Functionalisation of Polyvinylpyrrolidone on Gold Nanoparticles Enhances Its Anti-Amyloidogenic Propensity towards Hen Egg White Lysozyme
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of PVP-Conjugated Gold Nanoparticles (PVP-AuNps)
2.3. Characterization of PVP-Conjugated Gold Nanoparticles (PVP-AuNps)
2.3.1. Ultraviolet-Visible (UV-Vis) Spectroscopy
2.3.2. Size Distribution Analysis by Dynamic Light Scattering and Zeta-Potential Measurement
2.3.3. X-ray Diffraction (XRD) Analysis
2.3.4. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3.5. Transmission Electron Microscope (TEM)
2.4. Synthesis of Hen Egg White Lysozyme (HEWL) Amyloids
2.5. Amyloid Inhibition and Disaggregation Study
2.5.1. Thioflavin T (ThT) Binding Assay
2.5.2. Circular Dichroism (CD) Spectroscopy
2.5.3. Fluorescence Microscopy
2.5.4. ANS Binding Assay
2.5.5. Prediction of Amyloidogenic Regions of the HEWL and Prediction of Binding Site of Polyvinylpyrrolidone
2.5.6. Transmission Electron Microscopy
3. Results
3.1. Synthesis and Characterization of PVP-AuNps
3.2. Thioflavin T Binding Assay
3.3. HEWL Secondary Structure Determination: Circular Dichroism Spectroscopy
3.4. Fluorescence Microscopy
3.5. 1-Anilinonaphthalene-8-sulfonate (ANS) Binding Assay
3.6. Computational Methods: Prediction of Amyloidogenic Regions of the HEWL and Prediction of Binding Site(s) of PVP
3.7. Transmission Electron Microscopy (TEM)
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, S.; Udgaonkar, J.B. Mechanism of Amyloid Fibril Formation by Proteins. Curr. Sci. 2010, 98, 639–655. [Google Scholar]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 2010, 17, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des. 1998, 3, 9–23. [Google Scholar] [CrossRef]
- Sipe, J.D. The β-pleated Sheet Conformation and Protein Folding: A Brief History. In Amyloid Proteins; Sipe, J.D., Ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp. 48–61. [Google Scholar]
- Eanes, E.D.; Glenner, G.G. X-Ray Diffraction Studies On Amyloid Filaments. J. Histochem. Cytochem. 1968, 16, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Stefani, M.; Dobson, C.M. Protein aggregation and aggregate toxicity: Newinsights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 2003, 81, 678–699. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Dawson, K.A.; Linse, S. Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem. Neurosci. 2010, 1, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesisand characterization. Vet. World 2014, 7, 72–77. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Thorat, N.D.; Phadatare, M.R.; Ningthoujam, R.S.; Salunkhe, A.B.; Pawar, S.H. Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J. Chem. 2013, 37, 3121–3130. [Google Scholar] [CrossRef]
- Ullah, M.H.; Hossain, T.; Ha, C.S. Kinetic studies on water-soluble gold nanoparticles coordinated to poly (vinylpyrrolidone): Isotropic to anisotropic transformation and morphology. J. Mater. Sci. 2011, 46, 6988–6997. [Google Scholar] [CrossRef]
- Hamada, H.; Arakawa, T.; Shiraki, K. Effect of additives on protein aggregation. Curr. Pharm. Biotechnol. 2009, 10, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Antosova, A.; Gazova, Z.; Fedunova, D.; Valusova, E.; Bystrenova, E.; Valle, F.; Daxnerova, Z.; Biscarini, F.; Antalik, M. Anti-amyloidogenic activity of glutathione-covered gold nanoparticles. Mater. Sci. Eng. C 2012, 32, 2529–2535. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Khurana, R.; Udgaonkar, J.B. Equilibrium unfolding studies of barstar: Evidence for an alternative conformation which resembles a molten globule. Biochemistry 1994, 33, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bolder, S.G.; Sagis, L.M.; Venema, P.; van der Linden, E. Thioflavin T and birefringence assays to determine the conversion of proteins into fibrils. Langmuir 2007, 23, 4144–4147. [Google Scholar] [CrossRef] [PubMed]
- Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 2008, 25, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Levine, H. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods 2004, 34, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.D.; Lieber, C.M.; Lansbury, P.T. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chem. Biol. 1997, 4, 951–959. [Google Scholar] [CrossRef]
- Lee, C.H. 1-Anilinonaphthalene-8-sulfonate (ANS); a versatile fluorescent probe from protein folding study to drug design. BioWave 2010, 12, 1. [Google Scholar]
- Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformat 2010, 26, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Bharatham, K.; Bharatham, N.; Park, K.H.; Lee, K.W. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors. J. Mol. Graph Model 2008, 26, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Serpell, L.C. Alzheimer’s amyloid fibrils: Structure and assembly. Biochim. Biophys. Acta Mol. Basis Dis. 2000, 1502, 16–30. [Google Scholar] [CrossRef]
- Chin, W.; Piuzzi, F.; Dimicoli, I.; Mons, M. Probing the competition between secondary structures andlocal preferences in gas phase isolated peptide backbones. Phys. Chem. 2006, 8, 1033–1048. [Google Scholar]
- Johnson, W.C. Protein secondary structure and circular dichroism: A practical guide. Proteins Struct. Funct. Bioinform. 1990, 7, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Bacskai, B.J.; Kajdasz, S.T.; Christie, R.H.; Carter, C.; Games, D.; Seubert, P.; Schenk, D.; Hyman, B.T. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 2001, 7, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Pallares, I.; Vendrell, J.; Aviles, F.X.; Ventura, S. Amyloid fibril formation by a partially structured intermediate state of α-chymotrypsin. J. Mol. Biol. 2004, 342, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Dubey, K.; Anand, B.G.; Badhwar, R.; Bagler, G.; Navya, P.N.; Daima, H.K.; Kar, K. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids 2015, 47, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Singh, A.N.; Dubey, V.K. Effect of curcumin on amyloidogenic property of molten globule like intermediate state of 2,5-Diketo-d-Gluconate Reductase A. Biol. Chem. 2009, 390, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Kumar, M.; Dubey, V.K. Exploring possibility of promiscuity of amyloid inhibitor: Studies on effect of selected compounds on folding and amyloid formation of proteins. Process Biochem. 2011, 46, 1179–1185. [Google Scholar] [CrossRef]
Sample | Time (h) | Helix (%) | Beta (%) | Turn (%) | Random (%) |
---|---|---|---|---|---|
HEWL | 0 | 16.8 | 36.2 | 3.4 | 43.7 |
48 | 12.2 | 51.4 | 0.0 | 31.8 | |
72 | 16.0 | 50.8 | 0.0 | 33.2 | |
HEWL+PVP | 0 | 16.8 | 36.2 | 3.4 | 43.7 |
48 | 8.3 | 40.6 | 3.2 | 47.9 | |
72 | 0.7 | 40.9 | 8.8 | 49.6 | |
HEWL+PVP-AuNps | 0 | 16.8 | 36.2 | 3.4 | 43.7 |
48 | 19.7 | 31.2 | 7.0 | 42.1 | |
72 | 28.1 | 10.1 | 23.7 | 38.2 |
Sample | Control (Mature HEWL Amyloids) | PVP + Control (after 24 h) | PVP-AuNps + Control (after 24 h) |
---|---|---|---|
Helix | 16.0 | 8.2 | 36.4 |
Beta | 50.8 | 39.2 | 25.1 |
Turn | 0.0 | 5.7 | 0.0 |
Random | 33.2 | 46.9 | 38.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, T.; Kolli, V.; Karmakar, S.; Sarkar, N. Functionalisation of Polyvinylpyrrolidone on Gold Nanoparticles Enhances Its Anti-Amyloidogenic Propensity towards Hen Egg White Lysozyme. Biomedicines 2017, 5, 19. https://doi.org/10.3390/biomedicines5020019
Das T, Kolli V, Karmakar S, Sarkar N. Functionalisation of Polyvinylpyrrolidone on Gold Nanoparticles Enhances Its Anti-Amyloidogenic Propensity towards Hen Egg White Lysozyme. Biomedicines. 2017; 5(2):19. https://doi.org/10.3390/biomedicines5020019
Chicago/Turabian StyleDas, Tulika, Vidyalatha Kolli, Srijeeb Karmakar, and Nandini Sarkar. 2017. "Functionalisation of Polyvinylpyrrolidone on Gold Nanoparticles Enhances Its Anti-Amyloidogenic Propensity towards Hen Egg White Lysozyme" Biomedicines 5, no. 2: 19. https://doi.org/10.3390/biomedicines5020019
APA StyleDas, T., Kolli, V., Karmakar, S., & Sarkar, N. (2017). Functionalisation of Polyvinylpyrrolidone on Gold Nanoparticles Enhances Its Anti-Amyloidogenic Propensity towards Hen Egg White Lysozyme. Biomedicines, 5(2), 19. https://doi.org/10.3390/biomedicines5020019