Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature
Abstract
1. Introduction
- Briefly overview the current literature on the pathogenesis of supraspinatus tendinopathies;
- Provide the most recent and convincing evidence on the ESWT effects on supraspinatus tendinopathy;
- Compare the importance of using ESWT in different stages of supraspinatus tendinopathy, an essential aspect for future practice and recommendation in the rehabilitation area.
2. Materials and Methods
2.1. Data Extraction
2.2. Study Selection—Inclusion and Exclusion Criteria
2.3. Characteristics of the Included Articles
2.4. Risk of Bias
- For RCTs/prospective-randomized clinical trials, we used RoB 2 (Cochrane) as an instrument, evaluating the type of randomization, allocation of participants to the study, blinding, loss to follow-up, and selective reporting.
- For observational/retrospective studies, we used ROBINS-I, and we analyzed participant selection, confounding, intervention classification, loss, and selective reporting.
- For narrative reviews, we calculated the intrinsic high risk of bias based on literature selection, type of selective reporting, and presence or absence of standardization.
- For meta-analyses/systematic reviews, we used AMSTAR 2, and we evaluated the inclusion criteria, search strategy, quality assessment of included studies, statistical analysis, and error reporting—see Table 3 below.
- Most studies are narrative reviews and observational studies (retrospective or mechanistic), which have a high risk of bias. This means that their results should be interpreted with caution, as literature selection and selective reporting may exaggerate the positive effects of ESWT.
- However, the high heterogeneity between studies (type of ESWT—radial vs. focal, energy, frequency, combinations with physiotherapy) and the variable quality of RCTs lead to a moderate risk of overestimation of effectiveness.
- Retrospective studies and narrative reviews generally suggest that ESWT reduces pain and improves function, but these conclusions are more susceptible to bias.
- The efficacy of ESWT in supraspinatus tendinopathy is likely proven, especially for reducing pain and improving function, but
- Strong clinical evidence is limited to only a few RCTs, which carry a moderate risk of bias.
- Narrative reviews and observational studies may exaggerate effects.
- Heterogeneity of the ESWT protocol limits the generalizability of the results.
3. Histological Aspects Regarding Tendon Structure in Pathology
3.1. Tendon Structure
3.2. Tendon Changes in Tendinopathy
3.3. Histological Changes Associated with Supraspinatus Tendinopathy
4. Risk Factors Associated with Tendinopathy
5. Biological and Therapeutic Effects of Conservative Treatment Using ESWT
5.1. Shockwave Therapy—Mechanism of Action
5.2. Shockwave Therapy—Side Effects and Contraindications
- Coagulation disorders;
- Conditions that promote bleeding;
- Neurovascular pathologies;
- Infections;
- Tumors;
- Rheumatoid arthritis;
- Growth plate issues;
- Pregnancy.
6. Summary and Future Scope
6.1. Strengths
6.2. Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Luo, M.; Liang, G.; Pan, J.; Han, Y.; Zeng, L.; Yang, W.; Liu, J. What Factors Are Associated with Symptomatic Rotator Cuff Tears: A Meta-analysis. Clin. Orthop. 2022, 480, 96–105. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, M.; Liang, G.; Wu, M.; Pan, J.; Zeng, L.; Yang, W.; Liu, J. Risk Factors for Supraspinatus Tears: A Meta-analysis of Observational Studies. Orthop. J. Sports Med. 2021, 9, 23259671211042826. [Google Scholar] [CrossRef]
- Volk, A.G.; Vangsness, C.T. An Anatomic Study of the Supraspinatus Muscle and Tendon. Clin. Orthop. 2001, 384, 280–285. [Google Scholar] [CrossRef]
- Assila, N.; Duprey, S.; Begon, M. Glenohumeral Joint and Muscles Functions during a Lifting Task. J. Biomech. 2021, 126, 110641. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.S.; Wang, V.M.; April, E.W.; Pollock, R.G.; Bigliani, L.U.; Flatow, E.L. Anterior and Posterior Musculotendinous Anatomy of the Supraspinatus. J. Shoulder Elbow Surg. 2000, 9, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelski, J.; Erber, B.; Themessl, A.; Rupp, M.-C.; Feucht, M.J.; Imhoff, A.B.; Degenhardt, H.; Irger, M. Definition of the Terms “Acute” and “Traumatic” in Rotator Cuff Injuries: A Systematic Review and Call for Standardization in Nomenclature. Arch. Orthop. Trauma Surg. 2021, 141, 75–91. [Google Scholar] [CrossRef]
- Lazarides, A.L.; Alentorn-Geli, E.; Choi, J.H.J.; Stuart, J.J.; Lo, I.K.Y.; Garrigues, G.E.; Taylor, D.C. Rotator Cuff Tears in Young Patients: A Different Disease than Rotator Cuff Tears in Elderly Patients. J. Shoulder Elbow Surg. 2015, 24, 1834–1843. [Google Scholar] [CrossRef]
- Shahabi, S.; Lankarani, K.B.; Ezati, R.; ShahAli, S. Reporting and Methodological Quality of Systematic Reviews and Meta-Analyses Evaluating Effects of Extracorporeal Shock Wave Therapy on Tendinopathies: A Scoping Review. J. Chiropr. Med. 2024, 23, 136–151. [Google Scholar] [CrossRef]
- Fatima, A.; Darain, H.; Gilani, S.A.; Ahmad, A.; Hanif, A.; Kazmi, S. Role of Extracorporeal Shockwave Therapy in Patients with Rotator Cuff Tendinopathy: Synthetic Analysis of Last Two Decades. J. Pak. Med. Assoc. 2021, 71, 1627–1632. [Google Scholar] [CrossRef]
- Burton, I. Combined Extracorporeal Shockwave Therapy and Exercise for the Treatment of Tendinopathy: A Narrative Review. Sports Med. Health Sci. 2022, 4, 8–17. [Google Scholar] [CrossRef]
- Corte-Rodríguez, H.; Román-Belmonte, J.; Rodríguez-Damiani, B.; Vázquez-Sasot, A.; Rodríguez-Merchán, E. Extracorporeal Shock Wave Therapy for the Treatment of Musculoskeletal Pain: A Narrative Review. Healthcare 2023, 11, 2830. [Google Scholar] [CrossRef]
- Fatima, A.; Ahmad, A.; Gilani, S.A.; Darain, H.; Kazmi, S.; Hanif, K. Effects of High-Energy Extracorporeal Shockwave Therapy on Pain, Functional Disability, Quality of Life, and Ultrasonographic Changes in Patients with Calcified Rotator Cuff Tendinopathy. BioMed Res. Int. 2022, 2022, 1230857. [Google Scholar] [CrossRef]
- Xue, X.; Song, Q.; Yang, X.; Kuati, A.; Fu, H.; Liu, Y.; Cui, G. Effect of Extracorporeal Shockwave Therapy for Rotator Cuff Tendinopathy: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2024, 25, 357, Erratum in BMC Musculoskelet. Disord. 2024, 25, 507. https://doi.org/10.1186/s12891-024-07611-x. [Google Scholar] [CrossRef] [PubMed]
- Canosa-Carro, L.; Bravo-Aguilar, M.; Abuín-Porras, V.; Almazán-Polo, J.; García-Pérez-de-Sevilla, G.; Rodríguez-Costa, I.; López-López, D.; Navarro-Flores, E.; Romero-Morales, C. Current Understanding of the Diagnosis and Management of the Tendinopathy: An Update from the Lab to the Clinical Practice. Dis. Mon. 2022, 68, 101314. [Google Scholar] [CrossRef]
- Wuerfel, T.; Schmitz, C.; Jokinen, L.L.J. The Effects of the Exposure of Musculoskeletal Tissue to Extracorporeal Shock Waves. Biomedicines 2022, 10, 1084. [Google Scholar] [CrossRef]
- Simplicio, C.L.; Purita, J.; Murrell, W.; Santos, G.S.; Dos Santos, R.G.; Lana, J.F.S.D. Extracorporeal Shock Wave Therapy Mechanisms in Musculoskeletal Regenerative Medicine. J. Clin. Orthop. Trauma 2020, 11, S309–S318. [Google Scholar] [CrossRef]
- Ji, H.; Liu, H.; Han, W.; Xia, Y.; Liu, F. Bibliometric Analysis of Extracorporeal Shock Wave Therapy for Tendinopathy. Medicine 2023, 102, e36416. [Google Scholar] [CrossRef]
- Reilly, J.M.; Bluman, E.; Tenforde, A.S. Effect of Shockwave Treatment for Management of Upper and Lower Extremity Musculoskeletal Conditions: A Narrative Review. PM&R 2018, 10, 1385–1403. [Google Scholar] [CrossRef]
- Chou, W.-Y.; Wang, C.-J.; Wu, K.-T.; Yang, Y.-J.; Cheng, J.-H.; Wang, S.-W. Comparative Outcomes of Extracorporeal Shockwave Therapy for Shoulder Tendinitis or Partial Tears of the Rotator Cuff in Athletes and Non-Athletes: Retrospective Study. Int. J. Surg. 2018, 51, 184–190. [Google Scholar] [CrossRef]
- Frassanito, P.; Cavalieri, C.; Maestri, R.; Felicetti, G. Effectiveness of Extracorporeal Shock Wave Therapy and Kinesio Taping in Calcific Tendinopathy of the Shoulder: A Randomized Controlled Trial. Eur. J. Phys. Rehabil. Med. 2018, 54, 333–340. [Google Scholar] [CrossRef]
- Moya, D.; Ramón, S.; Guiloff, L.; Gerdesmeyer, L. Current Knowledge on Evidence-Based Shockwave Treatments for Shoulder Pathology. Int. J. Surg. 2015, 24, 171–178. [Google Scholar] [CrossRef]
- Carlisi, E.; Lisi, C.; Dall’Angelo, A.; Monteleone, S.; Nola, V.; Tinelli, C.; Dalla Toffola, E. Focused Extracorporeal Shock Wave Therapy Combined with Supervised Eccentric Training for Supraspinatus Calcific Tendinopathy. Eur. J. Phys. Rehabil. Med. 2018, 54, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Majidi, L.; Khateri, S.; Nikbakht, N.; Moradi, Y.; Nikoo, M.R. The Effect of Extracorporeal Shock-Wave Therapy on Pain in Patients with Various Tendinopathies: A Systematic Review and Meta-Analysis of Randomized Control Trials. BMC Sports Sci. Med. Rehabil. 2024, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Li, Z.; Liu, Z.; Shi, T.; Xue, C. Effects of High- and Low-Energy Radial Shock Waves Therapy Combined with Physiotherapy in the Treatment of Rotator Cuff Tendinopathy: A Retrospective Study. Disabil. Rehabil. 2018, 40, 2488–2494. [Google Scholar] [CrossRef] [PubMed]
- Santilli, G.; Vetrano, M.; Mangone, M.; Agostini, F.; Bernetti, A.; Coraci, D.; Paoloni, M.; de Sire, A.; Paolucci, T.; Latini, E.; et al. Predictive Prognostic Factors in Non-Calcific Supraspinatus Tendinopathy Treated with Focused Extracorporeal Shock Wave Therapy: An Artificial Neural Network Approach. Life 2024, 14, 681. [Google Scholar] [CrossRef]
- Kuo, S.-J.; Su, Y.-H.; Hsu, S.-C.; Huang, P.-H.; Hsia, C.-C.; Liao, C.-Y.; Chen, S.-H.; Wu, R.-W.; Hsu, C.-C.; Lai, Y.-C.; et al. Effects of Adding Extracorporeal Shockwave Therapy (ESWT) to Platelet-Rich Plasma (PRP) among Patients with Rotator Cuff Partial Tear: A Prospective Randomized Comparative Study. J. Pers. Med. 2024, 14, 83. [Google Scholar] [CrossRef]
- Caballero, I.; Dueñas, L.; Balasch-Bernat, M.; Fernández-Matías, R.; Bresó-Parra, L.; Gallego-Terres, C.; Aroca Navarro, J.E.; Navarro-Bosch, M.; Lewis, J.; Lluch Girbés, E. Effectiveness of Non-Surgical Management in Rotator Cuff Calcific Tendinopathy (the Effect Trial): Protocol for a Randomised Clinical Trial. BMJ Open 2024, 14, e074949. [Google Scholar] [CrossRef]
- Elgendy, M.H.; Khalil, S.E.; ElMeligie, M.M.; Elazab, D.R. Effectiveness of Extracorporeal Shockwave Therapy in Treatment of Upper and Lower Limb Tendinopathies: A Systematic Review and Meta-Analysis. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2024, 29, e2042. [Google Scholar] [CrossRef]
- Canata, G.L.; D’Hooghe, P.; Hunt, K.J. Muscle and Tendon Injuries: Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-54184-5. [Google Scholar]
- Fallon, J.; Blevins, F.T.; Vogel, K.; Trotter, J. Functional Morphology of the Supraspinatus Tendon. J. Orthop. Res. 2002, 20, 920–926. [Google Scholar] [CrossRef]
- Yuri, T.; Kobayashi, H.; Takano, Y.; Yoshida, S.; Naito, A.; Fujii, H.; Kiyoshige, Y. Capsular Attachment of the Subregions of Rotator Cuff Muscles. Surg. Radiol. Anat. 2019, 41, 1351–1359. [Google Scholar] [CrossRef]
- Huri, G.; Kaymakoglu, M.; Garbis, N. Rotator Cable and Rotator Interval: Anatomy, Biomechanics and Clinical Importance. EFORT Open Rev. 2019, 4, 56–62. [Google Scholar] [CrossRef]
- Spargoli, G. Supraspinatus tendon pathomechanics: A current concepts review. Int. J. Sports Phys. Ther. 2018, 13, 1083–1094. [Google Scholar] [CrossRef]
- Varacallo, M.A.; El Bitar, Y.; Sina, R.E.; Mair, S.D. Rotator Cuff Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Thomopoulos, S.; Genin, G.M.; Galatz, L.M. The Development and Morphogenesis of the Tendon-to-Bone Insertion—What Development Can Teach Us about Healing. J. Musculoskelet. Neuronal Interact. 2010, 10, 35–45. [Google Scholar] [PubMed]
- Merry, K.; Napier, C.; Waugh, C.M.; Scott, A. Foundational Principles and Adaptation of the Healthy and Pathological Achilles Tendon in Response to Resistance Exercise: A Narrative Review and Clinical Implications. J. Clin. Med. 2022, 11, 4722. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N. Overuse Tendon Conditions: Time to Change a Confusing Terminology. Arthrosc. J. Arthrosc. Relat. Surg. 1998, 14, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Rio, E.; Purdam, C.R.; Docking, S.I. Revisiting the Continuum Model of Tendon Pathology: What is its Merit in Clinical Practice and Research? Br. J. Sports Med. 2016, 50, 1187–1191. [Google Scholar] [CrossRef]
- Docking, S.I.; Cook, J. How do Tendons Adapt? Going beyond Tissue Responses to Understand Positive Adaptation and Pathology Development: A Narrative Review. J. Musculoskelet. Neuronal Interact. 2019, 19, 300–310. [Google Scholar]
- Williamson, P.M.; Freedman, B.R.; Kwok, N.; Beeram, I.; Pennings, J.; Johnson, J.; Hamparian, D.; Cohen, E.; Galloway, J.L.; Ramappa, A.J.; et al. Tendinopathy and Tendon Material Response to Load: What we can Learn from Small Animal Studies. Acta Biomater. 2021, 134, 43–56. [Google Scholar] [CrossRef]
- Wasker, S.V.Z.; Challoumas, D.; Weng, W.; Murrell, G.A.C.; Millar, N.L. Is Neurogenic Inflammation Involved in Tendinopathy? A Systematic Review. BMJ Open Sport Exerc. Med. 2023, 9, e001494. [Google Scholar] [CrossRef]
- Oreff, G.L.; Fenu, M.; Vogl, C.; Ribitsch, I.; Jenner, F. Species Variations in Tenocytes’ Response to Inflammation Require Careful Selection of Animal Models for Tendon Research. Sci. Rep. 2021, 11, 12451. [Google Scholar] [CrossRef]
- Lui, P.P.Y.; Zhang, X.; Yao, S.; Sun, H.; Huang, C. Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy—A Target for Intervention. Int. J. Mol. Sci. 2022, 23, 3571. [Google Scholar] [CrossRef]
- Fu, S.-C.; Rolf, C.; Cheuk, Y.-C.; Lui, P.P.; Chan, K.-M. Deciphering the Pathogenesis of Tendinopathy: A Three-Stages Process. BMC Sports Sci. Med. Rehabil. 2010, 2, 30. [Google Scholar] [CrossRef]
- Fenwick, S.A.; Hazleman, B.L.; Riley, G.P. The Vasculature and Its Role in the Damaged and Healing Tendon. Arthritis Res. 2002, 4, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, M.; Hamada, K.; Yamakawa, H.; Tomonaga, A.; Inoue, A.; Fukuda, H. Significance of Granulation Tissue in Torn Supraspinatus Insertions: An Immunohistochemical Study with Antibodies Against Interleukin-1β, Cathepsin D, and Matrix Metalloprotease-1. J. Orthop. Res. 1997, 15, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.C.; Shah, S.A.; Golman, M.; Song, L.; Li, X.; Kurtaliaj, I.; Akbar, M.; Millar, N.L.; Abu-Amer, Y.; Galatz, L.M.; et al. Targeting the NF-κB Signaling Pathway in Chronic Tendon Disease. Sci. Transl. Med. 2019, 11, eaav4319. [Google Scholar] [CrossRef]
- Legerlotz, K.; Jones, E.R.; Screen, H.R.C.; Riley, G.P. Increased Expression of IL-6 Family Members in Tendon Pathology. Rheumatology 2012, 51, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Zhu, Q.; Liu, D.; Zhang, Q.; Jiang, S.; Yu, X.; Shu, J.; Gao, F.; Guo, J.; Chen, S.; et al. Quantitative Proteomics Reveals Potential Anti-Inflammatory Protein Targets of Radial Extracorporeal Shock Wave Therapy in TNF-α-Induced Model of Acute Inflammation in Primary Human Tenocytes. Heliyon 2022, 8, e12008. [Google Scholar] [CrossRef]
- Koch, D.W.; Berglund, A.K.; Messenger, K.M.; Gilbertie, J.M.; Ellis, I.M.; Schnabel, L.V. Interleukin-1β in Tendon Injury Enhances Reparative Gene and Protein Expression in Mesenchymal Stem Cells. Front. Vet. Sci. 2022, 9, 963759. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Langberg, H.; Kjaer, M. The Pathogenesis of Tendinopathy: Balancing the Response to Loading. Nat. Rev. Rheumatol. 2010, 6, 262–268. [Google Scholar] [CrossRef]
- Rees, J.D.; Stride, M.; Scott, A. Tendons—Time to Revisit Inflammation. Br. J. Sports Med. 2014, 48, 1553–1557. [Google Scholar] [CrossRef]
- Hijazi, K.M.; Singfield, K.L.; Veres, S.P. Ultrastructural Response of Tendon to Excessive Level or Duration of Tensile Load Supports that Collagen Fibrils are Mechanically Continuous. J. Mech. Behav. Biomed. Mater. 2019, 97, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Kjær, M.; Langberg, H.; Heinemeier, K.; Bayer, M.L.; Hansen, M.; Holm, L.; Doessing, S.; Kongsgaard, M.; Krogsgaard, M.R.; Magnusson, S.P. From Mechanical Loading to Collagen Synthesis, Structural Changes and Function In Human Tendon. Scand. J. Med. Sci. Sports 2009, 19, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, C.; Malliaras, P.; Bateman, M.; Stace, R.; May, S.; Walters, S. The Central Nervous System—An Additional Consideration in “Rotator Cuff Tendinopathy” and a Potential Basis for Understanding Response to Loaded Therapeutic Exercise. Man. Ther. 2013, 18, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Coombes, B.K.; Bisset, L.; Vicenzino, B. A New Integrative Model of Lateral Epicondylalgia. Br. J. Sports Med. 2009, 43, 252–258. [Google Scholar] [CrossRef]
- Fredberg, U.; Stengaard-Pedersen, K. Chronic Tendinopathy Tissue Pathology, Pain Mechanisms, and Etiology with a Special Focus on Inflammation. Scand. J. Med. Sci. Sports 2008, 18, 3–15. [Google Scholar] [CrossRef]
- Herod, T.W.; Veres, S.P. Development of Overuse Tendinopathy: A New Descriptive Model for the Initiation of Tendon Damage during Cyclic Loading. J. Orthop. Res. 2018, 36, 467–476. [Google Scholar] [CrossRef]
- Steinmann, S.; Pfeifer, C.G.; Brochhausen, C.; Docheva, D. Spectrum of Tendon Pathologies: Triggers, Trails and End-State. Int. J. Mol. Sci. 2020, 21, 844. [Google Scholar] [CrossRef]
- Scott, A.; Cook, J.L.; Hart, D.A.; Walker, D.C.; Duronio, V.; Khan, K.M. Tenocyte Responses to Mechanical Loading in Vivo: A Role for Local Insulin-Like Growth Factor 1 Signaling in Early Tendinosis in Rats. Arthritis Rheum. 2007, 56, 871–881. [Google Scholar] [CrossRef]
- McKee, T.J.; Perlman, G.; Morris, M.; Komarova, S.V. Extracellular Matrix Composition of Connective Tissues: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 10542. [Google Scholar] [CrossRef]
- Lui, P.P.Y.; Yung, P.S.H. Inflammatory Mechanisms Linking Obesity and Tendinopathy. J. Orthop. Transl. 2021, 31, 80–90. [Google Scholar] [CrossRef]
- Jewson, J.L.; Lambert, G.W.; Storr, M.; Gaida, J.E. The Sympathetic Nervous System and Tendinopathy: A Systematic Review. Sports Med. 2015, 45, 727–743. [Google Scholar] [CrossRef]
- Alfredson, H.; Forsgren, S.; Thorsen, K.; Lorentzon, R. In Vivo Microdialysis and Immunohistochemical Analyses of Tendon Tissue Demonstrated High Amounts of Free Glutamate and Glutamate NMDAR1 Receptors, but no Signs of Inflammation, in Jumper’s Knee. J. Orthop. Res. 2001, 19, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Galloway, M.T.; Lalley, A.L.; Shearn, J.T. The role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair. J. Bone Joint Surg. Am. 2013, 95, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Collins, M. Athletic Performance and Risk of Injury: Can Genes Explain ALL? Dialogues Cardiovasc. Med. 2012, 17, 31–39. [Google Scholar]
- Battié, M.C.; Levalahti, E.; Videman, T.; Burton, K.; Kaprio, J. Heritability of Lumbar Flexibility and the Role of Disc Degeneration and Body weight. J. Appl. Physiol. 2008, 104, 379–385. [Google Scholar] [CrossRef]
- Maes, H.H.M.; Beunen, G.P.; Vlietinck, R.F.; Neale, M.C.; Thomis, M.; Eynde, B.V.; Lysens, R.; Simons, J.; Derom, C.; Derom, R. Inheritance of Physical Fitness in 10-Yr-Old Twins and Their Parents. Med. Amp Sci. Sports Amp Exerc. 1996, 28, 1479–1491. [Google Scholar] [CrossRef]
- Harvie, P.; Ostlere, S.J.; Teh, J.; McNally, E.G.; Clipsham, K.; Burston, B.J.; Pollard, T.C.B.; Carr, A.J. Genetic Influences in the Aetiology of Tears of the Rotator Cuff: SIBLING RISK OF A FULL-THICKNESS TEAR. J. Bone Joint Surg. Br. 2004, 86-B, 696–700. [Google Scholar] [CrossRef]
- Magnan, B.; Bondi, M.; Pierantoni, S.; Samaila, E. The Pathogenesis of Achilles Tendinopathy: A Systematic Review. Foot Ankle Surg. 2014, 20, 154–159. [Google Scholar] [CrossRef]
- Ribbans, W.J.; September, A.V.; Collins, M. Tendon and Ligament Genetics: How Do They Contribute to Disease and Injury? A Narrative Review. Life 2022, 12, 663. [Google Scholar] [CrossRef]
- Tempelhof, S.; Rupp, S.; Seil, R. Age-Related Prevalence of Rotator Cuff Tears in Asymptomatic Shoulders. J. Shoulder Elbow Surg. 1999, 8, 296–299. [Google Scholar] [CrossRef]
- Shelton, T.J.; Delman, C.; McNary, S.; Taylor, J.R.; Marder, R.A. Aging Decreases the Ultimate Tensile Strength of Bone–Patellar Tendon–Bone Allografts. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 2173–2180. [Google Scholar] [CrossRef]
- Kumagai, J.; Sarkar, K.; Uhthoff, H.K. The Collagen Types in the Attachment Zone of Rotator Cuff Tendons in the Elderly: An Immunohistochemical Study. J. Rheumatol. 1994, 21, 2096–2100. [Google Scholar]
- Brindisino, F.; Indaco, T.; Giovannico, G.; Ristori, D.; Maistrello, L.; Turolla, A. Shoulder Pain and Disability Index: Italian Cross-Cultural Validation in Patients with Non-Specific Shoulder Pain. Shoulder Elb. 2021, 13, 433–444. [Google Scholar] [CrossRef]
- Littlewood, C. Contractile Dysfunction of the Shoulder (Rotator Cuff Tendinopathy): An Overview. J. Man. Manip. Ther. 2012, 20, 209–213. [Google Scholar] [CrossRef] [PubMed]
- VanBaak, K.; Aerni, G. Shoulder Conditions: Rotator Cuff Injuries and Bursitis. FP Essent. 2020, 491, 11–16. [Google Scholar] [PubMed]
- Umer, M.; Qadir, I.; Azam, M. Subacromial Impingement Syndrome. Orthop. Rev. 2012, 4, e18. [Google Scholar] [CrossRef] [PubMed]
- Skovgaard, D.; Siersma, V.D.; Klausen, S.B.; Visnes, H.; Haukenes, I.; Bang, C.W.; Bager, P.; Silbernagel, K.G.; Gaida, J.; Magnusson, S.P.; et al. Chronic Hyperglycemia, Hypercholesterolemia, and Metabolic Syndrome are Associated with Risk of Tendon Injury. Scand. J. Med. Sci. Sports 2021, 31, 1822–1831. [Google Scholar] [CrossRef]
- Ahn, H.S.; Kim, H.J.; Kang, T.U.; Kazmi, S.Z.; Suh, J.S.; Choi, J.Y. Dyslipidemia Is Associated With Increased Risk of Achilles Tendon Disorders in Underweight Individuals to a Greater Extent Than Obese Individuals: A Nationwide, Population-Based, Longitudinal Cohort Study. Orthop. J. Sports Med. 2021, 9, 23259671211042599. [Google Scholar] [CrossRef]
- Otelea, M.R.; Nartea, R.; Popescu, F.G.; Covaleov, A.; Mitoiu, B.I.; Nica, A.S. The Pathological Links between Adiposity and the Carpal Tunnel Syndrome. Curr. Issues Mol. Biol. 2022, 44, 2646–2663. [Google Scholar] [CrossRef]
- Macchi, M.; Spezia, M.; Elli, S.; Schiaffini, G.; Chisari, E. Obesity Increases the Risk of Tendinopathy, Tendon Tear and Rupture, and Postoperative Complications: A Systematic Review of Clinical Studies. Clin. Orthop. 2020, 478, 1839–1847. [Google Scholar] [CrossRef]
- Lui, P.P.Y. Tendinopathy in Diabetes Mellitus Patients—Epidemiology, Pathogenesis, and Management. Scand. J. Med. Sci. Sports 2017, 27, 776–787. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Liang, F.-C.; Cheng, J.-W.; Lin, L.-P.; Chang, S.-C.; Chen, H.-H.; Pang, J.-H.S. High Glucose Concentration Up-Regulates the Expression of Matrix Metalloproteinase-9 and -13 in Tendon Cells. BMC Musculoskelet. Disord. 2013, 14, 255. [Google Scholar] [CrossRef]
- Leblanc, D.R.; Schneider, M.; Angele, P.; Vollmer, G.; Docheva, D. The Effect of Estrogen on Tendon and Ligament Metabolism and Function. J. Steroid Biochem. Mol. Biol. 2017, 172, 106–116. [Google Scholar] [CrossRef]
- Nartea, R.; Mitoiu, B.I.; Nica, A.S. Correlation between Pregnancy Related Weight Gain, Postpartum Weight loss and Obesity: A Prospective Study. J. Med. Life 2019, 12, 178–183. [Google Scholar] [CrossRef]
- Nartea, R.; Mitoiu, B.I.; Ghiorghiu, I. The Link between Magnesium Supplements and Statin Medication in Dyslipidemic Patients. Curr. Issues Mol. Biol. 2023, 45, 3146–3167. [Google Scholar] [CrossRef]
- Deren, M.E.; Klinge, S.A.; Mukand, N.H.; Mukand, J.A. Tendinopathy and Tendon Rupture Associated with Statins. JBJS Rev. 2016, 4, e4. [Google Scholar] [CrossRef]
- Córdova, A.; Drobnic, F.; Noriega-González, D.; Caballero-García, A.; Roche, E.; Alvarez-Mon, M. Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023, 15, 384. [Google Scholar] [CrossRef]
- Shu, Y.; Zhang, Q.; He, X.; Liu, Y.; Wu, P.; Chen, L. Fluoroquinolone-Associated Suspected Tendonitis and Tendon Rupture: A Pharmacovigilance Analysis from 2016 to 2021 Based on the FAERS Database. Front. Pharmacol. 2022, 13, 990241. [Google Scholar] [CrossRef]
- Konopka, J.A.; Hsue, L.J.; Dragoo, J.L. Effect of Oral Contraceptives on Soft Tissue Injury Risk, Soft Tissue Laxity, and Muscle Strength: A Systematic Review of the Literature. Orthop. J. Sports Med. 2019, 7, 2325967119831061. [Google Scholar] [CrossRef]
- Waugh, C.; Morrissey, D.; Jones, E.; Riley, G.; Langberg, H.; Screen, H. In Vivo Biological Response to Extracorporeal Shockwave Therapy in Human Tendinopathy. Eur. Cell Mater. 2015, 29, 268–280. [Google Scholar] [CrossRef]
- Cui, H.S.; Joo, S.Y.; Cho, Y.S.; Park, J.H.; Ro, Y.M.; Kim, J.-B.; Seo, C.H. Effect of Extracorporeal Shock Wave Therapy on Keratinocytes Derived from Human Hypertrophic Scars. Sci. Rep. 2021, 11, 17296. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.-B.; Zhou, Y.; Zhang, R.; Wang, F. Possible Mechanism of Static Progressive Stretching Combined with Extracorporeal Shock Wave Therapy in Reducing Knee Joint Contracture in Rats Based on MAPK/ERK Pathway. Bosn. J. Basic Med. Sci. 2022, 23, 277–286. [Google Scholar] [CrossRef]
- Basoli, V.; Chaudary, S.; Cruciani, S.; Santaniello, S.; Balzano, F.; Ventura, C.; Redl, H.; Dungel, P.; Maioli, M. Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu. Cell Transplant. 2020, 29, 096368972091617. [Google Scholar] [CrossRef]
- Stania, M.; Juras, G.; Chmielewska, D.; Polak, A.; Kucio, C.; Król, P. Extracorporeal Shock Wave Therapy for Achilles Tendinopathy. BioMed Res. Int. 2019, 2019, 3086910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Z.-L.; Yang, F.; Zhang, Q.; Su, X.-Z.; Li, J.; Zhang, N.; Liu, C.-H.; Mao, N.; Zhu, H. Radial Shockwave Treatment Promotes Human Mesenchymal Stem Cell Self-Renewal and Enhances Cartilage Healing. Stem Cell Res. Ther. 2018, 9, 54. [Google Scholar] [CrossRef]
- Hsu, S.-L.; Cheng, J.-H.; Wang, C.-J.; Ko, J.-Y.; Hsu, C.-H. Extracorporeal Shockwave Therapy Enhances Expression of Pdia-3 Which Is a Key Factor of the 1α,25-Dihydroxyvitamin D 3 Rapid Membrane Signaling Pathway in Treatment of Early Osteoarthritis of the Knee. Int. J. Med. Sci. 2017, 14, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- d’Agostino, M.C.; Craig, K.; Tibalt, E.; Respizzi, S. Shock Wave as Biological Therapeutic Tool: From Mechanical Stimulation to Recovery and Healing, through Mechanotransduction. Int. J. Surg. 2015, 24, 147–153. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Wang, C.-J. Biological Mechanism of Shockwave in Bone. Int. J. Surg. 2015, 24, 143–146. [Google Scholar] [CrossRef]
- Liu, T.; Shindel, A.W.; Lin, G.; Lue, T.F. Cellular Signaling Pathways Modulated by Low-Intensity Extracorporeal Shock Wave Therapy. Int. J. Impot. Res. 2019, 31, 170–176. [Google Scholar] [CrossRef]
- Dos Santos, P.R.D.; De Medeiros, V.P.; de Moura, J.P.F.M.; Franciozi, C.E.d.S.; Nader, H.B.; Faloppa, F. Effects of Shock Wave Therapy on Glycosaminoglycan Expression during Bone Healing. Int. J. Surg. 2015, 24, 120–123. [Google Scholar] [CrossRef]
- Ramesh, S.; Zaman, F.; Madhuri, V.; Sävendahl, L. Radial Extracorporeal Shock Wave Treatment Promotes Bone Growth and Chondrogenesis in Cultured Fetal Rat Metatarsal Bones. Clin. Orthop. 2020, 478, 668–678. [Google Scholar] [CrossRef]
- Feng, B.; Dong, Z.; Wang, Y.; Yan, G.; Yang, E.; Cheng, H.; Liang, C.; Hao, Z.; Zhang, X.; Song, Z.; et al. Li-ESWT Treatment Reduces Inflammation, Oxidative Stress, and Pain via the PI3K/AKT/FOXO1 Pathway in Autoimmune Prostatitis Rat Models. Andrology 2021, 9, 1593–1602. [Google Scholar] [CrossRef]
- Rola, P.; Włodarczak, A.; Barycki, M.; Doroszko, A. Use of the Shock Wave Therapy in Basic Research and Clinical Applications—From Bench to Bedsite. Biomedicines 2022, 10, 568. [Google Scholar] [CrossRef]
- Yang, E.; Lew, H.L.; Özçakar, L.; Wu, C.-H. Recent Advances in the Treatment of Spasticity: Extracorporeal Shock Wave Therapy. J. Clin. Med. 2021, 10, 4723. [Google Scholar] [CrossRef]
- Hassan, M.I.; Saleh, M.S.M.; Sallam, M.H.; Elkhodary, H.H.; Sayed, M.M.; Samy, H.; Mohamed, A.H.; Ashour, A.S.; Mosaid, E.M.; Zaghloul, M.H.; et al. Extracorporeal Shock Wave Therapy Versus Laser Therapy in Treating Musculoskeletal Disorders: A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2025, 40, 194. [Google Scholar] [CrossRef]
- Sukubo, N.G.; Tibalt, E.; Respizzi, S.; Locati, M.; d’Agostino, M.C. Effect of Shock Waves on Macrophages: A Possible Role in Tissue Regeneration and Remodeling. Int. J. Surg. 2015, 24, 124–130. [Google Scholar] [CrossRef]
- Njawaya, M.M.; Moses, B.; Martens, D.; Orchard, J.J.; Driscoll, T.; Negrine, J.; Orchard, J.W. Ultrasound Guidance Does Not Improve the Results of Shock Wave for Plantar Fasciitis or Calcific Achilles Tendinopathy: A Randomized Control Trial. Clin. J. Sport Med. 2018, 28, 21–27. [Google Scholar] [CrossRef]
- Surace, S.J.; Deitch, J.; Johnston, R.V.; Buchbinder, R. Shock Wave Therapy for Rotator Cuff Disease with or Without Calcification. Cochrane Database Syst. Rev. 2020, 2020, CD008962. [Google Scholar] [CrossRef]
- Schmitz, C.; Császár, N.B.M.; Milz, S.; Schieker, M.; Maffulli, N.; Rompe, J.-D.; Furia, J.P. Efficacy and Safety of Extracorporeal Shock Wave Therapy for Orthopedic Conditions: A Systematic Review on Studies Listed in the PEDro Database. Br. Med. Bull. 2015, 116, 115–138. [Google Scholar] [CrossRef]
- Rau, O.R.; Cheng, J.; Jivanelli, B.; Tenforde, A.S.; Wyss, J.F. Extracorporeal Shockwave Therapy for Tendinopathies Around the Hip and Pelvis: A Systematic Review. HSS J.® 2025. [Google Scholar] [CrossRef]
- Gerdesmeyer, L.; Schaden, W.; Besch, L.; Stukenberg, M.; Doerner, L.; Muehlhofer, H.; Toepfer, A. Osteogenetic Effect of Extracorporeal Shock Waves in Human. Int. J. Surg. 2015, 24, 115–119. [Google Scholar] [CrossRef]
- Tedeschi, R.; Platano, D.; Donati, D.; Giorgi, F. Functional approaches in tendinopathy rehabilitation: Exploring the role of tendon neuroplastic training. Manuelle Medizin 2025, 63, 177–183. [Google Scholar] [CrossRef]
- Aschermann, I.; Noor, S.; Venturelli, S.; Sinnberg, T.; Busch, C.; Mnich, C.D. Extracorporal Shock Waves Activate Migration, Proliferation and Inflammatory Pathways in Fibroblasts and Keratinocytes, and Improve Wound Healing in an Open-Label, Single-Arm Study in Patients with Therapy-Refractory Chronic Leg Ulcers. Cell. Physiol. Biochem. 2017, 41, 890–906. [Google Scholar] [CrossRef] [PubMed]
- Ramon, S.; Gleitz, M.; Hernandez, L.; Romero, L.D. Update on the Efficacy of Extracorporeal Shockwave Treatment for Myofascial Pain Syndrome and Fibromyalgia. Int. J. Surg. 2015, 24, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Gu, S.; Sun, J.; Qin, Z.; Yue, J.; Zhong, Y.; Ding, N.; Gao, R. Comparative Effectiveness of Extracorporeal Shock Wave, Ultrasound, Low-Level Laser Therapy, Noninvasive Interactive Neurostimulation, and Pulsed Radiofrequency Treatment for Treating Plantar Fasciitis: A Systematic Review and Network Meta-Analysis. Medicine 2018, 97, e12819. [Google Scholar] [CrossRef]
- Katz, N.B.; Karnovsky, S.C.; Robinson, D.M.; DeLuca, S.E.; Yun, P.H.; Casey, E.; Wasfy, M.M.; Tenforde, A.S. Sex Differences and Extracorporeal Shockwave Therapy Outcomes in Runners with Achilles or Hamstring Tendinopathy. J. Clin. Med. 2024, 13, 7360. [Google Scholar] [CrossRef]
Assessment Inclusion Criteria: | Exclusion Criteria: |
---|---|
Part 1—All criteria must be fulfilled:
|
|
STUDY (Reference) | Year of Publication | Participant Pathology | Procedure | Number of Studies Included | Conclusion of the Review |
---|---|---|---|---|---|
Shahabi S. et al. [8] | 2024 | Tendinopathy—shoulder, rotator cuff with calcification, lower limb | ESWT | 18 studies | ESWT was effective in reducing pain and increasing ROM. |
Fatima A. et al. [9] | 2021 | Rotator cuff tendinopathy | ESWT | 11 studies | ESWT has no consensus compared to traditional rehabilitation. |
Burton I. et al. [10] | 2021 | Tendinopathy | ESWT combined with exercise | 26 studies | Combined ESWT and exercise present a greater reduction in pain and superior ROM recovery. |
Corte-Rodriguez H. et al. [11] | 2023 | Tendinopathy | ESWT | 98 studies | ESWT is a safe treatment that can be used in association with other physical therapies. |
Fatima A. et al. [12] | 2022 | Tendinopathy of the rotator cuff | ESWT | 42 patients | ESWT is an effective procedure for improving pain, functionality, and quality of life. |
Xue X. et al. [13] | 2024 | Rotator cuff tendinopathy | ESWT | 16 studies | ESWT can provide pain relief, maintenance of ROM, and functional recovery. |
Canosa-Carro L. et al. [14] | 2022 | Tendinopathy | ESWT and injections (PRP and corticosteroids) | 15 | ESWT decreases pain and stimulates the regeneration of tendons. |
Wuerfuel T. et al. [15] | 2022 | Musculoskeletal pathologies (including tendinopathies) | ESWT | 42 studies | ESWT applied to different tissues provides different responses, reducing pain, and mimicing the effect of capsaicin. |
Simplicio C et al. [16] | 2020 | Musculoskeletal pathologies—tendinopathy | ESWT | 27 studies | ESWT reduces pain and calcium deposits, in moderate cases. |
Ji H et al. [17] | 2023 | Tendinopathy | ESWT | 276 studies | The development of more studies regarding pulse parameters is suggested. |
Reilly J. et al. [18] | 2018 | Musculoskeletal pathologies—tendinopathy | ESWT | 33 studies | ESWT represents a reasonable treatment for reducing pain. |
Chou W. et al. [19] | 2018 | Shoulder tendinopathy | ESWT | 36 patients | ESWT is an effective treatment for athletes. |
Frassanito P. et al. [20] | 2018 | Calcific tendinopathy of the shoulder | ESWT and KT | 42 patients | ESWT reduced pain, alone and in association with KT. |
Moya D. et al. [21] | 2015 | Shoulder tendinopathy | ESWT | 22 articles | ESWT is a strong therapeutic tool for shoulder pathology. |
Carlisi E. et al. [22] | 2018 | Supraspinatus tendinopathy | ESWT | 22 patients | ESWT is effective in improving function and reducing pain. |
Majidi L. et al. [23] | 2024 | Tendinopathies | ESWT | 45 clinical studies | Reduces pain and tendinopathy in shoulder. |
Su X. et al. [24] | 2018 | Rotator cuff tendinopathy | ESWT | 94 patients | ESWT reduces pain on VAS. |
Caballero I. et al. [25] | 2024 | Rotator cuff tendinopathy | ESWT combined with KT | 116 patients | Interesting subject, further studies at work. |
Elgendy M. et al. [26] | 2024 | Tendinopathies—upper and lower limbs | ESWT | 25 studies | ESWT presents better results in treating the lower limb than the upper limb. |
Santilli G et al. [27] | 2024 | Supraspinous tendinopathy | ESWT | 207 patients | ESWT is a safe and effective therapy for supraspinous tendinopathy, with the best results with combined procedures. |
Kuo S et al. [28] | 2024 | Rotator cuff tendinopathy | ESWT and PRP | 55 patients | ESWT combined with the PRP procedure provides a better response. |
No. | Reference | Study Type | Bias Assessment Tool | Risk of Bias (Summary) | Observations |
---|---|---|---|---|---|
[9] | Fatima et al., 2021 | Narrative review/synthetic analysis | Qualitative assessment | High | Possible selection bias and selective reporting; lack of standardization of inclusion criteria. |
[10] | Burton, 2022 | Narrative review | Qualitative assessment | High | Study selection is not systematic; risk of selective reporting. |
[11] | Corte-Rodríguez et al., 2023 | Narrative review | Qualitative assessment | High | Similar to above, a lack of a predefined protocol. |
[12] | Fatima et al., 2022 | Interventional clinical study (probably RCT) | RoB 2 | Moderate | Randomization and blinding details seem incomplete; low risk of unreported losses. |
[13] | Xue et al., 2024 | Systematic review + meta-analysis | AMSTAR 2 | Moderate | Quality assessment of included studies was presented, but high heterogeneity. |
[13] | Xue et al., 2024 | Correctional meta-analysis | AMSTAR 2 | N/A | Does not add new data, only corrections. |
[14] | Canosa-Carro et al., 2022 | Narrative review | Qualitative assessment | High | Literature selection bias and selective reporting. |
[15] | Wuerfel et al., 2022 | Mechanistic/experimental study | Qualitative assessment | Low–Moderate | Controlled trials; low risk of bias but limited clinical relevance. |
[16] | Simplicio et al., 2020 | Narrative/mechanistic review | Qualitative assessment | High | Same problem: study selection and selective reporting. |
[17] | Ji et al., 2023 | Bibliometric analysis | Qualitative assessment | Low | Objective data (number of articles, citations); low risk of inherent bias. |
[18] | Reilly et al., 2018 | Narrative review | Qualitative assessment | High | Subjective study selection, selective reporting. |
[19] | Chou, 2018 | Retrospective comparative study | ROBINS-I | High | Confounding, retrospective selection, lack of blinding. |
[20] | Frassanito et al., 2018 | RCT | RoB 2 | Moderate | Randomization reported; possible risk of insufficient blinding. |
[21] | Moya et al., 2015 | Narrative review | Qualitative assessment | High | Literature selection is not systematic. |
[22] | Carlisi et al., 2018 | Interventional clinical study (probably RCT) | RoB 2 | Moderate | Similar to Frassanito, minor risk of performance bias. |
[23] | Majidi et al., 2024 | Systematic review + meta-analysis (RCT) | AMSTAR 2 | Moderate | Quality assessment of studies but heterogeneity. |
[24] | Su et al., 2018 | Retrospective study | ROBINS-I | High | Lack of randomization, high risk of confounding. |
[25] | Santilli et al., 2024 | Prospective study with predictive model | ROBINS-I adapted | Moderate | An AI model may introduce overfitting; clear patient selection. |
[26] | Kuo et al., 2024 | Prospective randomized comparative study | RoB 2 | Moderate | Good design; low risk of bias, details of blinding unclear. |
[27] | Caballero et al., 2024 | RCT | N/A | N/A | Published protocol; actual risk of bias unknown until study completion. |
[28] | Elgendy et al., 2024 | Systematic review + meta-analysis | AMSTAR 2 | Moderate | Quality assessment of included studies: moderate heterogeneity. |
Structure Involved | Main Changes | References |
---|---|---|
Tendon cells | Tenocytes become rounder | [20,27] |
Increased cellularity | [16,30,35] | |
Chondroid metaplasia | [1,24] | |
Cellular apoptosis | [25] | |
Extracellular matrix | Degeneration, fatty infiltration | [36,37] |
Loss of distinctive hierarchical structure | [17,35] | |
Vascularization | Neovascularization | [21,23] |
General aspects | Increased number of small nerves | [33,38] |
Increased number of neurotransmitters | [17,19] | |
Presence of inflammatory markers | [30] | |
Hypoxia | [20,27,30,39] |
Therapeutic Effects | Biological Modifications | References |
---|---|---|
Tissue Repair |
| [11,18,92,93,94,95]. |
Analgesia |
| [11,96] |
Osteogenesis |
| [11,95,97,98,99,101,102,103] |
1. Focused ESWT: a. Electrohydraulic: 2.000–6000 shocks; depending on the device, between 0.19 and 0.32 mJ/mm2; 1 to 3 sessions. b. Electromagnetic: 2.000–6000 shocks; 0.35 mJ/mm2; 2–3 sessions. | 2. Radial ESWT: 4.000–6000 shocks, 4–7 bar, 3–5 sessions, depending on the device. Interval between applications: 1–2 weeks. Control at 6, 12, 18,2 4 weeks following treatment. No anesthetic in the area. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nartea, R.; Ghiorghiu, I.; Alexe, M.-D.; Gheorghievici, G.L.; Mitoiu, B.I. Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature. Biomedicines 2025, 13, 2253. https://doi.org/10.3390/biomedicines13092253
Nartea R, Ghiorghiu I, Alexe M-D, Gheorghievici GL, Mitoiu BI. Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature. Biomedicines. 2025; 13(9):2253. https://doi.org/10.3390/biomedicines13092253
Chicago/Turabian StyleNartea, Roxana, Ioana Ghiorghiu, Maria-Delia Alexe, Gavril Lucian Gheorghievici, and Brindusa Ilinca Mitoiu. 2025. "Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature" Biomedicines 13, no. 9: 2253. https://doi.org/10.3390/biomedicines13092253
APA StyleNartea, R., Ghiorghiu, I., Alexe, M.-D., Gheorghievici, G. L., & Mitoiu, B. I. (2025). Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature. Biomedicines, 13(9), 2253. https://doi.org/10.3390/biomedicines13092253