Prognostic Value of the NT-proBNP-to-Albumin Ratio (NTAR) for In-Hospital Mortality in Chronic Heart Failure Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Design, Setting, and Participants
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | Acute coronary syndrome |
AF | Atrial fibrillation |
AUC | Area under curve |
BMI | Body mass index |
CAD | Coronary artery disease |
CHF | Chronic heart failure |
CI | Confidence interval |
CKD | Chronic kidney disease |
COPD | Chronic obstructive pulmonary disease |
DBP | Diastolic blood pressure |
ESC | European Society of Cardiology |
HF | Heart failure |
HFmrEF | Heart failure with mildly reduced ejection fraction |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
HR | Hazard ratio |
IQR | Interquartile range |
NT-proBNP | N-terminal prohormone of brain natriuretic peptide |
NTAR | NT-proBNP-to-albumin ratio |
NYHA-FC | New York Heart Association functional class |
ROC | Receiver operating characteristics |
SBP | Systolic blood pressure |
SD | Standard deviation |
T2DM | Type 2 diabetes mellitus |
References
- Crespo-Leiro, M.G.; Anker, S.D.; Maggioni, A.P.; Coats, A.J.; Filippatos, G.; Ruschitzka, F.; Ferrari, R.; Piepoli, M.F.; Delgado Jimenez, J.F.; Metra, M.; et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 2016, 18, 613–625. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Scardovi, A.B.; Petruzzi, M.; Rosano, A.; Lucia, A.R.; De Maria, R. Caratteristiche fenotipiche e strutturali dello scompenso cardiaco nella donna [Heart failure phenotype in women]. G. Ital. Cardiol. 2012, 13 (Suppl. S1), 6S–11S. Available online: https://pubmed.ncbi.nlm.nih.gov/23678528/ (accessed on 21 April 2025).
- Crousillat, D.R.; Ibrahim, N.E. Sex Differences in the Management of Advanced Heart Failure. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 88. [Google Scholar] [CrossRef]
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Kittipibul, V.; Molinger, J.; Yaranov, D.M.; Miller, W.L. Patient Sex Impacts Volume Phenotypes and Hemodynamics in Chronic Heart Failure: A Multicenter Analysis. J. Card. Fail. 2025, 31, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Gürgöze, M.T.; van der Galiën, O.P.; Limpens, M.A.M.; Roest, S.; Hoekstra, R.C.; IJpma, A.S.; Brugts, J.J.; Manintveld, O.C.; Boersma, E. Impact of sex differences in co-morbidities and medication adherence on outcome in 25,776 heart failure patients. ESC Heart Fail. 2021, 8, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Zeid, S.; Buch, G.; Velmeden, D.; Söhne, J.; Schulz, A.; Schuch, A.; Tröbs, S.O.; Heidorn, M.W.; Müller, F.; Strauch, K.; et al. Heart rate variability: Reference values and role for clinical profile and mortality in individuals with heart failure. Clin. Res. Cardiol. 2024, 9, 1317–1330. [Google Scholar] [CrossRef]
- Butt, J.H.; Fosbøl, E.L.; Gerds, T.A.; Andersson, C.; McMurray, J.J.V.; Petrie, M.C.; Gustafsson, F.; Madelaire, C.; Kristensen, S.L.; Gislason, G.H.; et al. Readmission and death in patients admitted with new-onset versus worsening of chronic heart failure: Insights from a nationwide cohort. Eur. J. Heart Fail. 2020, 22, 1777–1785. [Google Scholar] [CrossRef]
- Greene, S.J.; Triana, T.S.; Ionescu-Ittu, R.; Shi, S.; Guérin, A.; DeSouza, M.M.; Kessler, P.D.; Tugcu, A.; Borentain, M.; Felker, G.M. Patients Hospitalized for De Novo Versus Worsening Chronic Heart Failure in the United States. J. Am. Coll. Cardiol. 2021, 77, 1023–1025. [Google Scholar] [CrossRef]
- Taylor, C.J.; Roalfe, A.K.; Iles, R.; Hobbs, F.D. Ten-year prognosis of heart failure in the community: Follow-up data from the Echocardiographic Heart of England Screening (ECHOES) study. Eur. J. Heart Fail. 2012, 14, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Document de Poziție Insuficiența Cardiacă Cronică în Spitalele Din România. Available online: https://ino-med.ro/docs/document-de-pozitie-insuficienta-cardiaca.pdf (accessed on 6 March 2025).
- Comunicat SRC: În Spitalele din România, în Fiecare Oră Moare un Pacient cu Insuficiență Cardiac (Heart Failure Romanian Society). Available online: https://www.cardioportal.ro/comunicat-src-in-spitalele-din-romania-in-fiecare-ora-moare-un-pacient-cu-insuficienta-cardiaca/ (accessed on 6 March 2025).
- Armentaro, G.; Condoleo, V.; Pastura, C.A.; Grasso, M.; Frasca, A.; Martire, D.; Cassano, V.; Maio, R.; Bonfrate, L.; Pastori, D.; et al. Prognostic role of serum albumin levels in patients with chronic heart failure. Intern. Emerg. Med. 2024, 19, 1323–1333. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.B.; Yao, X.; Zhang, S.H.; Cai, M.H.; Li, H.P.; Jing, X.B.; Zhang, Y.G.; Ding, Q.F. Association of serum albumin with heart failure mortality with NYHA class IV in Chinese patients: Insights from PhysioNet database (version 1.3). Heart Lung. 2024, 65, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Chen, M. Decreased albumin is associated with elevated N-terminal pro-brain natriuretic peptide and poor long-term prognosis in patients with chronic heart failure. Medicine 2020, 99, e23872. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xiang, W.; Chen, Y.; Huang, J.; Sun, D. Effect of hypoproteinemia on mortality of elderly male patients with chronic heart failure. Medicine 2024, 103, e37078. [Google Scholar] [CrossRef]
- Sze, S.; Pellicori, P.; Zhang, J.; Weston, J.; Clark, A.L. The impact of malnutrition on short-term morbidity and mortality in ambulatory patients with heart failure. Am. J. Clin. Nutr. 2021, 113, 695–705. [Google Scholar] [CrossRef]
- Pasini, E.; Comini, L.; Dioguardi, F.S.; Grossetti, F.; Olivares, A.; Zanelli, E.; Aquilani, R.; Scalvini, S. Hypoalbuminemia as a marker of protein metabolism disarrangement in patients with stable chronic heart failure. Minerva Med. 2020, 111, 226–238. [Google Scholar] [CrossRef]
- Li, Z.; Ling, Y.; Yuan, X.; Liu, X.; Huang, W.; Chen, Q.; Wang, J.; Chen, Y.; Xu, M.; Wu, B. Impact of albumin infusion on prognosis of intensive care unit patients with congestive heart failure-hypoalbuminemia overlap: A retrospective cohort study. J. Thorac. Dis. 2022, 14, 2235–2246. [Google Scholar] [CrossRef]
- Weaving, G.; Batstone, G.F.; Jones, R.G. Age and sex variation in serum albumin concentration: An observational study. Ann. Clin. Biochem. 2016, 53, 106–111. [Google Scholar] [CrossRef]
- Welsh, P.; Campbell, R.T.; Mooney, L.; Kimenai, D.M.; Hayward, C.; Campbell, A.; Porteous, D.; Mills, N.L.; Lang, N.N.; Petrie, M.C.; et al. Reference Ranges for NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) and Risk Factors for Higher NT-proBNP Concentrations in a Large General Population Cohort. Circ. Heart Fail. 2022, 15, e009427. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Ma, J.; Shan, L.; Wei, M. NT-proBNP test with improved accuracy for the diagnosis of chronic heart failure. Medicine 2017, 96, e9181. [Google Scholar] [CrossRef]
- Schreuder, M.M.; Schuurman, A.; Akkerhuis, K.M.; Constantinescu, A.A.; Caliskan, K.; van Ramshorst, J.; Germans, T.; Umans, V.A.; Boersma, E.; Roeters van Lennep, J.E.; et al. Sex-specific temporal evolution of circulating biomarkers in patients with chronic heart failure with reduced ejection fraction. Int. J. Cardiol. 2021, 334, 126–134. [Google Scholar] [CrossRef]
- Kim, S.E.; Cho, D.H.; Son, J.W.; Kim, J.Y.; Kang, S.M.; Cho, M.C.; Lee, H.Y.; Choi, D.J.; Jeon, E.S.; Yoo, B.S. Impact of NT-proBNP on prognosis of acute decompensated chronic heart failure versus de novo heart failure. Int. J. Cardiol. 2022, 363, 163–170. [Google Scholar] [CrossRef]
- Fuery, M.A.; Leifer, E.S.; Samsky, M.D.; Sen, S.; O’Connor, C.M.; Fiuzat, M.; Ezekowitz, J.; Piña, I.; Whellan, D.; Mark, D.; et al. Prognostic Impact of Repeated NT-proBNP Measurements in Patients With Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2024, 12, 479–487. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Motta, I. Anemia in clinical practice—Definition and classification: Does hemoglobin change with aging? Semin. Hematol. 2015, 52, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Analysis Checklist: Outliers. Available online: https://www.graphpad.com/guides/prism/latest/statistics/stat_checklist_identifying_outliers.htm (accessed on 17 July 2025).
- Marusteri, M.; Bacarea, V. Comparing groups for statistical differences: How to choose the right statistical test? Biochem. Med. 2010, 20, 15–32. [Google Scholar] [CrossRef]
- Šimundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. Available online: https://pubmed.ncbi.nlm.nih.gov/27683318/ (accessed on 21 April 2025). [PubMed]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Pourhoseingholi, M.A.; Baghestani, A.R.; Vahedi, M. How to control confounding effects by statistical analysis. Gastroenterol. Hepatol. Bed Bench. 2012, 5, 79–83. [Google Scholar]
- Russo, G.; Rea, F.; Barbati, G.; Cherubini, A.; Stellato, K.; Scagnetto, A.; Iorio, A.; Corrao, G.; Di Lenarda, A. Sex-related differences in chronic heart failure: A community-based study. J. Cardiovasc. Med. 2021, 22, 36–44. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, W.; Wu, S.; Zhu, Y.; Zheng, H.; Feng, Y. Sex differences in long-term heart failure prognosis: A comprehensive meta-analysis. Eur. J. Prev. Cardiol. 2024, 31, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Grimm, G.; Haslacher, H.; Kampitsch, T.; Endler, G.; Marsik, C.; Schickbauer, T.; Wagner, O.; Jilma, B. Sex differences in the association between albumin and all-cause and vascular mortality. Eur. J. Clin. Investig. 2009, 10, 860–865. [Google Scholar] [CrossRef] [PubMed]
Parameter | Male (n = 306) | Female (n = 236) | p Value |
---|---|---|---|
Age (years, mean ± SD) | 66.61 ± 11.81 | 73.17 ± 9.38 | <0.001 a |
BMI (kg/m2, mean ± SD) | 29.79 ± 5.74 | 28.87 ± 6.02 | 0.038 b |
Clinical characteristics | |||
Heart rate (bpm, mean, IQR) | 76.5 (67–93) | 80.5 (65–90) | 0.435 b |
SBP (mmHg, mean, IQR) | 130 (110.25–140) | 130 (120–145) | <0.001 b |
DBP (mmHg, mean, IQR) | 80 (70–85) | 80 (70–85) | 0.823 b |
NYHA-FC (n, %) | 0.080 c | ||
II | 107 (34.97) | 72 (30.51) | - |
III | 161 (52.61) | 145 (61.44) | - |
IV | 38 (12.42) | 19 (8.05) | - |
HF phenotype (n, %) | <0.001 c | ||
HFrEF | 149 (48.69) | 79 (33.47) | |
HFmrEF | 91 (29.74) | 63 (26.69) | |
HFpEF | 66 (21.57) | 94 (39.83) | |
Comorbidities | |||
Total number of comorbidities (n, mean, IQR) | 4.75 (4–6) | 5 (4–6) | 0.028 b |
Excess body weight (n, %) | 243 (79.41) | 164 (69.49) | 0.008 c |
Coronary heart disease (n, %) | 145 (47.39) | 115 (48.73) | 0.756 c |
Documented ACS (n, %) | 83 (27.12) | 53 (22.46) | 0.214 c |
Hypertension (n, %) | 240 (78.43) | 203 (86.02) | 0.023 c |
Valvular heart disease ≥ moderate (n, %) | 239 (78.10) | 203 (86.02) | 0.019 c |
Heart valve surgery (n, %) | 11 (3.59) | 22 (9.32) | 0.006 c |
AF (n, %) | 123 (40.20) | 119 (50.42) | 0.018 c |
Previous episode of myocarditis (n, %) | 10 (3.27) | 1 (0.42) | 0.020 c |
T2DM (n, %) | 101 (33.01) | 87 (36.86) | 0.349 c |
COPD (n, %) | 67 (21.90) | 16 (6.78) | <0.001 c |
Anemia (n, %) | 76 (24.84) | 63 (26.69) | 0.623 c |
Prior documented CKD (n, %) | 85 (27.78) | 82 (34.75) | 0.082 c |
Thyroid disorders (n, %) | 32 (10.46) | 66 (27.97) | <0.001 c |
Admission length (days, mean, IQR) | 7 (7–10) | 7 (7–11) | 0.076 b |
In-hospital mortality (n, %) | 15 (4.90) | 13 (5.51) | 0.752 c |
Unadjusted laboratory data | - | ||
NT-proBNP (pg/mL, mean, IQR) | 2643.5 (490.75–6392.50) | 2746 (680–6285.50) | 0.455 b |
Albumin (g/dL, mean, IQR) | 4.12 (3.76–4.33) | 3.97 (3.62–4.25) | 0.003 b |
Scheme | Parameter | Cut-Off Value a | Laboratory Values b | n |
---|---|---|---|---|
Male | NT-proBNP | ≤3.59 | 2.86 (1.97–3.29) | 180 |
>3.59 | 3.92 ± 0.24 | 126 | ||
Albumin | ≤3.9 | 3.61 (3.3–3.79) | 107 | |
>3.9 | 4.3 ± 0.24 | 199 | ||
NTAR | ≤2.87 | 2.13 (1.28–2.58) | 162 | |
>2.87 | 3.29 ± 0.28 | 144 | ||
Female | NT-proBNP | ≤3.79 | 3.12 (2.66–3.52) | 174 |
>3.79 | 3.94 (3.87–4.11) | 62 | ||
Albumin | ≤3.75 | 3.46 (3.17–3.63) | 82 | |
>3.75 | 4.2 ± 0.28 | 154 | ||
NTAR | ≤3.22 | 2.5 (2.04–2.94) | 62 | |
>3.22 | 3.46 ± 0.19 | 174 |
Parameter | Dependent Expected Value (In-Hospital Mortality) | |||||||
---|---|---|---|---|---|---|---|---|
AUC (95% CI) | p Value | OR | p Value | Hosmer–Lemeshow Test | Sensitivity (%) | Specificity (%) | Total Accuracy (%) | |
Male | ||||||||
NT-proBNP | 0.810 (0.761–0.852) | <0.001 | 9.659 (2.584–36.108) | <0.001 | 0.986 | 93.33 | 61.86 | 95.10 |
Albumin | 0.840 (0.794–0.879) | <0.001 | 0.103 (0.039–0.275) | <0.001 | 0.567 | 86.67 | 67.70 | 94.12 |
NTAR | 0.840 (0.794–0.879) | <0.001 | 11.992 (3.181–45.209) | <0.001 | 0.899 | 100 | 56.36 | 94.77 |
Female | ||||||||
NT-proBNP | 0.788 (0.730–0.838) | <0.001 | 8.204 (1.863–36.117) | <0.001 | 0.015 | 84.62 | 77.58 | 94.49 |
Albumin | 0.783 (0.725–0.834) | <0.001 | 0.122 (0.046–0.323) | <0.001 | 0.041 | 84.62 | 68.16 | 94.49 |
NTAR | 0.809 (0.752–0.857) | <0.001 | 10.468 (2.380–46.049) | <0.001 | <0.001 | 84.62 | 77.13 | 94.49 |
Parameter | NT-proBNP | NTAR |
---|---|---|
Male | ||
NT-proBNP | - | 0.008 |
Albumin | 0.575 | 0.995 |
Female | ||
NT-proBNP | - | 0.114 |
Albumin | 0.964 | 0.786 |
Parameter | HR (95% CI) | p Value | Overall Model Fit (p) | Harrell’s C-Index (95% CI) |
---|---|---|---|---|
Male (univariate analysis) | ||||
NT-proBNP | 8.627 (1.956–38.042) | 0.004 | <0.001 | 0.738 (0.628–0.847) |
Albumin | 0.352 (0.154–0.803) | 0.131 | 0.010 | 0.731 (0.588–0.873) |
NTAR | 10.318 (2.452–43.417) | 0.001 | <0.001 | 0.752 (0.650–0.853) |
Male (multivariable analysis *) | ||||
NTAR | 10.318 (2.452–43.417) | 0.001 | <0.001 | 0.752 (0.650–0.853) |
Female(univariate analysis) | ||||
NT-proBNP | 6.06 (1.498–24.521) | 0.011 | 0.002 | 0.813 (0.734–0.891) |
Albumin | 0.169 (0.072–0.399) | <0.001 | <0.001 | 0.782 (0.639–0.925) |
NTAR | 7.542 (1.874–30.358) | 0.004 | <0.001 | 0.836 (0.755–0.917) |
Female (multivariable analysis *) | ||||
Albumin | 0.169 (0.072–0.399) | <0.001 | <0.001 | 0.782 (0.639–0.925) |
Parameter | NTAR and Combination of Two Factors | ||||
---|---|---|---|---|---|
Heart Rate | SBP | DBP | NYHA-FC | Total Number of Comorbidities | |
Age | NTAR (+) Age (+) | NTAR (+) Age (+) | NTAR (+) Age (+) | NTAR (+) Age (+) | NTAR (+) Age (+) |
Heart rate | - | NTAR (+) | NTAR (+) DBP (−) | NTAR (+) | NTAR (+) |
SBP | - | - | NTAR (+) DBP (−) | NTAR (+) | NTAR (+) |
DBP | - | - | - | DBP (−) NYHA-FC (+) | NTAR (+) DBP (−) |
NYHA-FC | - | - | - | - | NTAR (+) NYHA-FC (−) |
Parameter | NTAR and Combination of Two Factors | ||||
---|---|---|---|---|---|
Heart Rate | SBP | DBP | NYHA-FC | Total Number of Comorbidities | |
Age | NTAR (+) | NTAR (+) SBP (−) | NTAR (+) DBP (−) | NTAR (+) NYHA-FC (+) | NTAR (+) |
Heart rate | - | NTAR (+) SBP (−) | NTAR (+) DBP (−) | NTAR (+) NYHA-FC (−) | NTAR (+) |
SBP | - | - | NTAR (+) DBP (−) | NTAR (+) SBP (−) | NTAR (+) SBP (−) |
DBP | - | - | - | DBP (−) NYHA-FC (+) | NTAR (+) DBP (−) |
NYHA-FC | - | - | - | - | NTAR (+) NYHA-FC (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristescu, L.; Mares, R.G.; Iancu, D.-G.; Marusteri, M.-S.; Varga, A.; Tilea, I. Prognostic Value of the NT-proBNP-to-Albumin Ratio (NTAR) for In-Hospital Mortality in Chronic Heart Failure Patients. Biomedicines 2025, 13, 2091. https://doi.org/10.3390/biomedicines13092091
Cristescu L, Mares RG, Iancu D-G, Marusteri M-S, Varga A, Tilea I. Prognostic Value of the NT-proBNP-to-Albumin Ratio (NTAR) for In-Hospital Mortality in Chronic Heart Failure Patients. Biomedicines. 2025; 13(9):2091. https://doi.org/10.3390/biomedicines13092091
Chicago/Turabian StyleCristescu, Liviu, Razvan Gheorghita Mares, Dragos-Gabriel Iancu, Marius-Stefan Marusteri, Andreea Varga, and Ioan Tilea. 2025. "Prognostic Value of the NT-proBNP-to-Albumin Ratio (NTAR) for In-Hospital Mortality in Chronic Heart Failure Patients" Biomedicines 13, no. 9: 2091. https://doi.org/10.3390/biomedicines13092091
APA StyleCristescu, L., Mares, R. G., Iancu, D.-G., Marusteri, M.-S., Varga, A., & Tilea, I. (2025). Prognostic Value of the NT-proBNP-to-Albumin Ratio (NTAR) for In-Hospital Mortality in Chronic Heart Failure Patients. Biomedicines, 13(9), 2091. https://doi.org/10.3390/biomedicines13092091