The Association of Elevated Factor VIII and von Willebrand Factor (vWF) Levels with SYNTAX Score in Patients with Chronic Coronary Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Assessment
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Laboratory Parameters
3.3. Imaging and Angiographic Parameters
3.4. Hemostatic and Inflammatory Parameters According to SYNTAX Score Groups
3.5. Identification of Independent Predictors of Coronary Artery Disease Severity According to SYNTAX Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gurgoglione, F.L.; Benatti, G.; Denegri, A.; Donelli, D.; Covani, M.; De Gregorio, M.; Dallaglio, G.; Navacchi, R.; Niccoli, G. Coronary Microvascular Dysfunction: Insights on Prognosis and Future Perspectives. Rev. Cardiovasc. Med. 2025, 26, 25757. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Shahjehan, R.D.; Sharma, S.; Bhutta, B.S. Coronary Artery Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK564304 (accessed on 20 December 2024).
- Tuddenham, E. In search of the source of factor VIII. Blood 2014, 123, 3691. [Google Scholar] [CrossRef]
- Kovacevic, K.D.; Grafeneder, J.; Schörgenhofer, C.; Gelbenegger, G.; Gager, G.; Firbas, C.; Quehenberger, P.; Jilma-Stohlawetz, P.; Bileck, A.; Zhu, S.; et al. The von Willebrand factor A-1 domain binding aptamer BT200 elevates plasma levels of von Willebrand factor and factor VIII: A first-in-human trial. Haematologica 2022, 107, 2121–2132. [Google Scholar] [CrossRef]
- Khalilian, S.; Mohajer, Z.; Ghafouri-Fard, S. Factor VIII as a Novel Biomarker for Diagnosis, Prognosis, and Therapy Prediction in Human Cancer and Other Disorders. Avicenna J. Med. Biotechnol. 2024, 16, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Delaney, J.A.; Lutsey, P.L.; Zakai, N.A.; Jenny, N.S.; Polak, J.F.; Cushman, M. Associations of factor VIIIc, D-dimer, and plasmin–antiplasmin with incident cardiovascular disease and all-cause mortality. Am. J. Hematol. 2009, 84, 349–353. [Google Scholar] [CrossRef]
- Noone, S.; Schubert, R.; Fichtlscherer, S.; Hilberg, T.; Alesci, S.; Miesbach, W. Endothelial Function in Patients with Von Willebrand Disease. Clin. Appl. Thromb. 2021, 27, 1076029620984546. [Google Scholar] [CrossRef]
- van Galen, K.P.M.; Tuinenburg, A.; Smeets, E.M.; Schutgens, R.E.G. Von Willebrand factor deficiency and atherosclerosis. Blood Rev. 2012, 26, 189–196. [Google Scholar] [CrossRef]
- Ruggeri, Z.M. von Willebrand factor. J. Clin. Investig. 1997, 99, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, B.J.; Dong, J.F.; McIntire, L.V.; López, J.A. Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood 1998, 92, 3684–3693. [Google Scholar] [CrossRef]
- Yamashita, A.; Sumi, T.; Goto, S.; Hoshiba, Y.; Nishihira, K.; Kawamoto, R.; Hatakeyama, K.; Date, H.; Imamura, T.; Ogawa, H.; et al. Detection of von Willebrand factor and tissue factor in platelets-fibrin rich coronary thrombi in acute myocardial infarction. Am. J. Cardiol. 2006, 97, 26–28. [Google Scholar] [CrossRef]
- Lip, G.Y.; Blann, A. Von Willebrand factor: A marker of endothelial dysfunction in vascular disorders? Cardiovasc. Res. 1997, 34, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.; McKinnon, T.A.J.; Zhang, X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. AJP-Heart Circ. Physiol. 2022, 322, H87–H93. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Braun, S.; King, L.; Fusaro, M.; Keta, D.; Cassese, S.; Tada, T.; Schömig, A.; Kastrati, A. Relation of fibrinogen level with cardiovascular events in patients with coronary artery disease. Am. J. Cardiol. 2015, 111, 804–810. [Google Scholar] [CrossRef]
- De Luca, G.; Verdoia, M.; Cassetti, E.; Schaffer, A.; Cavallino, C.; Bolzani, V.; Marino, P.; Novara Atherosclerosis Study Group (NAS). High fibrinogen level is an independent predictor of presence and extent of coronary artery disease among Italian population. J. Thromb. Thrombolysis 2011, 31, 458–463. [Google Scholar] [CrossRef] [PubMed]
- McBane, R.D., II; Hardison, R.M.; Sobel, B.E.; BARI 2D Study Group. Comparison of plasminogen activator inhibitor-1, tissue type plasminogen activator antigen, fibrinogen, and D-dimer levels in various age decades in patients with type 2 diabetes mellitus and stable coronary artery disease (from the BARI 2D trial). Am. J. Cardiol. 2010, 105, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, H.; Li, Y.M.; Huang, B.-T.; Huang, F.-Y.; Xia, T.-L.; Chai, H.; Wang, P.-J.; Liu, W.; Zhang, C.; et al. Relation between admission plasma fibrinogen levels and mortality in Chinese patients with coronary artery disease. Sci. Rep. 2016, 6, 30506. [Google Scholar] [CrossRef]
- Shojaie, M.; Pourahmad, M.; Eshraghian, A.; Izadi, H.R.; Naghshvar, F. Fibrinogen as a risk factor for premature myocardial infarction in Iranian patients: A case control study. Vasc. Health Risk Manag. 2009, 5, 673–676. [Google Scholar] [CrossRef][Green Version]
- Green, D.; Foiles, N.; Chan, C.; Schreiner, P.J.; Liu, K. Elevated fibrinogen levels and subsequent subclinical atherosclerosis: The CARDIA Study. Atherosclerosis 2009, 202, 623–631. [Google Scholar] [CrossRef]
- Iui, R.; Baum, V.A.; Iav, P.; Baum, S.R.; Iup, N. Oxidized fibrinogen and its relationship with hemostasis disturbances and endothelial dysfunction during coronary heart disease and myocardial infarction. Kardiologiia 2009, 49, 4–8. [Google Scholar]
- Avanzas, P.; Arroyo-Espliguero, R.; Cosín-Sales, J.; Aldama, G.; Pizzi, C.; Quiles, J.; Kaski, J.C. Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes. Heart 2004, 90, 847–852. [Google Scholar] [CrossRef]
- Turkoglu, E.I.; Gürgün, C.; Zoghi, M.; Türkoğlu, C. The relationship between serum C-reactive protein levels and coronary artery disease in patients with stable angina pectoris and positive exercise stress test. Anadolu Kardiyol. Derg. 2004, 4, 199–202. [Google Scholar] [PubMed]
- Taniguchi, H.; Momiyama, Y.; Ohmori, R.; Yonemura, A.; Yamashita, T.; Tamai, S.; Nakamura, H.; Ohsuzu, F. Associations of plasma C-reactive protein levels with the presence and extent of coronary stenosis in patients with stable coronary artery disease. Atherosclerosis 2005, 178, 173–177. [Google Scholar] [CrossRef]
- Veselka, J.; Procházková, Š.; Duchoňová, R.; Bolomová, I.; Urbanová, T.; Tesař, D.; Honěk, T. Relationship of C-reactive protein to presence and severity of coronary atherosclerosis in patients with stable angina pectoris or a pathological exercise test. Coron. Artery Dis. 2002, 13, 151–154. [Google Scholar] [CrossRef]
- Azar, R.R.; Aoun, G.; Fram, D.B.; Waters, D.D.; Wu, A.H.; Kiernan, F.J. Relation of C-reactive protein to extent and severity of coronary narrowing in patients with stable angina pectoris or abnormal exercise tests. Am. J. Cardiol. 2000, 86, 205–207. [Google Scholar] [CrossRef]
- Kern, M.J. Interventional Cardiac Catheterization Handbook, 3rd ed.; Elsevier Saunders: Philadelphia, PA, USA, 2013. [Google Scholar]
- Loncar, G.; Bozic, B.; Cvorovic, V.; Radojicic, Z.; Dimkovic, S.; Markovic, N.; Prodanovic, N.; Lepic, T.; Putnikovic, B.; Popovic-Brkic, V. Relationship between RANKL and neuroendocrine activation in elderly males with heart failure. Endocrine 2010, 37, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Samuelson Bannow, B.; Recht, M.; Négrier, C.; Hermans, C.; Berntorp, E.; Eichler, H.; Mancuso, M.E.; Klamroth, R.; O’HAra, J.; Santagostino, E.; et al. Factor VIII: Long-established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev. 2019, 35, 43–50. [Google Scholar] [CrossRef]
- Bobrow, R.S. Excess factor VIII: A common cause of hypercoagulability. J. Am. Board Fam. Pract. 2005, 18, 147–149. [Google Scholar] [CrossRef]
- Machlus, K.R.; Lin, F.-C.; Wolberg, A.S. Procoagulant activity induced by vascular injury determines contribution of elevated factor VIII to thrombosis and thrombus stability in mice. Blood 2011, 118, 3960–3968. [Google Scholar] [CrossRef]
- Kamphuisen, P.W.; Eikenboom, J.C.J.; Bertina, R.M. Elevated factor VIII levels and the risk of thrombosis. Arter. Thromb. Vasc. Biol. 2001, 21, 731–738. [Google Scholar] [CrossRef]
- Hernández, V.; Muñoz, N.; Montero, M.A.; Camacho, A.; Lozano, F.; Fernández, V. Acute myocardial infarction for thrombotic occlusion in patient with elevated coagulation factor VIII. Rev. Esp. Cardiol. (Engl. Ed.) 2012, 65, 673–674. [Google Scholar] [CrossRef]
- Pasupathy, S.; Rodgers, S.; Tavella, R.; McRae, S.; Beltrame, J.F. Risk of Thrombosis in Patients Presenting with Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA). TH Open 2018, 2, e167–e172. [Google Scholar] [CrossRef]
- Alam, A.; Doshi, H.; Patel, D.N.; Patel, K.; James, D.; Almendral, J. Myocardial infarction and factor VIII elevation in a 36-year-old man. Bayl. Univ. Med. Cent. Proc. 2021, 35, 93–95. [Google Scholar] [CrossRef]
- Sonneveld, M.A.; de Maat, M.P.; Leebeek, F.W. Von Willebrand factor and ADAMTS13 in arterial thrombosis: A systematic review and meta-analysis. Blood Rev. 2014, 28, 167–178. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Whincup, P.H.; Shaper, A.G.; Rumley, A.; Lennon, L.; Lowe, G.D.O. Circulating inflammatory and hemostatic biomarkers are associated with risk of myocardial infarction and coronary death, but not angina pectoris, in older men. J. Thromb. Haemost. 2009, 7, 1605–1611. [Google Scholar] [CrossRef]
- Willeit, P.; Thompson, A.; Aspelund, T.; Rumley, A.; Eiriksdottir, G.; Lowe, G.; Gudnason, V.; Di Angelantonio, E.; Stoll, M. Hemostatic factors and risk of coronary heart disease in general populations: New prospective study and updated meta-analyses. PLoS ONE 2013, 8, e55175. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Wang, X.; Peng, X.; Feng, S.; Zhao, J.; Liao, L.; Zhang, Y.; Hou, Y.; Liu, J. Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Kaikita, K.; Soejima, K.; Matsukawa, M.; Nakagaki, T.; Ogawa, H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J. Thromb. Haemost. 2006, 4, 2490–2493. [Google Scholar] [CrossRef] [PubMed]
- Rutten, B.; Maseri, A.; Cianflone, D.; Laricchia, A.; Cristell, N.; Durante, A.; Spartera, M.; Ancona, F.; Limite, L.; Hu, D.; et al. Plasma levels of active Von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: A multicenter and multiethnic study. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 64–74. [Google Scholar] [CrossRef]
- Gouvea, C.P.; Vaez, R.; Pinheiro, P.N.B.; Lourenço, D.M.; Morelli, V.M. The imbalance between von Willebrand factor and ADAMTS13 and the risk of venous thromboembolism. J. Lab. Precis. Med. 2024, 9, 20. [Google Scholar] [CrossRef]
- Parvathareddy, K.M.R.; Bandaru, S.K.; Birajdar, A.V.; Syed, I.; Ravi, S.; Karumuri, S.; Nagula, P. The Significance of von Willebrand Factor Antigen Levels in Predicting the Severity of Coronary Artery Disease in Patients with ST-Segment Elevation Myocardial Infarction. Indian J. Clin. Cardiol. 2024, 5, 237–242. [Google Scholar] [CrossRef]
- Leiva, O.; Connors, J.M.; Connell, N.T.; Berger, J.S. Acute myocardial infarction in von Willebrand disease: Characteristics and outcomes. Res. Pract. Thromb. Haemost. 2023, 7, 102198. [Google Scholar] [CrossRef]
- Mihyawi, N.; Ajmal, M.; Fath, A.R.; Bhattarai, B.; Yeneneh, B. The Cardioprotective Potential of von Willebrand Disease in Ischemic Heart Disease. Tex. Heart Inst. J. 2022, 49, e207402. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Iwata, A.; Futami, M.; Yamashita, M.; Imaizumi, S.; Kuwano, T.; Ike, A.; Sugihara, M.; Nishikawa, H.; Zhang, B.; et al. Impact of von Willebrand factor on coronary plaque burden in coronary artery disease patients treated with statins. Medicine 2018, 97, e0589. [Google Scholar] [CrossRef]
- Sonneveld, M.A.H.; Cheng, J.M.; Oemrawsingh, R.M.; de Maat, M.P.M.; Kardys, I.; Garcia-Garcia, H.M.; van Geuns, R.-J.; Regar, E.; Serruys, P.W.; Boersma, E.; et al. Von Willebrand factor in relation to coronary plaque characteristics and cardiovascular outcome. Results of the ATHEROREMO-IVUS study. Thromb. Haemost. 2015, 113, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Spiel, A.O.; Gilbert, J.C.; Jilma, B. Von Willebrand factor in cardiovascular disease: Focus on acute coronary syndromes. Circulation 2008, 117, 1449–1459. [Google Scholar] [CrossRef]
- Kozlov, S.; Okhota, S.; Avtaeva, Y.; Melnikov, I.; Matroze, E.; Gabbasov, Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front. Cardiovasc. Med. 2022, 9, 1038030. [Google Scholar] [CrossRef]
- Lenting, P.J.; Casari, C.; Christophe, O.D.; Denis, C.V. von Willebrand factor: The old, the new and the unknown. J. Thromb. Haemost. 2012, 10, 2428–2437. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Gao, M.; Zhu, J.; Mu, Q.; Pan, Y.; Chen, Y.; Yang, T.; Deng, W. Constitutive interaction between neutrophils and von Willebrand factor in peripheral blood. Sci. Rep. 2025, 15, 24895. [Google Scholar] [CrossRef]
- Michels, A.; Lillicrap, D.; Yacob, M. Role of von Willebrand factor in venous thromboembolic disease. JVS-Vasc. Sci. 2021, 3, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Manz, X.D.; Bogaard, H.J.; Aman, J. Regulation of vWF (von Willebrand factor) in Inflammatory Thrombosis. Arter. Thromb. Vasc. Biol. 2022, 42, 1307–1320. [Google Scholar] [CrossRef]
- Gragnano, F.; Sperlongano, S.; Golia, E.; Natale, F.; Bianchi, R.; Crisci, M.; Fimiani, F.; Pariggiano, I.; Diana, V.; Carbone, A.; et al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediat. Inflamm. 2017, 2017, 5620314. [Google Scholar] [CrossRef]
- Guerra, R., Jr.; Brotherton, A.F.; Goodwin, P.J.; Clark, C.R.; Armstrong, M.L.; Harrison, D.G. Mechanisms of abnormal endothelium-dependent vascular relaxation in atherosclerosis: Implications for altered autocrine and paracrine functions of EDRF. J. Vasc. Res. 1989, 26, 300–314. [Google Scholar] [CrossRef]
- Pernerstorfer, T.; Stohlawetz, P.; Kapiotis, S.; Eichler, H.-G.; Jilma, B. Partial inhibition of nitric oxide synthase primes the stimulated pathway of vWF-secretion in man. Atherosclerosis 2000, 148, 43–47. [Google Scholar] [CrossRef]
- Vischer, U.M. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J. Thromb. Haemost. 2006, 4, 1186–1193. [Google Scholar] [CrossRef]
- Sonneveld, M.A.; van Dijk, A.C.; van den Herik, E.G.; van Loon, J.E.; de Lau, L.M.; van der Lugt, A.; Koudstaal, P.J.; de Maat, M.P.; Leebeek, F.W. Relationship of Von Willebrand Factor with carotid artery and aortic arch calcification in ischemic stroke patients. Atherosclerosis 2013, 230, 210–215. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial Dysfunction: A Marker of Atherosclerotic Risk. Arter. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Maharana, K.C.; Meenakshi, S.; Singh, S. Endothelial dysfunction and its relation in different disorders: Recent update. Health Sci. Rev. 2023, 7, 100084. [Google Scholar] [CrossRef]
- Zakai, N.A.; Judd, S.E.; Kissela, B.; Howard, G.; Safford, M.M.; Cushman, M. Factor VIII, Protein C and Cardiovascular Disease Risk: The REasons for Geographic and Racial Differences in Stroke Study (REGARDS). Thromb. Haemost. 2018, 118, 1305–1315. [Google Scholar] [CrossRef]
- Raffield, L.M.; Lu, A.T.; Szeto, M.D.; Little, A.; Grinde, K.E.; Shaw, J.; Auer, P.L.; Cushman, M.; Horvath, S.; Irvin, M.R.; et al. Coagulation factor VIII: Relationship to cardiovascular disease risk and whole genome sequence and epigenome-wide analysis in African Americans. J. Thromb. Haemost. 2020, 18, 1335–1347. [Google Scholar] [CrossRef]
- Koster, T.; Vandenbroucke, J.; Rosendaal, F.; Briët, E.; Blann, A.D. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 1995, 345, 152–155. [Google Scholar] [CrossRef]
- Khandelwal, D.; Mathur, V.; Vyas, A.; Shah, C.; Ranawat, C.S.; Patel, P. Elevated factor VIII levels and arterial stroke: A review of literature with a case report. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 20. [Google Scholar] [CrossRef]
- Djuric, P.; Mladenovic, Z.; Spasic, M.; Jovic, Z.; Maric-Kocijancic, J.; Prokic, D.; Subota, V.; Radojicic, Z.; Djuric, D. Hyperhomocysteinemia and inflammatory biomarkers are associated with higher clinical SYNTAX score in patients with stable coronary artery disease. Vojn. Pregl. 2021, 78, 736–744. [Google Scholar] [CrossRef]
- Mehta, A.; Blumenthal, R.S.; Gluckman, T.J.; Feldman, D.; Kohli, P. High-sensitivity C-reactive Protein in Atherosclerotic Cardiovascular Disease: To Measure or Not to Measure? US Cardiol. Rev. 2025, 19, e06. [Google Scholar] [CrossRef] [PubMed]
- Milano, S.S.; de Moura, O.V., Jr.; Bordin, A.A.S.; Marques, G.L. C-reactive Protein is a Predictor of Mortality in ST-segment Elevation Acute Myocardial Infarction. Int. J. Cardiovasc. Sci. 2019, 32, 118–124. [Google Scholar] [CrossRef]
- Cui, Z.M.; Zhao, G.M.; Liu, X. Blood fibrinogen level as a biomarker of adverse outcomes in patients with coronary artery disease: A systematic review and meta-analysis. Medicine 2022, 101, e30117. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.O.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; et al. Fibrinogen Studies Collaboration* Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality: An individual participant meta-analysis. JAMA 2005, 294, 1799–1809. [Google Scholar] [CrossRef]
- Mayer, K.; Hein-Rothweiler, R.; Schüpke, S.; Janisch, M.; Bernlochner, I.; Ndrepepa, G.; Sibbing, D.; Gori, T.; Borst, O.; Holdenrieder, S.; et al. Efficacy and Safety of Revacept, a Novel Lesion-Directed Competitive Antagonist to Platelet Glycoprotein VI, in Patients Undergoing Elective Percutaneous Coronary Intervention for Stable Ischemic Heart Disease: The Randomized, Double-blind, Placebo-Controlled ISAR-PLASTER Phase 2 Trial. JAMA Cardiol. 2021, 6, 753–761. [Google Scholar] [CrossRef] [PubMed]
- de Maat, S.; Clark, C.C.; Barendrecht, A.D.; Smits, S.; van Kleef, N.D.; El Otmani, H.; Waning, M.; van Moorsel, M.V.A.; Szardenings, M.; Delaroque, N.; et al. Microlyse: A thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood 2022, 139, 597–607. [Google Scholar] [CrossRef]
- Wysokinski, W.E.; Cohoon, K.P.; Konik, E.A.; Melduni, R.M.; Ammash, N.M.; Asirvatham, S.J.; McBane, R.D. Effect of atrial fibrillation duration on plasma von Willebrand factor level. Eur. J. Haematol. 2017, 99, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Imamaki, M.; Ishida, A.; Shimura, H.; Miyazaki, M. The effect of preoperative aspirin administration on postoperative level of von Willebrand factor in off-pump coronary artery bypass surgery. Heart Vessel. 2009, 24, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Zeibi Shirejini, S.; Khamooshi, M.; Riska, D.; Nikolov, M.; Azimi, M.; Perera, S.L.; Carberry, J.; Alt, K.; Gregory, S.D.; Hagemeyer, C.E. Evaluating caplacizumab’s potential to mitigate thrombosis risk in aortic valve stenosis: A microfluidic and computational approach. Lab Chip, 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
Parameters | SYNTAX Score | ||||
---|---|---|---|---|---|
Group I (≤22) (n = 42) | Group II (23–32) (n = 20) | Group III (≥33) (n = 20) | p | ||
gender | female (%) male (%) | 9 (21.40) 33 (78.60) | 3 (15.00) 17 (85.00) | 7 (35.00) 13 (65.00) | 0.302 ** |
age (years) | median (IQR) | 64.50 (10.75) | 68.5 (15.25) | 69.50 (11.50) | 0.209 * |
body mass index (kg/m2) | mean value (SD) | 28.87 (3.94) | 27.47 (3.19) | 28.01 (2.99) | 0.477 * |
active smoking | n (%) | 32 (76.20) | 15 (75.00) | 9 (45.00) | 0.036 ** |
hypertension | n (%) | 41 (97.60) | 17 (85.00) | 19 (95.00) | 0.148 ** |
family history | n (%) | 30 (71.40) | 15 (75.00) | 15 (75.00) | 0.936 ** |
diabetes mellitus | n (%) | 13 (31.00) | 5 (25.00) | 9 (45.00) | 0.375 ** |
physical activity | n (%) | 17 (40.50) | 8 (40.00) | 2 (10.00) | 0.043 ** |
systolic blood pressure (mmHg) | mean value (SD) | 138 (19) | 134 (17) | 139 (21) | 0.782 * |
diastolic blood pressure (mmHg) | mean value (SD) | 83 (9) | 84 (8) | 75 (8) | 0.004 * |
Parameters | SYNTAX Score | ||||
---|---|---|---|---|---|
Group I (≤22) (n = 42) | Group II (23–32) (n = 20) | Group III (≥33) (n = 20) | p (Kruskal–Wallis Test) | ||
fasting glucose (mmol/L) | mean value (SD) | 6.31 (1.59) | 5.84 (1.31) | 7.37 (2.88) | 0.094 |
median (IQR) | 6.00 (2.25) | 5.50 (1.65) | 6.55 (2.97) | ||
triglycerides (mmol/L) | mean value (SD) | 2.01 (1.07) | 1.03 (1.54) | 1.54 (0.56) | 0.247 |
median (IQR) | 1.74 (1.13) | 1.44 (0.80) | 1.59 (0.81) | ||
cholesterol (mmol/L) | mean value (SD) | 5.28 (1.31) | 4.94 (0.98) | 4.81 (2.25) | 0.373 |
median (IQR) | 5.25 (1.86) | 4.73 (1.88) | 4.93 (2.25) | ||
HDL cholesterol (mmol/L) | mean value (SD) | 1.15 (0.26) | 1.21 (0.30) | 1.16 (0.25) | 0.729 |
median (IQR) | 1.15 (0.33) | 1.21 (0.37) | 1.08 (0.26) | ||
LDL cholesterol (mmol/L) | mean value (SD) | 3.21 (1.13) | 2.84 (0.74) | 3.03 (1.00) | 0.429 |
median (IQR) | 3.21 (1.68) | 2.69 (0.77) | 3.05 (1.64) | ||
atherogenic index of plasma | mean value (SD) | 0.21 (0.24) | 0.14 (0.28) | 0.11 (0.20) | 0.305 |
median (IQR) | 0.21 (0.30) | 0.17 (0.35) | 0.12 (0.32) | ||
creatinine clearance (mL/min) | mean value (SD) | 85.74 (16.98) | 77.99 (18.72) | 75.56 (21.84) | 0.108 |
median (IQR) | 88.90 (18.15) | 82.20 (27.60) | 82.95 (29.87) | ||
creatinine (μmol/L) | mean value (SD) | 80.79 (30.24) | 87.60 (18.09) | 89.55 (43.16) | 0.031 |
median (IQR) | 73.50 (16.75) | 87.50 (20.25) | 83.00 (22.50) | ||
acidum uricum (umol/L) | mean value (SD) | 344 (90) | 240 (89) | 364 (101) | 0.526 |
median (IQR) | 340 (117) | 319 (130) | 361 (117) | ||
folic acid (nmol/L) | mean value (SD) | 15.62 (8.93) | 12.13 (11.07) | 12.79 (8.39) | 0.152 |
median (IQR) | 14.83 (12.86) | 8.90 (15.27) | 14.46 (13.40) | ||
vitamin B12 (pmol/L) | mean value (SD) | 258 (137) | 230 (158) | 191 (100) | 0.182 |
median (IQR) | 220 (160) | 187 (118) | 173 (67) | ||
NT-pro BNP (pmol/L) | mean value (SD) | 22 (20) | 145 (357) | 117 (332) | 0.069 |
median (IQR) | 13 (23) | 21 (85) | 38 (61) |
Parameters | SYNTAX Score | ||||
---|---|---|---|---|---|
Group I (≤22) (n = 42) | Group II (23–32) (n = 20) | Group III (≥33) (n = 20) | p (Kruskal–Wallis Test) | ||
leukocytes (109/L) | mean value (SD) | 6.91 (1.25) | 7.35 (1.68) | 7.31 (1.69) | 0.544 |
median (IQR) | 6.87 (1.83) | 7.06 (2.04) | 7.38 (2.62) | ||
ESR (mm/h) | mean value (SD) | 24.25 (15.18) | 29.25 (23.25) | 32.15 (22.45) | 0.453 |
median (IQR) | 19.50 (27.80) | 18.50 (33.00) | 26.00 (27.30) | ||
CRP (mg/L) | mean value (SD) | 3.75 (4.10) | 3.82 (4.86) | 7.28 (5.75) | 0.017 |
median (IQR) | 2.64 (4.57) | 1.75 (3.55) | 6.04 (8.83) | ||
interleukin-6 (pg/mL) | mean value (SD) | 3.61 (2.05) | 4.61 (2.69) | 5.03 (3.06) | 0.110 |
median (IQR) | 2.61 (2.70) | 3.77 (4.51) | 4.60 (3.82) | ||
hemostatic parameters | |||||
Von Willebrand factor | mean value (SD) | 1.16 (0.59) | 1.52 (0.62) | 1.49 (0.80) | 0.040 |
median (IQR) | 0.97 (0.77) | 1.47 (1.02) | 1.68 (1.21) | ||
factor VIII | mean value (SD) | 2.25 (0.75) | 2.21 (0.53) | 2.97 (0.95) | 0.007 |
median (IQR) | 2.10 (0.91) | 2.32 (0.88) | 2.95 (1.81) | ||
fibrinogen (g/L) | mean value (SD) | 3.53 (0.70) | 3.59 (0.62) | 3.93 (0.56) | 0.030 |
median (IQR) | 3.35 (0.93) | 3.40 (0.97) | 3.80 (0.73) | ||
D-dimer (mg/L) | mean value (SD) | 0.74 (0.71) | 1.28 (1.67) | 0.68 (0.53) | 0.983 |
median (IQR) | 0.58 (0.51) | 0.45 (1.11) | 0.53 (0.31) | ||
PAI-1 (I/U) | mean value (SD) | 2.08 (0.84) | 2.02 (0.51) | 1.92 (0.61) | 0.949 |
median (IQR) | 1.90 (1.25) | 1.95 (0.57) | 2.05 (0.67) | ||
prothrombin time (s) | mean value (SD) | 1.06 (0.13) | 1.04 (0.04) | 1.06 (0.19) | 0.479 |
median (IQR) | 1.05 (0.08) | 1.03 (0.09) | 1.00 (0.13) | ||
activated thromboplastin time (s) | mean value (SD) | 33.24 (6.22) | 33.84 (8.62) | 38.67 (18.31) | 0.722 |
median (IQR) | 31.78 (6.78) | 30.97 (4.27) | 33.43 (10.05) |
Parameters | SYNTAX Score | ||||
---|---|---|---|---|---|
Group I (≤22) (n = 42) | Group II (23–32) (n = 20) | Group III (≥33) (n = 20) | p | ||
LVEF (%) | mean value (SD) | 59.33 (4.11) | 56.20 (7.20) | 58.45 (3.71) | 0.274 * |
median (IQR) | 60.00 (6.25) | 59.50 (8.75) | 60.00 (5.00) | ||
End diastolic diameter (mm) | mean value (SD) | 53.29 (4.57) | 54.20 (3.20) | 51.85 (5.57) | 0.449 * |
median (IQR) | 53.00 (7.00) | 54.00 (3.75) | 54.00 (10.50) | ||
End systolic diameter (mm) | mean value (SD) | 33.62 (4.69) | 36.15 (2.89) | 33.10 (5.15) | 0.060 * |
median (IQR) | 34.00 (7.00) | 36.00 (4.50) | 33.50 (6.75) | ||
Number of affected coronary arteries | mean value (SD) | 1.67 (0.79) | 2.65 (0.59) | 2.95 (0.22) | <0.001 * |
median (IQR) | 2.00 (1.00) | 3.00 (1.00) | 3.00 (0.00) | ||
Number of treated coronary arteries | mean value (SD) | 1.54 (1.52) | 3.35 (1.67) | 4.05 (1.50) | <0.001 * |
median (IQR) | 1.00 (2.00) | 3.00 (2.00) | 4.00 (2.00) | ||
Left anterior descending artery | (%) | 19.00 (45.24) | 19.00 (95.00) | 18 (90.00) | <0.001 ** |
Circumflex artery | (%) | 12.00 (28.57) | 10.00 (50.00) | 10 (50.00) | 0.139 ** |
Right coronary artery | (%) | 20.00 (47.62) | 16.00 (80.00) | 15.00 (75.00) | 0.019 ** |
Variable | χ2 | df | p |
---|---|---|---|
age | 1.416 | 2 | 0.493 |
factor VIII | 11.007 | 2 | 0.004 |
Von Willebrand factor | 4.334 | 2 | 0.115 |
creatinine clearance (mL/min) | 5.180 | 2 | 0.075 |
sex | 2.522 | 2 | 0.283 |
diabetes mellitus | 0.709 | 2 | 0.702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djuric, P.; Mladenovic, Z.; Jovic, Z.; Vukotic, S.; Spasic, M.; Mijuskovic, M.; Terzic, B.; Radojicic, Z.; Radisavljevic, N.; Djuric, M.; et al. The Association of Elevated Factor VIII and von Willebrand Factor (vWF) Levels with SYNTAX Score in Patients with Chronic Coronary Syndrome. Biomedicines 2025, 13, 2284. https://doi.org/10.3390/biomedicines13092284
Djuric P, Mladenovic Z, Jovic Z, Vukotic S, Spasic M, Mijuskovic M, Terzic B, Radojicic Z, Radisavljevic N, Djuric M, et al. The Association of Elevated Factor VIII and von Willebrand Factor (vWF) Levels with SYNTAX Score in Patients with Chronic Coronary Syndrome. Biomedicines. 2025; 13(9):2284. https://doi.org/10.3390/biomedicines13092284
Chicago/Turabian StyleDjuric, Predrag, Zorica Mladenovic, Zoran Jovic, Snjezana Vukotic, Marijan Spasic, Mirjana Mijuskovic, Brankica Terzic, Zoran Radojicic, Nina Radisavljevic, Marko Djuric, and et al. 2025. "The Association of Elevated Factor VIII and von Willebrand Factor (vWF) Levels with SYNTAX Score in Patients with Chronic Coronary Syndrome" Biomedicines 13, no. 9: 2284. https://doi.org/10.3390/biomedicines13092284
APA StyleDjuric, P., Mladenovic, Z., Jovic, Z., Vukotic, S., Spasic, M., Mijuskovic, M., Terzic, B., Radojicic, Z., Radisavljevic, N., Djuric, M., & Djuric, D. (2025). The Association of Elevated Factor VIII and von Willebrand Factor (vWF) Levels with SYNTAX Score in Patients with Chronic Coronary Syndrome. Biomedicines, 13(9), 2284. https://doi.org/10.3390/biomedicines13092284