The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease
Abstract
:1. Introduction
2. Role of Serotherapy in Prophylaxis for Graft-Versus-Host Disease
2.1. Anti-Thymocyte Globulin
2.2. Alemtuzumab
3. Role of Serotherapy in the Treatment of Graft-versus-Host Disease
3.1. Anti-Thmocyte Globulin
3.2. Alemtuzumab
4. Conclusions
Conflicts of Interest
References
- Thomas, E.; Storb, R.; Clift, A.R.; Fefer, A.; Johnson, F.L.; Neiman, P.E.; Lerner, K.G.; Glucksberg, H.; Buckner, C.D. Bone-marrow transplantation (first of two parts). N. Engl. J. Med. 1975, 292, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Poire, X.; van Besien, K. Alemtuzumab in allogeneic hematopoetic stem cell transplantation. Exp. Opin. Biol. Ther. 2011, 11, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Beatty, P.G.; Mori, M.; Milford, E. Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation 1995, 60, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Beatty, P.G.; Ash, R.; Hows, J.M.; McGlave, P.B. The use of unrelated bone marrow donors in the treatment of patients with chronic myelogenous leukemia: Experience of four marrow transplant centers. Bone Marrow Transplant. 1989, 4, 287–290. [Google Scholar] [PubMed]
- McGlave, P.B.; Beatty, P.; Ash, A.; Hows, J.M. Therapy for chronic myelogenous leukemia with unrelated donor bone marrow transplantation: Results in 102 cases. Blood 1990, 75, 1728–1732. [Google Scholar] [PubMed]
- Mackinnon, S.; Barnett, L.; Heller, G.; O’Reilly, R.J. Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 1994, 83, 3409–3416. [Google Scholar] [PubMed]
- McGlave, P.; Bartsch, G.; Anasetti, A.; Ash, A.; Beatty, P.; Gajewski, J.; Kernan, N.A. Unrelated donor marrow transplantation therapy for chronic myelogenous leukemia: Initial experience of the National Marrow Donor Program. Blood 1993, 81, 543–550. [Google Scholar] [PubMed]
- Marks, D.I.; Cullis, J.O.; Ward, K.N.; Lacey, S.; Szydlo, R.; Hughes, T.P.; Schwarer, A.P.; Lutz, E.; Barrett, A.J.; Hows, J.M.; et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia using sibling and volunteer unrelated donors. A comparison of complications in the first 2 years. Ann. Intern. Med. 1993, 119, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R.; et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Perez-Simon, J.A.; Kottaridis, P.D.; Martino, R.; Craddock, C.; Caballero, D.; Chopra, R.; Garcı́a-Conde, J.; Milligan, D.W.; Schey, S.; Urbano-Ispizua, A.; et al. Nonmyeloablative transplantation with or without alemtuzumab: Comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood 2002, 100, 3121–3127. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, L.; Jol-van der Zijde, C.M.; Admiraal, R.; Putter, H.; Jansen-Hoogendijk, A.M.; Ostaijen-ten Dam, M.M.; Wijnen, J.T.; van Kesteren, C.; Waaijer, J.L.M.; Lankester, A.C.; et al. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: Thymoglobulin versus alemtuzumab. Biol. Blood Marrow Transplant. 2015, 21, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Storek, J. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: Thymoglobulin versus alemtuzumab. Biol. Blood Marrow Transplant. 2015, 21, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia 2007, 21, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Stauch, D.; Dernier, A.; Marchese, E.S.; Kunert, K.; Volk, H.-D.; Pratschke, J.; Kotsch, K.; et al. Targeting of natural killer cells by rabbit antithymocyte globulin and campath-1H: Similar effects independent of specificity. PLoS ONE 2009, 4, e4709. [Google Scholar] [CrossRef] [PubMed]
- Veys, P.; Wynn, R.F.; Ahn, K.W.; Samarasinghe, S.; He, W.; Bonney, D.; Craddock, J.; Cornish, J.; Davies, S.M.; Dvorak, C.C.; et al. Impact of immune modulation with in vivo T-cell depletion and myleoablative total body irradiation conditioning on outcomes after unrelated donor transplantation for childhood acute lymphoblastic leukemia. Blood 2012, 119, 6155–6161. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Petersen, M.; Amin, M.A.; Liu, Y.; Ugarte-Torres, A.; Williamson, T.S.; Podgorny, P.J.; Russell, J.A.; Grigg, A.; Ritchie, D.; Storek, J. Anti-thymocyte globulins capable of binding to T and B cells reduce graft-vs-host disease without increasing relapse. Bone Marrow Transplant. 2013, 48, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jol-van der Zijde, C.M.; Bredius, R.G.M.; Jansen-Hoogendijk, A.M.; Raaijmakers, S.; Egeler, R.M.; Lankester, A.C.; van Tol, M.J.D. IgG antibodies to ATG early after pediatric hematopoietic SCT increase the risk of acute GVHD. Bone Marrow Transplant. 2012, 47, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.J.; Kapoor, N.; Crooks, G.M.; Weinberg, K.I.; Azim, H.A.; Killen, R.; Kuo, L.; Rushing, T.; Kohn, D.B.; Parkman, R. The effects of Campath 1H upon graft-versus-host disease, infection, relapse, and immune reconstitution in recipients of pediatric unrelated transplants. Biol. Blood Marrow Transplant. 2007, 13, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Hieber, M.; Schwarck, S.; Stroux, A.; Ganepola, S.; Reinke, P.; Thiel, E.; Uharek, L.; Blau, I.W. Immune reconstitution and cytomegalovirus infection after allogeneic stem cell transplantation: The important impact of in vivo T cell depletion. Int. J. Hematol. 2010, 91, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Waller, E.K.; Langston, A.A.; Lonial, S.; Cherry, J.; Somani, J.; Allen, A.J.; Rosenthal, H.; Redei, I. Pharmacokinetics and pharmacodynamics of anti-thymocyte globulin in recipients of partially HLA-matched blood hematopoietic progenitor cell transplantation. Biol. Blood Marrow Transplant. 2003, 9, 460–471. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Mackinnon, S.; Chopra, R.; Kottaridis, P.D.; Peggs, K.; O’Gorman, P.; Chakraverty, R.; Marshall, T.; Osman, H.; Mahendra, P.; et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: Potential role of Campath-1H in delaying immune reconstitution. Blood 2002, 99, 4357–4363. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, H. A personal history of the CAMPATH-1H antibody. Med. Oncol. 2002, 19, S3–S9. [Google Scholar] [CrossRef]
- Hale, G.; Waldmann, H. Risks of developing Epstein-Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. Blood 1998, 91, 3079–3083. [Google Scholar] [PubMed]
- Ram, R.; Storb, R. Pharmacologic prophylaxis regimens for acute graft-versus-host disease: Past, present and future. Leuk. Lymphoma 2013, 54, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.M.; Agura, E.; Anasetti, C.; Appelbaum, F.; Badger, C.; Bearman, S.; Erickson, K.; Flowers, M.; Hansen, J.; Loughran, T.; et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin. Hematol. 1991, 28, 250–259. [Google Scholar] [PubMed]
- Toubai, T.; Mathewson, N.D.; Magenau, J.; Reddy, P. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Front. Immunol. 2016, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Ball, L.M.; Egeler, R.M.; Party, E.P.W. Acute GvHD: Pathogenesis and classification. Bone Marrow Transplant. 2008, 41, S58–S64. [Google Scholar] [CrossRef] [PubMed]
- Coghill, J.M.; Sarantopoulos, S.; Moran, T.P.; Murphy, W.J.; Blazar, B.R.; Serody, J.S. Effector CD4+ T cells, the cytokines they generate, and GVHD: Something old and something new. Blood 2011, 117, 3268–3276. [Google Scholar] [CrossRef] [PubMed]
- Jagasia, M.H.; Greinix, H.T.; Arora, M.; Williams, K.M.; Wolff, D.; Cowen, E.W.; Palmer, J.; Weisdorf, D.; Treister, N.S.; Cheng, G.-S.; et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol. Blood Marrow Transplant. 2015, 21, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-E.; Kim, Y.-J.; Kim, H.-J.; Lee, S.; Min, C.-K.; Cho, S.-G.; Kim, D.-W.; Lee, J.-W.; Min, W.-S.; Park, C.-W. Risk and prognostic factors for acute GVHD based on NIH consensus criteria. Bone Marrow Transplant. 2013, 48, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.J.; Rizzo, J.D.; Wingard, J.R.; Ballen, K.; Curtin, P.T.; Cutler, C.; Litzow, M.R.; Nieto, Y.; Savani, B.N.; Schriber, J.R.; et al. First- and second-line systemic treatment of acute graft-versus-host disease: Recommendations of the American Society of Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2012, 18, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Hings, I.M.; Filipovich, A.H.; Milier, W.J.; Blazar, B.L.; Mcalave, P.B.; Rmasay, N.K.C.; Kersey, J.H.; Weisdore, D.J. Prednisone therapy for acute graft-versus-host disease: Short- versus long-term treatment. A prospective randomized trial. Transplantation 1993, 56, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Van Lint, M.T.; Milone, G.; Leotta, S.; Uderzo, C.; Scimè, R.; Dallorso, S.; Locasciulli, A.; Guidi, S.; Mordini, N.; Sica, S.; et al. Treatment of acute graft-versus-host disease with prednisolone: Significant survival advantage for day +5 responders and no advantage for nonresponders receiving anti-thymocyte globulin. Blood 2006, 107, 4177–4181. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, M.L.; Milone, G.; Leotta, S.; Uderzo, C.; Scimè, R.; Dallorso, S.; Locasciulli, A.; Guidi, S.; Mordini, N.; Sica, S.; et al. Response of 443 patients to steroids as primary therapy for acute graft-versus-host disease: Comparison of grading systems. Biol. Blood Marrow Transplant. 2002, 8, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Deeg, H.J. How I treat refractory acute GVHD. Blood 2007, 109, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, Y.; Morimoto, A.; Masuzawa, A.; Ikeda, T.; Hayase, T.; Kashii, Y.; Nozaki, Y.; Kanai, N.; Momoi, M.Y. Successful treatment with pulse cyclophosphamide of a steroid-refractory hepatitic variant of liver acute graft-vs.-host disease in a child. Pediatr. Transl. 2012, 16, E315–E319. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.; Krejci, M.; Pospisil, Z.; Doubek, M.; Janikova, A.; Zackova, D.; Racil, Z.; Smardova, L.; Navratil, M.; Kamelander, J. Successful treatment of steroid-refractory hepatitic variant of liver graft-vs-host disease with pulse cyclophosphamide. Exp. Hematol. 2009, 37, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.L.; Stainer, C.; Cull, C.; Haynes, A.P.; Bessell, E.M.; Bessell, G.; Bessell, H.; Russell, N.H. The effect of the serotherapy regimen used and the marrow cell dose received on rejection, graft-versus-host disease and outcome following unrelated donor bone marrow transplantation for leukaemia. Bone Marrow Transplant. 2000, 25, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Riechmann, L.; Clark, M.; Waldmann, H.; Winter, G. Reshaping human antibodies for therapy. Nature 1988, 332, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Sakellari, I.; Batsis, I.; Bousiou, Z.; Mallouri, D.; Constantinou, V.; Gavriilaki, E.; Smias, C.; Yannaki, E.; Kaloyannidis, P.; Papaioannou, G.; et al. The Role of Low-dose Anti-thymocyte Globulin as Standard Prophylaxis in Mismatched and Matched Unrelated Hematopoietic Peripheral Stem Cell Transplantation for Hematologic Malignancies. Clin. Lymphoma Myeloma Leuk. 2017, 17, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Bunn, D.; Lea, C.K.; Bevan, D.J.; Higgins, R.M.; Hendry, B.M. The pharmacokinetics of anti-thymocyte globulin (ATG) following intravenous infusion in man. Clin. Nephrol. 1996, 45, 29–32. [Google Scholar] [PubMed]
- Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.; Lee, S.J.; et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: A randomised, controlled, open-label, phase 3, multicentre trial. Lancet Oncol. 2016, 17, 164–173. [Google Scholar] [CrossRef]
- Hale, G.; Waldmann, H. Control of graft-versus-host disease and graft rejection by T cell depletion of donor and recipient with Campath-1 antibodies. Results of matched sibling transplants for malignant diseases. Bone Marrow Transplant. 1994, 13, 597–611. [Google Scholar] [PubMed]
- Jacobs, P.; Wood, L.; Fullard, L.; Waldmann, H.; Hale, G. T cell depletion by exposure to Campath-1G in vitro prevents graft-versus-host disease. Bone Marrow Transplant. 1994, 13, 763–769. [Google Scholar] [PubMed]
- Van der Zwan, M.; Baan, C.C.; van Gelder, T.; Hesselink, D.A. Review of the Clinical Pharmacokinetics and Pharmacodynamics of Alemtuzumab and Its Use in Kidney Transplantation. Clin. Pharmacokinet. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.; Waldmann, H. CAMPATH-1 monoclonal antibodies in bone marrow transplantation. J. Hematother. 1994, 3, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Masuyama, J.; Sohma, Y.; Inazawa, H.; Horie, K.; Kojima, K.; Uemura, Y.; Aoki, Y.; Kaga, S.; Minota, S.; et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin. Immunol. 2006, 120, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Sydenham, M.A. High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells. Biotechnology 1991, 9, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Kanda, J.; Lopez, R.D.; Rizzieri, D.A. Alemtuzumab for the prevention and treatment of graft-versus-host disease. Int. J. Hematol. 2011, 93, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Theurich, S.; Fischmann, H.; Shimabukuro-Vornhagen, A.; Chemnitz, J.M.; Holtick, U.; Scheid, C.; Skoetz, N.; von Bergwelt-Baildon, M. Polyclonal anti-thymocyte globulins for the prophylaxis of graft-versus-host disease after allogeneic stem cell or bone marrow transplantation in adults. Cochrane Database Syst. Rev. 2012, 12, CD009159. [Google Scholar]
- Ziakas, P.D.; Zervou, F.N.; Zacharioudakis, I.M.; Mylonakis, E. Graft-versus-host disease prophylaxis after transplantation: A network meta-analysis. PLoS ONE 2014, 9, e114735. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, F.; Diyachenko, G.; Zabelina, T.; Panse, J.; Wolschke, C.; Eiermann, T.; Binder, T.; Fehse, B.; Erttmann, R.; Kabisch, H.; et al. Anti-thymocyte globulin overcomes the negative impact of HLA mismatching in transplantation from unrelated donors. Exp. Hematol. 2008, 36, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, B.; Tichelli, A.; Bacigalupo, A.; Russell, N.H.; Ruutu, T.; Shapira, M.Y.; Beksac, M.; Hasenclever, D.; Socié, G.; Schmitz, N. Long-term outcome and late effects in patients transplanted with mobilised blood or bone marrow: A randomised trial. Lancet Oncol. 2010, 11, 331–338. [Google Scholar] [CrossRef]
- Wolschke, C.; Zabelina, T.; Ayuk, F.; Alchalby, H.; Berger, J.; Klyuchnikov, E.; Pein, U.-M.; Schumacher, S.; Amtsfeld, G.; Adjallé, R.; et al. Effective prevention of GVHD using in vivo T-cell depletion with anti-lymphocyte globulin in HLA-identical or -mismatched sibling peripheral blood stem cell transplantation. Bone Marrow Transplant. 2014, 49, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Socie, G.; Schmoor, C.; Bethge, W.A.; Ottinger, H.D.; Stelljes, M.; Zander, A.R.; Volin, L.; Ruutu, T.; Heim, D.A.; Schwerdtfeger, R.; et al. Chronic graft-versus-host disease: Long-term results from a randomized trial on graft-versus-host disease prophylaxis with or without anti-T-cell globulin ATG-Fresenius. Blood 2011, 117, 6375–6382. [Google Scholar] [CrossRef] [PubMed]
- Kroger, N.; Solano, C.; Wolschke, C.; Bandini, G.; Patriarca, F.; Pini, M.; Nagler, A.; Selleri, C.; Risitano, A.; Messina, G.; et al. Antilymphocyte Globulin for Prevention of Chronic Graft-versus-Host Disease. N. Engl. J. Med. 2016, 374, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Mallick, R.; Huebsch, L.B.; Allan, D.S.; Atkins, H.; Anstee, G.; Bence-Bruckler, I.; Hamelin, L.; Hodgins, L.; Sabloff, M.; et al. Low-Dose Anti-Thymocyte Globulin for Graft-Versus-Host-Disease Prophylaxis in Matched Unrelated Allogeneic Hematopoietic Stem Cell Transplant. Biol. Blood Marrow Transplant. 2017. [Google Scholar] [CrossRef] [PubMed]
- Tandra, A.; Mhaskar, A.R.; Kharfan-Dabaja, M.; Anasetti, C.; Mohty, M.; Djulbegovic, B. Low Dose Antithymocyte Globulin (ATG) for Graft-Versus-Host Disease (GVHD) Prophylaxis. Blood 2016, 128, 5788. [Google Scholar]
- Crocchiolo, R.; Esterni, B.; Castagna, L.; Fürst, S.; El-Cheikh, E.; Devillier, R.; Granata, A.; Oudin, C.; Calmels, B.; Chabannon, C.; et al. Two days of antithymocyte globulin are associated with a reduced incidence of acute and chronic graft-versus-host disease in reduced-intensity conditioning transplantation for hematologic diseases. Cancer 2013, 119, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, H.-X.; Liu, D.-H.; Xu, L.-P.; Zhang, X.-H.; Chang, Y.-J.; Chen, Y.-H.; Wang, F.-R.; Sun, Y.-Q.; Tang, F.-F.; et al. Influence of two different doses of antithymocyte globulin in patients with standard-risk disease following haploidentical transplantation: A randomized trial. Bone Marrow Transplant. 2014, 49, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Bacigalupo, A.; Lamparelli, T.; Barisione, G.; Bruzzi, P.; Guidi, S.; Alessandrino, P.E.; di Bartolomeo, P.; Oneto, R.; Bruno, B.; Sacchi, N.; et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: Long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biol. Blood Marrow Transplant. 2006, 12, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Ruutu, T.; Gratwohl, A.; de Witte, T.; Afanasyev, B.; Apperley, J.; Bacigalupo, A.; Dazzi, F.; Dreger, P.; Duarte, R.; Finke, J.; et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014, 49, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Admiraal, R.; van Kesteren, C.; Jol-van der Zijde, C.M.; Lankester, A.C.; Bierings, M.B.; Egberts, T.C.G.; van Tol, M.J.D.; Knibbe, C.A.J.; Bredius, R.G.M.; Boelens, J.J. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: A multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017, 4, e183–e191. [Google Scholar] [CrossRef]
- Champlin, R.E.; Perez, W.S.; Passweg, J.R.; Klein, J.P.; Camitta, B.M.; Gluckman, E.; Bredeson, C.N.; Eapen, M.; Horowitz, M.M. Bone marrow transplantation for severe aplastic anemia: A randomized controlled study of conditioning regimens. Blood 2007, 109, 4582–4585. [Google Scholar] [CrossRef] [PubMed]
- Doney, K.C.; Weiden, P.L.; Storb, R.; Thomas, E.D. Failure of early administration of antithymocyte globulin to lessen graft-versus-host disease in human allogeneic marrow transplant recipients. Transplantation 1981, 31, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Hagen, P.; Wagner, J.E.; DeFor, T.E.; Dolan, M.; Arora, M.; Warlick, E.; Weisdorf, D.; Brunstein, C.G. The effect of equine antithymocyte globulin on the outcomes of reduced intensity conditioning for AML. Bone Marrow Transplant. 2014, 49, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.; Zhang, M.-J.; Bunjes, D.; Prentice, H.G.; Spence, D.; Horowitz, M.M.; Barrett, A.J.; Waldmann, H. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood 1998, 92, 4581–4590. [Google Scholar] [PubMed]
- Chakraverty, R.; Peggs, K.; Chopra, R.; Milligan, D.W.; Kottaridis, D.P.; Verfuerth, S.; Geary, J.; Thuraisundaram, D.; Branson, K.; Chakrabarti, S.; et al. Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood 2002, 99, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Kottaridis, P.D.; Milligan, D.W.; Chopra, R.; Chakraverty, R.K.; Chakrabarti, S.; Robinson, S.; Peggs, K.; Verfuerth, S.; Pettengell, R.; Marsh, J.C.W.; et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 2000, 96, 2419–2425. [Google Scholar] [PubMed]
- Van Besien, K.; Artz, A.; Smith, S.; Cao, D.; Rich, S.; Godley, L.; Jones, D.; Del Cerro, P.; Bennett, D.; Casey, B.; et al. Fludarabine, melphalan, and alemtuzumab conditioning in adults with standard-risk advanced acute myeloid leukemia and myelodysplastic syndrome. J. Clin. Oncol. 2005, 23, 5728–5738. [Google Scholar] [CrossRef] [PubMed]
- Van Besien, K.; Kunavakkam, R.; Rondon, G.; De Lima, M.; Artz, A.; Oran, B.; Giralt, S. Fludarabine-melphalan conditioning for AML and MDS: Alemtuzumab reduces acute and chronic GVHD without affecting long-term outcomes. Biol. Blood Marrow Transplant. 2009, 15, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Malladi, R.K.; Peniket, A.J.; Littlewood, T.J.; Towlson, K.E.; Pearce, R.; Yin, J.; Cavenagh, J.D.; Craddock, C.; Orchard, K.H.; Olavarria, E.; et al. Alemtuzumab markedly reduces chronic GVHD without affecting overall survival in reduced-intensity conditioning sibling allo-SCT for adults with AML. Bone Marrow Transplant. 2009, 43, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Freytes, C.O.; Loberiza, F.R.; Rizzo, J.D.; Bashey, A.; Bredeson, C.N.; Cairo, M.S.; Gale, R.P.; Horowitz, M.M.; Klumpp, T.R.; Martino, R.; et al. Myeloablative allogeneic hematopoietic stem cell transplantation in patients who experience relapse after autologous stem cell transplantation for lymphoma: A report of the International Bone Marrow Transplant Registry. Blood 2004, 104, 3797–3803. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; Mackinnon, S. Outcome following alemtuzumab (CAMPATH-1H)-containing reduced intensity allogeneic transplant regimen for relapsed and refractory non-Hodgkin’s lymphoma (NHL). Transfus. Apher. Sci. 2005, 32, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; Thomson, K.; Craddock, C.; Mahendra, P.; Milligan, D.; Cook, G.; Smith, M.G.; Parker, A.; Schey, S.; Chopra, R.; et al. Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood 2004, 104, 3865–3871. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.J.; Morris, E.C.; Milligan, D.; Parker, A.N.; Hunter, A.E.; Cook, G.; Bloor, A.J.C.; Clark, F.; Kazmi, M.; Linch, D.C.; et al. T-cell-depleted reduced-intensity transplantation followed by donor leukocyte infusions to promote graft-versus-lymphoma activity results in excellent long-term survival in patients with multiply relapsed follicular lymphoma. J. Clin. Oncol. 2010, 28, 3695–3700. [Google Scholar] [CrossRef] [PubMed]
- Lim, Z.Y.; Ho, A.Y.L.; Ingram, W.; Kenyon, M.; Pearce, L.; Czepulkowski, B.; Devereux, S.; Duarte, R.F.; Pagliuca, A.; Mufti, G.J. Outcomes of alemtuzumab-based reduced intensity conditioning stem cell transplantation using unrelated donors for myelodysplastic syndromes. Br. J. Haematol. 2006, 135, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kline, J.; Pollyea, D.A.; Stock, W.; Artz, A.; Rich, E.; Godley, L.; Zimmerman, T.; Thompson, K.; Pursell, K.; Larson, L.A.; et al. Pre-transplant ganciclovir and post transplant high-dose valacyclovir reduce CMV infections after alemtuzumab-based conditioning. Bone Marrow Transplant. 2006, 37, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, B.; Haque, T.; Dimopoulou, M.; Atkinson, C.; Roughton, M.; Grace, S.; Denovan, S.; Fielding, A.; Kottaridis, P.; Griffiths, P.; et al. Incidence and dynamics of Epstein-Barr virus reactivation after alemtuzumab-based conditioning for allogeneic hematopoietic stem-cell transplantation. Transplantation 2010, 90, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.T.; Soiffer, R.J. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 2001, 98, 3192–3204. [Google Scholar] [CrossRef] [PubMed]
- Storb, R.; Prentice, R.L.; Buckner, C.D.; Clift, R.A.; Appelbaum, F.; Deeg, J.; Doney, K.; Hansen, K.; Mason, M.; Sanders, J.E.; et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N. Engl. J. Med. 1983, 308, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Ringden, O.; Nilsson, B. Death by graft-versus-host disease associated with HLA mismatch, high recipient age, low marrow cell dose, and splenectomy. Transplantation 1985, 40, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kanakry, C.G.; Fuchs, E.J.; Luznik, L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat. Rev. Clin. Oncol. 2016, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Cragg, L.; Blazar, B.R.; Defor, T.; Kolatker, N.; Miller, W.; Kersey, J.; Ramsay, N.; McGlave, P.; Filipovich, A.; Weisdorf, D. A randomized trial comparing prednisone with antithymocyte globulin/prednisone as an initial systemic therapy for moderately severe acute graft-versus-host disease. Biol. Blood Marrow Transplant. 2000, 6, 441–447. [Google Scholar] [CrossRef]
- Remberger, M.; Aschan, J.; Barkholt, L.; Tollemar, J.; Ringdén, O. Treatment of severe acute graft-versus-host disease with anti-thymocyte globulin. Clin. Transplant. 2001, 15, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ozen, M.; Bozdag, S.; Cakmak, G.; Topcuoglu, P.; Eroglu, A.H.; Gunduz, M.; Arslan, O.; Demirer, T.; Akan, H.; Ilhan, O.; et al. Antilymphocyte/Thymocyte Globulin for the Treatment of Steroid-Refractory Acute Graft-Versus-Host Disease: 20-Year Experience at a Single Center. Int. J. Hematol. Oncol. 2015, 25, 236–244. [Google Scholar] [CrossRef]
- Khoury, H.; Kashyap, A.; Adkins, D.R.; Brown, R.A.; Miller, G.; Vij, R.; Westervelt, P.; Trinkaus, K.; Goodnough, L.T.; Hayashi, R.J.; et al. Treatment of steroid-resistant acute graft-versus-host disease with anti-thymocyte globulin. Bone Marrow Transplant. 2001, 27, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Margolis, J.; Zahurak, M.; Zahurak, V.; Vogelsang, G.B. Poor outcome in steroid-refractory graft-versus-host disease with antithymocyte globulin treatment. Biol. Blood Marrow Transplant. 2002, 8, 155–160. [Google Scholar] [CrossRef] [PubMed]
- McCaul, K.G.; Nevill, T.J.; Barnett, M.J.; Toze, C.L.; Currie, C.J.; Sutherland, H.J.; Conneally, E.A.; Shepherd, J.D.; Nantel, S.H.; Hogge, D.E.; et al. Treatment of steroid-resistant acute graft-versus-host disease with rabbit antithymocyte globulin. J. Hematother. Stem Cell Res. 2000, 9, 367–374. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, M.L.; Weisdorf, D.J.; Davies, S.M.; DeFor, T.E.; Burns, L.J.; Burns, N.K.C.; Wagner, J.E.; Blazar, B.R. Early antithymocyte globulin therapy improves survival in patients with steroid-resistant acute graft-versus-host disease. Biol. Blood Marrow Transplant. 2002, 8, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.; May, R.; Carrum, G.; Krance, R.; Przepiorka, D. Use of antithymocyte globulin for treatment of steroid-refractory acute graft-versus-host disease: An international practice survey. Bone Marrow Transplant. 2001, 28, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Shlomchik, W.D.; Couzens, M.S.; Tang, C.B.; McNiff, J.; Robert, M.E.; Liu, J.; Shlomchik, M.J.; Emerson, M.G. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999, 285, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Matte, C.C.; Liu, J.; Cormier, J.; Anderson, B.E.; Athanasiadis, I.; Jain, D.; McNiff, J.; Shlomchik, W.D. Donor APCs are required for maximal GVHD but not for GVL. Nat. Med. 2004, 10, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.E.; McNiff, J.M.; Jain, D.; Blazar, B.R.; Shlomchik, W.D.; Shlomchik, M.J. Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: Requirements depend on target organ. Blood 2005, 105, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.P.; Munster, Da.; Clark, G.; Wang, X.-N.; Dickinson, A.M.; Hart, D.N. In vitro depletion of tissue-derived dendritic cells by CMRF-44 antibody and alemtuzumab: Implications for the control of Graft-versus-host disease. Transplantation 2005, 79, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Von dem Borne, P.A.; Beaumont, F.; Starrenburg, C.W.; Oudshoorn, M.; Hale, G.; Falkenburg, J.H.; Fibbe, M.E.; Willemze, R.; Barge, R.M. Outcomes after myeloablative unrelated donor stem cell transplantation using both in vitro and in vivo T-cell depletion with alemtuzumab. Haematologica 2006, 91, 1559–1562. [Google Scholar] [PubMed]
- Delgado, J.; Thomson, K.; Russell, N.; Ewing, J.; Stewart, W.; Cook, G.; Devereux, S.; Lovell, R.; Chopra, R.; Marks, D.I.; et al. Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: A British Society of Blood and Marrow Transplantation Study. Blood 2006, 107, 1724–1730. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Almaguer, D.; Ruiz-Argüelles, G.J.; Tarín-Arzaga, L.D.C.; González-Llano, O.; Gutiérrez-Aguirre, H.; Cantú-Rodríguez, O.; Jaime-Pérez, J.; Carrasco-Yalán, A.; Giralt, S. Alemtuzumab for the treatment of steroid-refractory acute graft-versus-host disease. Biol. Blood Marrow Transplant. 2008, 14, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Solano, C.; Ferrá, C.; Sampol, A.; Valcárcel, D.; Pérez-Simón, J.A. Spanish Group for Stem Cell Transplantation. Alemtuzumab as treatment of steroid-refractory acute graft-versus-host disease: Results of a phase II study. Biol. Blood Marrow Transplant. 2009, 15, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, M.; Hasskarl, J.; Egger, M.; Bertz, H.; Finke, J. Successful treatment of severe acute intestinal graft-versus-host resistant to systemic and topical steroids with alemtuzumab. Biol. Blood Marrow Transplant. 2009, 15, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Schub, N.; Günther, A.; Schrauder, A.; Claviez, A.; Ehlert, C.; Gramatzki, M.; Repp, R. Therapy of steroid-refractory acute GVHD with CD52 antibody alemtuzumab is effective. Bone Marrow Transplant. 2011, 46, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Arguelles, G.J.; Gil-Beristain, J.; Magaña, M.; Ruiz-Delgado, G.J. Alemtuzumab-induced resolution of refractory cutaneous chronic graft-versus-host disease. Biol. Blood Marrow Transplant. 2008, 14, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Arguelles, G.J.; Ruiz-Delgado, G.J.; Moreno-Ford, V. Re: Alemtuzumab-induced resolution of pulmonary noninfectious complications in a patient with chronic graft-versus-host disease. Biol. Blood Marrow Transplant. 2008, 14, 1434–1435. [Google Scholar] [CrossRef] [PubMed]
Antilymphocyte Antibodies | rATG-Thymoglobulin | rATG-Fresenius | Campath-1G | Campath-1H |
---|---|---|---|---|
Type of antibody | Polyclonal | Polyclonal | Monoclonal | Monoclonal |
Route of administration | IV | IV | IV/SubQ | IV/SubQ |
Infusion reaction | Yes/CRS | Yes/CRS | Yes | Yes |
Primary cells affected | CD4 lymphocytes | CD4 lymphocytes | T, B, Dendritic, NK, Monocyte, Macrophages | T, B, Dendritic, NK, Monocyte, Macrophages |
Mean elimination T 1/2 | 29.8 days | 29.8 days | ||
Mean overall T 1/2 | 12 days | 8 days | ||
CMV reactivation | + | + | + | + * |
EBV reactivation | ++ | + | + | + |
Prolonged cytopenias | + | + | ++ | + |
Delay in neutrophil engraftment | - | - | ++ | + |
Secondary malignancy | ++ | + | - | - |
Schedule | 2–2.5 mg/kg daily × 3–5 days | 2–2.5 mg/kg daily × 3–5 days | 20 mg daily × 5 days | 20 mg daily × 5 days |
HLA-Matched (n = 194) | HLA-Mismached (n = 65) | p-Value | |
---|---|---|---|
GRAFT FAILURE (%) | 0.5 | 3 | 0.16 |
ACUTE GVHD (II-IV) | 45 | 35 | 0.14 |
OVERALL CHRONIC GVHD | 42 | 40 | 0.68 |
GVHD ASSOCIATED MORTALITY | 7.7 | 6.2 | - |
TRM (AT 3 Years) | 29 | 27 | 0.59 |
RELAPSE (AT 5 Years) | 28 | 25 | 0.63 |
OS (AT 5 Years) | 54 | 50 | 0.99 |
DFS (AT 5 Years) | 43 | 47 | 1.0 |
Van Basien | Malladi | |||||
---|---|---|---|---|---|---|
Alemtuzumab-Containing Regimen | Without Alemtuzumab | p | Alemtuzumab-Contining Regimen | Without Alemtuzumab | p | |
Number | 95 | 59 | 51 | 37 | ||
Median age | 54 | 55 | 51 | 51 | ||
Conditioning | 95 | 59 | ||||
Regimen | ||||||
Flu/Mel | 39 | 20 | ||||
Flu/Bu | 8 | 6 | ||||
Flu/Cy | 2 | 8 | ||||
Other | 3 | 2 | ||||
Dose Alemtuzumab | 100 mg (20 mg/day, −7 to −3) | Average 60 mg (30–100 mg) | ||||
TRM (%) | 24.6 (1-year) | 28.8 (1 year) | 0.25 | 12 (2 year) | 17 (2 year) | 0.49 |
Relapse(%) | 23.7 (1-year) | 20.3 (1 year) | 0.24 | 35 (2 year) | 19 (2 year) | 0.28 |
2 YR OS (%) | 40.5 | 45.7 | 0.92 | 60 | 61 | 0.84 |
aGVHD (II-IV) (%) | 8.6 | 16.5 | 0.08 | 14 | 22 | 0.25 |
cGVHD (%) | 16 | 78.4 | <0.01 | 23 | 77 | 0.001 |
References | n | Grade | Sites | GVHD PPX | Type/Dose ATG | ORR (CR + PR) | Site of Best Response | Median Time to Onset of ATG | Infectious Complications | Survival | Cause of Death |
---|---|---|---|---|---|---|---|---|---|---|---|
Remberger et al., 2001 [85] | 29 | II–IV | Skin (93%) GI (76%) Liver (62%) | CsA/MTX—66% CsA + MTX—31% CsA + Steroid—3% | Rabbit ATG—0.25–1 mg/kg/day BMA 031—0.2 mg/kg/day OKT-3—2.5–5 mg/day Fresenius—4 mg/kg/day Thymoglobulin—2 mg/kg/day | 49% | Skin—72% | Not stipulated | CMV reactivation—37% Fungal infection—31% | 37%—at 100 day 12%—at 1 year 10%—after 3 year | GVHD—86% aGVHD—84% cGVHD—16% |
Khoury et al., 2001 [87] | 58 | II–IV | Skin (74%) GI (81%) Liver (52%) | CsA—7% CsA + Prednisone—27% CsA/MTX/Prednisone—66% | Equine ATG 40 mg/kg/day × 4 day 15 mg/kg on alternate days × 6 days 10–20 mg/kg/day × 5–10 day | 31% | Skin—79% | 9 days after initiation of MP (3–39 day) | Incidence of all infections—67% Invasive deep fungal infection—51% | 10%—at median 40 day | Infection ± GVHD—73% ARDS—15% Relapse—12% |
Arai, et al., 2002 [88] | 69 | II–IV | Skin (81%) GI (59%) Liver (78%) | CsA—72% CsA + MTX—1% MTX—1% Other (CsA + elutriation or steroid)—25% | ATG 10–15 mg/kg on alternate days × 7 day, followed by 2nd dose if responding | 30% | Skin—59% | 46 day post-transplant, with median 24.5 day interval between primary and ATG salvage treatment | Viral, fungal infection–incidence not stipulated | 10%—at 2 year | GVHD/infection/multi-organ failure—95% Relapse—5% |
McCaul et al., 2000 [89] | 36 | II–IV | Skin, GI, Liver | CsA + short course MTX—81% CsA administered after T cell depletion of bone marrow—17% CsA/MTX/MP—3% | Rabbit ATG (Thymoglobulin) 2.5 mg/kg/day × 4–6 day, in succession 2.5 mg/kg/day on alternate days for 7 day | 59% | Skin—96% | 41 day post-transplant (16–204 day) | Systemic fungal infection—31% Viral infection—25% (CMV, disseminated VZV, influenza A pneumonia) Bacteremia—19% | 6%—at 15+ and 34+ months | GVHD—28% Infection—28% PTLD—22% Relapse—11% Veno-Occlusive Disease—3% Intra-cranial Hemorrhage—3% |
MacMillan et al., 2002 [90] | 79 | I–IV | Skin (81%) GI (80%) Liver (11%) | CsA/MTX—58% CsA/Prednisone ± other—9% MTX/ATG/Prednisone—13% Ex vivo T-lymphocyte depletion—13% Tacrolimus—35% MTX alone—5% | Equine ATG 15 mg/kg BID × 5 day, for 1–5 courses (median 2 courses) | 54% | Skin—61% | After initiation of steroids—16 day After HSCT—48 day | Bacterial infection—37% Fungal infection—18% CMV infection—10% EBV Lymphoproliferative disease—1% | 32%—at 1 year | GVHD—48% Relpase—11% Infections were contributing factor—67% |
Ozen et al., 2015 [86] | 35 | III–IV | Skin (29%) GI (71%) Liver (25%) | CsA + short course MTX | Fresenius/Thymoglobulin/Lymphoglobulin 2–10 mg/kg/day × 5 day | 42% | Not stipulated | 15 day from diagnosis (7–10 day) | Bacterial and fungal infection—83% | No increase in any group | Responders: bacterial/fungal infection (10/15) Non-Responders: GVHD complications + Infection (19/20) |
References | n | Dose | Median Time To Initiation | GVHD PPX | Site | GRADE | CR | ORR | Survival | CMV | Infectious Events |
---|---|---|---|---|---|---|---|---|---|---|---|
Gomez-Almaguer et al., 2008 [95] | 18 | 10 mg/day SC × 5 days | Not stipulated | CsA + short course MTX | GI, Liver, Skin | ≥2 | 33% | 83% | 55% (1 year) | 61% (asymptomatic reactivation) | 78% |
Schnitzler et al., 2009 [97] | 20 | 10 mg weekly | 7 days | Not stipulated | GI | III–IV | 40% | 70% | 50% (1 year) | 10% (CMV Colitis) | Total events not specified |
Martinez et al., 2009 [96] | 11 | 10 mg/day IV × 5 days, followed by 10 mg/day weekly on Days 8, 15, 22 if CR not achieved | Not stipulated | CsA + MTX (myeloablative) CsA + MMF (fludarabine-based RIC) | GI, Liver, Skin | III–IV | 20% | 55% | 0% (1 year) | 64% (asymptomatic reactivation) | 73% |
Schub et al., 2011 [98] | 18 | 70–80 mg, repeat after 3–4 weeks 20–33 mg every 2–3 weeks 3–13 mg every 2–3 weeks | 33 days | CsA + MTX CsA + MMF | GI, Liver | III–IV | 28% | 94% | 33% (108 weeks) | 55% (asymptomatic reactivation) | 100% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Ramdial, J.; Algaze, S.; Beitinjaneh, A. The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease. Biomedicines 2017, 5, 67. https://doi.org/10.3390/biomedicines5040067
Ali R, Ramdial J, Algaze S, Beitinjaneh A. The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease. Biomedicines. 2017; 5(4):67. https://doi.org/10.3390/biomedicines5040067
Chicago/Turabian StyleAli, Robert, Jeremy Ramdial, Sandra Algaze, and Amer Beitinjaneh. 2017. "The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease" Biomedicines 5, no. 4: 67. https://doi.org/10.3390/biomedicines5040067
APA StyleAli, R., Ramdial, J., Algaze, S., & Beitinjaneh, A. (2017). The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease. Biomedicines, 5(4), 67. https://doi.org/10.3390/biomedicines5040067