Use of a surgically implanted, nondischargeable, extracorporeal continuous flow circulatory support system as a bridge to heart transplant. Rev. Esp. Cardiol. (Engl. Ed.) 2024, 77, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Borisenko, O.; Wylie, G.; Payne, J.; Bjessmo, S.; Smith, J.; Yonan, N.; Firmin, R. Thoratec CentriMag for temporary treatment of refractory cardiogenic shock or severe cardiopulmonary insufficiency: A systematic review and meta-analysis of observational studies. ASAIO J. 2014, 60, 487–497. [Google Scholar] [CrossRef]
- Aguirre-Ramón, C.M.; Domínguez-Massa, C.; Pérez-Guillén, M.; Guevara-Bonilla, A.A.; Briz-Echeverría, P.M.; Rincón-Almanza, J.A.; Martínez-León, J.B. Uso de bypass extraanatómico para el manejo de complicaciones con ECPELLA. Arch. Cardiol. Mex. 2023, 93, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Gill, G.; Rowe, G.; Chen, Q.; Malas, J.; Thomas, J.; Peiris, A.; Cole, R.; Chikwe, J.; Megna, D.; Emerson, D. Bridging with surgically placed microaxial left ventricular assist devices: A high-volume centre experience. Eur. J. Cardio-Thorac. Surg. 2023, 63, ezad116. [Google Scholar] [CrossRef]
- Zein, R.; Patel, C.; Mercado-Alamo, A.; Schreiber, T.; Kaki, A. A review of the Impella devices. Interv. Cardiol. 2022, 17, e05. [Google Scholar] [CrossRef]
- Saito, S.; Okubo, S.; Matsuoka, T.; Hirota, S.; Yokoyama, S.; Kanazawa, Y.; Takei, Y.; Tezuka, M.; Tsuchiya, G.; Konishi, T.; et al. Impella—Current issues and future expectations for the percutaneous, microaxial flow left ventricular assist device. J. Cardiol. 2024, 83, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, Y.; Bauer, S.; Immohr, M.B.; Mehdiani, A.; Rellecke, P.; Tudorache, I.; Horn, P.; Westenfeld, R.; Boeken, U.; Aubin, H.; et al. Clinical outcomes of hundred large Impella implantations in cardiogenic shock patients base on individual clinical scenarios. Artif. Organs 2023, 47, 1874–1884. [Google Scholar] [CrossRef]
- González-Costello, J.; Pérez-Blanco, A.; Delgado-Jiménez, J.; González-Vílchez, F.; Mirabet, S.; Sandoval, E.; Cuenca-Castillo, J.; Camino, M.; Segovia-Cubero, J.; Sánchez-Salado, J.C.; et al. Review of the allocation criteria for heart transplant in Spain in 2023. SEC-Heart Failure Association/ONT/SECCE consensus document. Rev. Esp. Cardiol. (Engl. Ed.) 2024, 77, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef] [PubMed]
- Baumwol, J. “I Need Help”—A mnemonic to aid timely referral in advanced heart failure. J. Heart Lung Transplant. 2017, 36, 593–594. [Google Scholar] [CrossRef]
- Funamoto, M.; Kunavarapu, C.; Kwan, M.D.; Matsuzaki, Y.; Shah, M.; Ono, M. Single center experience and early outcomes of Impella 5.5. Front. Cardiovasc. Med. 2023, 10, 1018203. [Google Scholar] [CrossRef]
- Chung, J.C.; Tsai, P.R.; Chou, N.K.; Chi, N.H.; Wang, S.S.; Ko, W.J. Extracorporeal membrane oxygenation bridge to adult heart transplantation. Clin. Transplant. 2010, 24, 375–380. [Google Scholar] [CrossRef]
- Barge-Caballero, G.; Castel-Lavilla, M.A.; Almenar-Bonet, L.; Garrido-Bravo, I.P.; Delgado, J.F.; Rangel-Sousa, D.; González-Costello, J.; Segovia-Cubero, J.; Farrero-Torres, M.; Lambert-Rodríguez, J.L.; et al. Venoarterial extracorporeal membrane oxygenation with or without simultaneous intra-aortic balloon pump support as a direct bridge to heart transplantation: Results from a nationwide Spanish registry. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 670–677. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, S.Y.; Ju, M.H.; Kim, S.H.; Choi, J.H.; Chon, M.K.; Lee, S.H.; Hwang, K.W.; Kim, J.S.; Park, Y.H.; et al. Direct extracorporeal membrane oxygenation bridged heart transplantation: The importance of multi-organ failure. Int. J. Heart Fail. 2023, 5, 91–99. [Google Scholar] [CrossRef]
- Montisci, A.; Donatelli, F.; Cirri, S.; Coscioni, E.; Maiello, C.; Napoli, C. Veno-arterial extracorporeal membrane oxygenation as bridge to heart transplantation: The way forward. Transplant. Direct 2021, 7, e720. [Google Scholar] [CrossRef]
- Coutance, G.; Jacob, N.; Demondion, P.; Nguyen, L.S.; Bouglé, A.; Bréchot, N.; Varnous, S.; Leprince, P.; Combes, A.; Lebreton, G. Favorable outcomes of a direct heart transplantation strategy in selected patients on extracorporeal membrane oxygenation support. Crit. Care Med. 2020, 48, 498–506. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in infarct-related cardiogenic shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; O’Horo, J.C.; Antharam, P.; Ananthaneni, S.; Vallabhajosyula, S.; Stulak, J.M.; Dunlay, S.M.; Holmes, D.R., Jr.; Barsness, G.W. Venoarterial extracorporeal membrane oxygenation with concomitant Impella versus venoarterial extracorporeal membrane oxygenation for cardiogenic shock. ASAIO J. 2020, 66, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Siddique, A.; Merrit-Genore, H.; Um, J. What are the results of venoarterial extracorporeal membrane oxygenation bridging to heart transplantation? Interact. Cardiovasc. Thorac. Surg. 2019, 29, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Zalawadiya, S.; Fudim, M.; Bhat, G.; Cotts, W.; Lindenfeld, J. Extracorporeal membrane oxygenation support and post-heart transplant outcomes among United States adults. J. Heart Lung Transplant. 2017, 36, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Lechiancole, A.; Sponga, S.; Isola, M.; Vendramin, I.; Maiani, M.; Livi, U. Hearts transplantation in patients supported by ECMO: Is. the APACHE IV score a predictor of survival? Artif. Organs 2018, 42, 670–673. [Google Scholar] [CrossRef]
- Fukuhara, S.; Takeda, K.; Kurlansky, P.A.; Naka, Y.; Takayama, H. Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults. J. Thorac. Cardiovasc. Surg. 2018, 155, 1607–1618.e6. [Google Scholar] [CrossRef] [PubMed]
- Jasseron, C.; Lebreton, G.; Cantrelle, C.; Legeai, C.; Leprince, P.; Flecher, E.; Sirinelli, A.; Bastien, O.; Dorent, R. Impact of heart transplantation on survival in patients on venoarterial extracorporeal membrane oxygenation at listing in France. Transplantation 2016, 100, 1979–1987. [Google Scholar] [CrossRef]
- Mishra, V.; Fiane, A.E.; Winsnes, B.A.; Geiran, O.; Sørensen, G.; Hagen, T.P.; Gude, E. Cardiac replacement therapies: Outcomes and costs for heart transplantation versus circulatory assist. Scand. Cardiovasc. J. 2017, 51, 1–7. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yang, J.H.; Sung, K.; Jeong, D.S.; Park, P.W.; Kim, W.S.; Lee, Y.T.; Jeon, E.S. Extracorporeal life support as a bridge to heart transplantation: Importance of organ failure in recipient selection. ASAIO J. 2015, 61, 139–143. [Google Scholar] [CrossRef]
- Yin, M.Y.; Wever-Pinzon, O.; Mehra, M.R. Post-transplant outcome in patients bridged to transplant with temporary mechanical circulatory support devices. J. Heart Lung Transplant. 2019, 38, 858–869. [Google Scholar] [CrossRef]
- Sultan, I.; Kilic, A.; Kilic, A. Short-term circulatory and right ventricle support in cardiogenic shock: Extracorporeal Membrane Oxygenation, Tandem Heart, CentriMag, and Impella. Heart Fail. Clin. 2018, 14, 579–583. [Google Scholar] [CrossRef]
- Abaunza, M.; Kabbani, L.S.; Nypaver, T.; Greenbaum, A.; Baleaj, P.; Qureshi, S.; Alqarqaz, M.A.; Shepard, A.D. Incidence and prognosis of vascular complications after percutaneous placement of left ventricular assist device. J. Vasc. Surg. 2015, 62, 417–423. [Google Scholar] [CrossRef]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial flow pump or standard care in infarct-related cardiogenic chock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Sundermeyer, J.; Blankenberg, S.; Colson, P.; Eckner, D.; Eden, M.; Eitel, I.; Frank, D.; Frey, N.; Graf, T.; et al. Timing of active left ventricular unloading in patients on venoarterial Extracorporeal Membrane Oxygenation therapy. JACC Heart Fail. 2023, 11, 321–330. [Google Scholar] [CrossRef]
- Klein, A.; Beske, R.P.; Hassager, C.; Lensen, L.O.; Eiskjær, H.; Mangner, N.; Linke, A.; Polzin, A.; Schulze, P.C.; Skurk, C.; et al. Treating older patients in cardiogenic shock with a microaxial flow pump: Is it DANGERous? J. Am. Coll. Cardiol. 2025, 85, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Merdji, H.; Levy, B.; Jung, C.; Ince, C.; Siegemund, M.; Meziani, F. Microcirculatory dysfunction in cardiogenic shock. Ann. Intensive Care 2023, 13, 38. [Google Scholar] [CrossRef]
- Osman, M.; Syed, M.; Patel, B.; Munir, M.B.; Skeiri, B.; Caccamo, M.; Sokos, G.; Balla, S.; Basir, M.B.; Kapur, N.K.; et al. Invasive hemodynamic monitoring in cardiogenic shock is associated with lower in-hospital mortality. J. Am. Heart Assoc. 2021, 10, e021808. [Google Scholar] [CrossRef]
- Taleb, I.; Koliopoulou, A.G.; Tandar, A.; Mckellar, S.H.; Tonna, J.E.; Nativi-Nicolau, J.; Alvarez Villela, M.; Welt, F.; Stehlik, J.; Gilbert, E.M.; et al. Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: A proof of concept. Circulation 2019, 140, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef]
- O’Neill, T.J.T.; Pisani, B. Size matching in heart transplantation donor selection: “Too big to fail”? J. Heart Lung Transplant. 2017, 36, 934–935. [Google Scholar] [CrossRef]
- Holzhauser, L.; Imamura, T.; Bassi, N.; Fujino, T.; Nitta, D.; Kanelidis, A.J.; Narang, N.; Kim, G.; Raikhelkar, J.; Murk, C.; et al. Increasing heart transplant donor pool by liberalization of size matching. J. Heart Lung Transplant. 2019, 38, 1197–1205. [Google Scholar] [CrossRef]
- Huang, X.; Lin, X. Impact of obesity on outcomes of extracorporeal membrane oxygenation support: A systematic review and meta-analysis. BMC Pulm. Med. 2024, 24, 157. [Google Scholar] [CrossRef]
- Pickkers, P. The obesity Paradox in patients in need of extracorporeal membrane oxygenation. Am. J. Respir. Crit. Care Med. 2023, 208, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Zweck, E.; Kanwar, M.; Sinsha, S.S.; Bhimaraj, A.; Li, B.; Abraham, J.; Vallabhajosyula, S.; Hernandez-Montfort, J.; Kataria, R.; et al. Body mass index and mortality in cardiogenic shock. ASAIO J. 2024, 70, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Shudo, Y.; Cohen, J.E.; Lingala, B.; He, H.; Woo, Y.J. Impact of donor obesity on outcomes after orthotopic heart transplantation. J. Am. Heart Assoc. 2018, 7, e010253. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, C.; Wang, Y.; Liu, M.; Shang, X.; Dong, N. Impact of donor-recipient BMI ratio on survival outcomes of heart transplant recipients: A retrospective analysis study. Clin. Cardiol. 2024, 47, e70010. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.C.; Perch, M.; Zuckermann, A.; Cherikh, W.S.; Harhay, M.O.; Hayes, D., Jr.; Hsich, E.; Khush, K.K.; Potena, L.; Sadavarte, A.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eight adult lung transplantation report—2021; focus on recipient characteristics. J. Heart Lung Transplant. 2021, 40, 1060–1072. [Google Scholar] [CrossRef]
- National Transplant Organization (ONT). Activity Report 2024 of the ONT. 2024. Available online: https://www.ont.es (accessed on 26 February 2025).
Total (N = 183) | In-Hospital Mortality (HM) (N = 68) | No In-Hospital Mortality (No-HM) (N = 115) | p-Value | |
---|---|---|---|---|
Demographic data | ||||
Age (years); median (IQR) | 55.5 (14) | 57.6 (11.5) | 53.5 (14) | 0.06 |
Male sex | 76.5% | 75% | 77.4% | 0.712 |
BMI (kg/m2); mean (SD) | 24.6 (4.5) | 25.6 (4.9) | 24.1 (4.1) | 0.029 |
Obesity (BMI > 30 kg/m2) | 10.4% | 16.9% | 7% | 0.037 |
Comorbidities | ||||
Diabetes mellitus | 22.4% | 22.1% | 22.6% | 0.931 |
Dyslipidemia | 32.8% | 35.3% | 31.3% | 0.578 |
Hypertension | 41.5% | 45.6% | 39.1% | 0.392 |
COPD | 10.9% | 10.3% | 11.3% | 0.832 |
Device and implantation data | ||||
VAD-to-HT | 27.9% | 20.6% | 30.2% | <0.001 |
ECMO-to-HT | 60.1% | 51.5% | 65.2% | |
ECMO bridge-to-bridge | 12% | 27.9% | 2.6% | |
Acute coronary syndrome | 24.6% | 33.8% | 19.1% | 0.05 |
Chronic dilated cardiomyopathy | 62.3% | 51.5% | 68.7% | |
Postcardiotomy shock | 7.1% | 10.3% | 5.2% | |
Other etiologies | 6% | 4.4% | 7% | |
In-hospital implantation | 93.4% | 92.6% | 93.9% | 0.738 |
Peri-implant cardiac arrest | 16.9% | 22.1% | 13.9% | 0.156 |
INTERMACS 1 | 61.2% | 72.1% | 54.8% | 0.02 |
Time period 2007–2011 | 19.1% | 13.2% | 22.6% | 0.308 |
Time period 2012–2016 | 27.9% | 29.4% | 27% | |
Time period 2017–2021 | 33.3% | 39.7% | 29.6% | |
Time period 2022–2024 | 19.7% | 17.6% | 20.9% | |
Total support time (days); median (IQR) | 10 (10) | 13 (15) | 8 (8) | <0.001 |
Laboratory data | ||||
Creatinine at 48 h (mg/dL); median (IQR) | 0.9 (0.6) | 1.15 (1) | 0.86 (0.6) | 0.003 |
Pre-implant bilirubin (mg/dL); median (IQR) | 1.4 (1.6) | 1.45 (1.79) | 1.4 (1.52) | 0.617 |
Bilirubin at 48 h (mg/dL); median (IQR) | 1.42 (1.59) | 1.7 (2.26) | 1.4 (1.39) | 0.28 |
Complications | ||||
Hemodialysis | 14.8% | 25% | 8.7% | 0.003 |
Infection | 21.3% | 79.5% | 20.5% | <0.001 |
Local bleeding | 15.3% | 46.4% | 53.6% | 0.27 |
Neurological complications | 7.7% | 14.7% | 3.5% | 0.006 |
Total (N = 147) | In-Hospital Mortality (HM) (N = 32) | No In-Hospital Mortality (No-HM) (N = 115) | p-Value | |
---|---|---|---|---|
Demographic data | ||||
Age (years); median (IQR) | 55.5 (13.2) | 59 (7) | 53.5 (14) | 0.01 |
Male sex | 76.2% | 71.9% | 77.4% | 0.517 |
BMI (kg/m2); mean (SD) | 24.3 (4.2) | 25.2 (4.5) | 24.1 (4.1) | 0.155 |
Obesity (BMI > 30 kg/m2) | 8.8% | 15.6% | 7% | 0.157 |
Comorbidities | ||||
Diabetes mellitus | 23.1% | 25% | 22.6% | 0.777 |
Dyslipidemia | 33.3% | 40.6% | 39.1% | 0.878 |
Hypertension | 39.5% | 40.6% | 62.5% | 0.417 |
COPD | 10.9% | 9.4% | 11.3% | 1 |
Device and implantation data | ||||
VAD-to-HT | 27.9% | 12.5% | 32.2% | 0.032 |
ECMO-to-HT | 68.8% | 78.1% | 65.2% | |
ECMO bridge-to-bridge | 4.1% | 9.4% | 2.6% | |
Acute coronary syndrome | 23.8% | 40.6% | 19.1% | 0.067 |
Chronic dilated cardiomyopathy | 63.9% | 46.9% | 68.7% | |
Postcardiotomy shock | 4.8% | 3.1% | 5.2% | |
Other etiologies | 7.5% | 9.4% | 7% | |
Peri-implant cardiac arrest | 15% | 18.8% | 13.9% | 0.576 |
INTERMACS 1 | 57.8% | 68.8% | 54.8% | 0.157 |
Time period 2007–2011 | 23.1% | 25% | 22.6% | 0.986 |
Time period 2012–2016 | 27.2% | 28.1% | 27% | |
Time period 2017–2021 | 29.3% | 28.1% | 29.6% | |
Time period 2022–2024 | 20.4% | 18.8% | 20.9% | |
Total support time (days); median (IQR) | 8 (8) | 9 (13) | 8 (8) | 0.555 |
Time in Code 0 (days); median (IQR) | 5 (6) | 4.5 (7) | 5 (6) | 0.661 |
Laboratory data | ||||
Lactate at transplant (mmol/L); median (IQR) | 1 (0.7) | 1.35 (0.8) | 0.95 (0.5) | <0.001 |
Creatinine at transplant (mg/dL); median (IQR) | 0.78 (0.5) | 0.95 (0.7) | 0.73 (0.5) | 0.122 |
Bilirubin at transplant (mg/dL); median (IQR) | 1.3 (1.7) | 1.45 (2.83) | 1.24 (1.34) | 0.021 |
Complications | ||||
Hemodialysis | 10.2% | 15.6% | 8.7% | 0.319 |
Infection | 11.6% | 28.1% | 7% | 0.003 |
Neurological complications | 3.4% | 3.1% | 3.5% | 1 |
Duration of IMV (days); median (IQR) | 3 (7) | 6 (8) | 2 (6) | 0.002 |
Absence of IMV at transplant | 59.6% | 43.8% | 64% | 0.039 |
Transplant data | ||||
Donor age (years); median (IQR) | 47 (17.5) | 47 (19.8) | 48 (17.5) | 0.684 |
Donor male sex | 65.5% | 50% | 69.7% | 0.072 |
Ischemia time (minutes); median (IQR) | 188 (94) | 183 (85) | 190 (95) | 0.255 |
Donor BMI (kg/m2); mean (SD) | 26.4 (5.2) | 26.6 (5.3) | 26.2 (5.5) | 0.606 |
Donor BMI > 10% | 53.1% | 37.5% | 57.3% | 0.084 |
Donor LVM > 10% | 47.2% | 40% | 48.9% | 0.474 |
Need for ECMO post-transplant | 44.9% | 65.6% | 39.1% | 0.008 |
OR | 95% CI OR | p-Value | |
---|---|---|---|
Infection | 13.979 | 4.941–39.555 | <0.001 |
ECMO bridge-to-bridge | 12.08 | 2.17–67.265 | 0.004 |
BMI | 1.105 | 1.014–1.204 | 0.023 |
Age | 1.041 | 1.004–1.079 | 0.03 |
Neurological complications | 5.347 | 1.089–26.256 | 0.039 |
OR | 95% CI OR | p-Value | |
---|---|---|---|
ECMO bridge-to-bridge | 70.279 | 5.415–912.137 | 0.001 |
ECMO-to-HT | 4.913 | 1.363–17.713 | 0.015 |
Recipient age | 1.13 | 1.047–1.219 | 0.002 |
Donor BMI > 10% | 0.258 | 0.087–0.766 | 0.015 |
HR | 95% CI HR | p-Value | |
---|---|---|---|
ECMO bridge-to-bridge | 16.764 | 4.408–63.752 | <0.001 |
ECMO-to-HT | 2.81 | 1.265–6.239 | 0.011 |
Recipient age | 1.075 | 1.036–1.116 | <0.001 |
Donor BMI > 10% | 0.355 | 0.178–0.707 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Massa, C.; Pérez-Guillén, M.; Zarragoikoetxea-Jauregui, I.; Tébar-Botí, E.; Dalmau-Sorlí, M.J.; Torregrosa-Puerta, S.; Valera-Martínez, F.J.; Aguirre-Ramón, C.M.; Merino-Orozco, A.M.; Diéguez-Palacios, G.A.; et al. Mortality Predictors in Short-Term Mechanical Circulatory Support as a Bridge to Heart Transplantation. Biomedicines 2025, 13, 1959. https://doi.org/10.3390/biomedicines13081959
Domínguez-Massa C, Pérez-Guillén M, Zarragoikoetxea-Jauregui I, Tébar-Botí E, Dalmau-Sorlí MJ, Torregrosa-Puerta S, Valera-Martínez FJ, Aguirre-Ramón CM, Merino-Orozco AM, Diéguez-Palacios GA, et al. Mortality Predictors in Short-Term Mechanical Circulatory Support as a Bridge to Heart Transplantation. Biomedicines. 2025; 13(8):1959. https://doi.org/10.3390/biomedicines13081959
Chicago/Turabian StyleDomínguez-Massa, Carlos, Manuel Pérez-Guillén, Iratxe Zarragoikoetxea-Jauregui, Eduardo Tébar-Botí, María José Dalmau-Sorlí, Salvador Torregrosa-Puerta, Francisco José Valera-Martínez, Claudia Marissa Aguirre-Ramón, Alexandra Margoth Merino-Orozco, Gerardo Andrés Diéguez-Palacios, and et al. 2025. "Mortality Predictors in Short-Term Mechanical Circulatory Support as a Bridge to Heart Transplantation" Biomedicines 13, no. 8: 1959. https://doi.org/10.3390/biomedicines13081959
APA StyleDomínguez-Massa, C., Pérez-Guillén, M., Zarragoikoetxea-Jauregui, I., Tébar-Botí, E., Dalmau-Sorlí, M. J., Torregrosa-Puerta, S., Valera-Martínez, F. J., Aguirre-Ramón, C. M., Merino-Orozco, A. M., Diéguez-Palacios, G. A., López-Vilella, R., Gimeno-Costa, R., & Martínez-León, J. B. (2025). Mortality Predictors in Short-Term Mechanical Circulatory Support as a Bridge to Heart Transplantation. Biomedicines, 13(8), 1959. https://doi.org/10.3390/biomedicines13081959