Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
Machine Learning
- This model included standard variables included in the EuroSCORE II risk assessment (see Supplementary Table S1).
- Model I (EuroSCORE II + additional preoperative variables): This extended model incorporated all the baseline EuroSCORE II variables with additional preoperative clinical parameters (see Supplementary Table S2).
- Model II (EuroSCORE II + additional preoperative and postoperative variables): This comprehensive model incorporated all the variables from Model I, supplemented by detailed postoperative parameters and early postoperative complications recorded within the first five days following surgery (see Supplementary Table S3).
- Logistic Regression (LR): A baseline statistical model using penalized maximum likelihood estimation.
- Random Forest (RF): An ensemble decision tree method implemented with default hyperparameters without further tuning.
- Neural Networks (NNs): A multi-layer perceptron architecture designed to identify complex nonlinear relationships.
3. Results
3.1. Baseline Model: EuroSCORE II Variables
3.2. Model I: EuroSCORE II Plus Preoperative Characteristics
3.3. Model II: EuroSCORE II Plus Pre- and Postoperative Characteristics
3.4. Machine Learning: Model I vs. Baseline Model
3.5. Machine Learning: Model II vs. Baseline Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
AP | Angina Pectoris |
BSA | Body Surface Area |
CABG | Coronary Artery Bypass Grafting |
CAD | Coronary Artery Disease |
CCS | Canadian Cardiovascular Society |
CK-MB | Creatine Kinase–Myocardial Band |
COPD | Chronic Obstructive Pulmonary Disease |
CVI | Cerebrovascular Incident |
DVT | Deep Vein Thrombosis |
ECC | Extracorporeal Circulation |
EF | Ejection Fraction |
GFR | Glomerular Filtration Rate |
ICD | Implantable Cardioverter Defibrillator |
LR | Logistic Regression |
MI | Myocardial Infarction |
ML | Machine Learning |
MOF | Multi-Organ Failure |
MPAP | Mean Pulmonary Arterial Pressure |
NB | Naive Bayes |
NN | Neural Network |
NP | Negative Predictive Value |
NYHA | New York Heart Association |
PAD | Peripheral Arterial Disease |
PCI | Percutaneous Coronary Intervention |
PPV | Positive Predictive Value |
RF | Random Forest |
SIRS | Systemic Inflammatory Response Syndrome |
STS | Society of Thoracic Surgeons |
UTI | Urinary Tract Infection |
References
- Mastroiacovo, G.; Bonomi, A.; Ludergnani, M.; Franchi, M.; Maragna, R.; Pirola, S.; Baggiano, A.; Caglio, A.; Pontone, G.; Polvani, G.; et al. Is EuroSCORE II still a reliable predictor for cardiac surgery mortality in 2022? A retrospective study. Eur. J. Cardio-Thorac. Surg. 2022, 64, ezad294. [Google Scholar] [CrossRef] [PubMed]
- Guida, P.; Mastro, F.; Scrascia, G.; Whitlock, R.; Paparella, D. Performance of the European System for Cardiac Operative Risk Evaluation II: A meta-analysis of 22 studies involving 145,592 cardiac surgery procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, 3049–3057.e1. [Google Scholar] [CrossRef] [PubMed]
- Shahian, D.M.; Lippmann, R.P. Commentary: Machine learning and cardiac surgery risk prediction. J. Thorac. Cardiovasc. Surg. 2022, 163, 2090–2092. [Google Scholar] [CrossRef] [PubMed]
- Modine, T.; Overtchouk, P. Machine learning is no magic. JACC Cardiovasc. Interv. 2019, 12, 1339–1341. [Google Scholar] [CrossRef]
- Benedetto, U.; Dimagli, A.; Sinha, S.; Cocomello, L.; Gibbison, B.; Caputo, M.; Gaunt, T.; Lyon, M.; Holmes, C.; Angelini, G.D. Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2022, 163, 2075–2087.e9. [Google Scholar] [CrossRef]
- Mortazavi, B.J.; Bucholz, E.M.; Desai, N.R.; Huang, C.; Curtis, J.P.; Masoudi, F.A.; Shaw, R.E.; Negahban, S.N.; Krumholz, H.M. Comparison of machine learning methods with National Cardiovascular Data Registry models for prediction of risk of bleeding after percutaneous coronary intervention. JAMA Netw. Open 2019, 2, e196835. [Google Scholar] [CrossRef]
- Kilic, A.; Goyal, A.; Miller, J.K.; Gleason, T.G.; Dubrawksi, A. Performance of a machine learning algorithm in predicting outcomes of aortic valve replacement. Ann. Thorac. Surg. 2021, 111, 503–510. [Google Scholar] [CrossRef]
- Parkes, M.D.; Aliabadi, A.Z.; Cadeiras, M.; Crespo-Leiro, M.G.; Deng, M.; Depasquale, E.C.; Goekler, J.; Kim, D.H.; Kobashigawa, J.; Loupy, A.; et al. An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms. J. Heart Lung Transplant. 2019, 38, 636–646. [Google Scholar] [CrossRef]
- Pimor, A.; Galli, E.; Vitel, E.; Corbineau, H.; Leclercq, C.; Bouzille, G.; Donal, E. Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation. Eur. Heart. J. Cardiovasc. Imaging 2018, 20, 177–184. [Google Scholar] [CrossRef]
- Tseng, P.-Y.; Chen, Y.-T.; Wang, C.-H.; Chiu, K.-M.; Peng, Y.-S.; Hsu, S.-P.; Chen, K.-L.; Yang, C.-Y.; Lee, O.K.-S. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit. Care 2020, 24, 478. [Google Scholar] [CrossRef]
- Boeddinghaus, J.; Doudesis, D.; Lopez-Ayala, P.; Lee, K.K.; Koechlin, L.; Wildi, K.; Nestelberger, T.; Borer, R.; Miró, Ò.; Martin-Sanchez, F.J.; et al. Machine learning for myocardial infarction compared with guideline-recommended diagnostic pathways. Circulation 2024, 149, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Forte, J.C.; Yeshmagambetova, G.; van der Grinten, M.L.; Scheeren, T.W.L.; Nijsten, M.W.N.; Mariani, M.A.; Henning, R.H.; Epema, A.H. Comparison of machine learning models including preoperative, intraoperative, and postoperative data and mortality after cardiac surgery. JAMA Netw. Open 2022, 5, e2237970. [Google Scholar] [CrossRef] [PubMed]
- Mejia, O.A.V.; Borgomoni, G.B.; Zubelli, J.P.; Dallan, L.R.P.; Pomerantzeff, P.M.A.; Oliveira, M.A.P.; Junior, O.P.; Tiveron, M.G.; Nakazone, M.A.; Tineli, R.Â.; et al. Validation and quality measurements for STS, EuroSCORE II and a regional risk model in Brazilian patients. PLoS ONE 2020, 15, e0238737. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-Y.; Chen, J.-W.; Chou, H.-W.; Chan, C.-Y.; Wu, I.-H.; Chou, N.-K.; Wang, C.-H.; Chi, N.-H.; Huang, S.-C.; Yu, H.-Y.; et al. Validation of the European system for cardiac operative risk evaluation II in a large Taiwan cardiac surgical centre. J. Formos. Med. Assoc. 2023, 122, 1265–1273. [Google Scholar] [CrossRef]
- Silverborn, M.; Nielsen, S.; Karlsson, M. The performance of EuroSCORE II in CABG patients in relation to sex, age, and surgical risk: A nationwide study in 14,118 patients. J. Cardiothorac. Surg. 2023, 18, 40. [Google Scholar] [CrossRef]
- Hijazi, E. Enhancing mortality prediction after coronary artery bypass graft: A machine learning approach utilizing EuroScore. Future Sci. OA 2024, 10, FSO959. [Google Scholar] [CrossRef]
- Weiss, A.J.; Yadaw, A.S.; Meretzky, D.L.; Levin, M.A.; Adams, D.H.; McCardle, K.; Pandey, G.; Iyengar, R. Machine learning using institution-specific multi-modal electronic health records improves mortality risk prediction for cardiac surgery patients. JTCVS Open 2023, 14, 214–251. [Google Scholar] [CrossRef]
- Allyn, J.; Allou, N.; Augustin, P.; Philip, I.; Martinet, O.; Belghiti, M.; Provenchere, S.; Montravers, P.; Ferdynus, C.; Parolari, A. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: A decision curve analysis. PLoS ONE 2017, 12, e0169772. [Google Scholar] [CrossRef]
- Sinha, S.; Dong, T.; Dimagli, A.; Vohra, H.A.; Holmes, C.; Benedetto, U.; Angelini, G.D. Comparison of machine learning techniques in prediction of mortality following cardiac surgery: Analysis of over 220,000 patients from a large national database. Eur. J. Cardio-Thorac. Surg. 2023, 63, ezad183. [Google Scholar] [CrossRef]
- Xu, K.; Shan, L.; Bai, Y.; Shi, Y.; Lv, M.; Li, W.; Dai, H.; Zhang, X.; Wang, Z.; Li, Z.; et al. The clinical applications of ensemble machine learning based on the Bagging strategy for in-hospital mortality of coronary artery bypass grafting surgery. Heliyon 2024, 10, e38435. [Google Scholar] [CrossRef]
- Molina, R.S.; Molina-Rodríguez, M.A.; Rincón, F.M.; Maldonado, J.D. Cardiac operative risk in Latin America: A comparison of machine learning models vs. EuroSCORE-II. Ann. Thorac. Surg. 2022, 113, 92–99. [Google Scholar] [CrossRef]
Variable | Alive (n = 3396) | Dead (n = 87) | p-Value |
---|---|---|---|
Males | 2841 (83.7%) | 65 (74.7%) | 0.02 |
Females | 555 (16.3%) | 22 (25.3%) | 0.02 |
Age | 66.09 (9.84) | 71.44 (9.80) | <0.001 |
GFR | 88.35 (33.63) | 69.16 (37.26) | <0.001 |
EF preop | 52.8 (11.38) | 43.7 (15.20) | <0.001 |
MPAP | 0.10 (0.43) | 0.28 (0.62) | <0.001 |
COPD (Grade 3–4) | 130 (3.9%) | 6 (6.9%) | <0.001 |
Arteriopathy | 712 (21.0%) | 39 (44.8%) | <0.001 |
Mobility limitation | 110 (3.2%) | 13 (14.9%) | <0.001 |
Previous operations | 78 (1.8%) | 2 (2.3%) | 0.98 |
Preop instability | 238 (7.0%) | 31 (35.6%) | <0.001 |
Diabetes | 1270 (37.3%) | 43 (49.4%) | <0.001 |
CCS (Grade 3–4) | 1620 (47.7%) | 57 (65.5%) | <0.001 |
Recent MI | 1479 (43.6%) | 57 (65.5%) | <0.001 |
NYHA (Grade 3–4) | 662 (19.4%) | 41 (47.1%) | <0.001 |
Urgency | 961 (28.2%) | 50 (57.4%) | <0.001 |
EuroSCORE | 2.84 (4.72) | 13.76 (16.28) | <0.001 |
Variable | Alive (n = 3396) | Dead (n = 87) | p-Value |
---|---|---|---|
Height (cm) | 172.22 (8.37) | 168.37 (9.70) | <0.001 |
Weight (kg) | 82.08 (15.05) | 79.57 (18.91) | 0.12 |
BMI | 27.64 (5.19) | 27.91 (5.58) | 0.63 |
Body surface area (m2) | 1.95 (0.19) | 1.89 (0.24) | <0.001 |
Dyslipidemia | 2615 (77%) | 63 (72.4%) | <0.001 |
Hypertension | 2932 (86.3%) | 70 (80.5%) | <0.001 |
Atrial fibrillation | 139 (4.1%) | 3 (3.45%) | <0.001 |
TIA | 101 (3%) | 7 (8%) | <0.001 |
Family history | 1519 (44.7%) | 37 (42.5%) | <0.001 |
Smoker | 847 (25%) | 22 (25.3%) | 0.12 |
Anti-coagulation drugs | 3018 (88.9%) | 78 (89.7%) | <0.001 |
Cancer | 300 (8.8%) | 11 (12.6%) | <0.001 |
PAD (none) | 2916 (85.9%) | 57 (65.5%) | <0.001 |
Kidney disease | 178 (5.2%) | 19 (22%) | <0.001 |
Last preoperative creatinine (mg/dL) | 90.8 (51.9) | 128.9 (129) | <0.001 |
Carotid stenosis | 234 (6.9%) | 10 (11.5%) | <0.001 |
Previous vascular surgery/amputation | 187 (5.5%) | 12 (13.8%) | <0.001 |
Previous MI | 1525 (45%) | 45 (51.7%) | <0.001 |
Ventilated preop | 38 (1.1%) | 16 (18.4%) | <0.001 |
Left or right heart catheterization | 1119 (33%) | 51 (58.2%) | <0.001 |
Perioperative PCI | 87 (2.5%) | 3 (3.5%) | 0.14 |
Triple vessel disease | 2187 (64.4%) | 49 (56.3%) | 0.38 |
Instable angina pectoris | 751 (22.1%) | 34 (39.1%) | <0.001 |
Cardiogenic shock | 61 (1.8%) | 22 (25.3%) | <0.001 |
MI <6 h before CABG | 186 (5.5%) | 21 (24.1%) | <0.001 |
Variable | Alive (n = 3396) | Dead (n = 87) | p-Value |
---|---|---|---|
Max. creatinine value (n) | 108.7 (75.22) | 232.6 (159.00) | <0.001 |
Max. CK value (U/L) | 1062 (1919.42) | 3538 (4646.85) | <0.001 |
Max. CK-MB value (U/L) | 36.4 (67.93) | 142.6 (185.11) | <0.001 |
Max. Troponin-T (ng/mL) | 819 (1969.10) | 4796 (6571.41) | <0.001 |
Perioperative MI | 65 (1.91%) | 19 (21.8%) | <0.001 |
Cardiac complications (none) | 2509 (73.9%) | 21 (24.1%) | <0.001 |
Stroke | 64 (1.9%) | 14 (16.1%) | <0.001 |
Neurological non-cerebral complications (none) | 2848 (83.9%) | 57 (65.5%) | <0.001 |
Kidney failure | 193 (5.7%) | 40 (46%) | <0.001 |
Pulmonary complication (none) | 3043 (89.61%) | 41 (47.1%) | <0.001 |
Other complications (none) | 2905 (85.5%) | 17 (19.5%) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salikhanov, I.; Roth, V.; Gahl, B.; Reid, G.; Kolb, R.; Dimanski, D.; Kowol, B.; Mawad, B.M.; Reuthebuch, O.; Berdajs, D. Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study. Biomedicines 2025, 13, 2023. https://doi.org/10.3390/biomedicines13082023
Salikhanov I, Roth V, Gahl B, Reid G, Kolb R, Dimanski D, Kowol B, Mawad BM, Reuthebuch O, Berdajs D. Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study. Biomedicines. 2025; 13(8):2023. https://doi.org/10.3390/biomedicines13082023
Chicago/Turabian StyleSalikhanov, Islam, Volker Roth, Brigitta Gahl, Gregory Reid, Rosa Kolb, Daniel Dimanski, Bettina Kowol, Brian M. Mawad, Oliver Reuthebuch, and Denis Berdajs. 2025. "Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study" Biomedicines 13, no. 8: 2023. https://doi.org/10.3390/biomedicines13082023
APA StyleSalikhanov, I., Roth, V., Gahl, B., Reid, G., Kolb, R., Dimanski, D., Kowol, B., Mawad, B. M., Reuthebuch, O., & Berdajs, D. (2025). Machine Learning-Based Prediction of Short-Term Mortality After Coronary Artery Bypass Grafting: A Retrospective Cohort Study. Biomedicines, 13(8), 2023. https://doi.org/10.3390/biomedicines13082023